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Introduction



Welcome to the course

An algorithm is an explicit, precise, unambiguous,
mechanically-executable sequence of elementary instructions,
usually intended to accomplish a specific purpose. Of course !

• What is this course about?
• Design algorithms - Haven’t I been doing this already?
• Prove correctness - All the implementations that I write work for
all the test cases!

• Analyze complexity - All the programs I write run very fast on my
computer!
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Integer multiplication

• Multiplication is repeated addition: 3× 5 = 3+ 3+ 3+ 3+ 3
• What about the way you multiplied numbers in school?

• Learn to multiply single digits - multiplication tables!
• Learn to multiply large numbers with single digits
• Given a = amam−1 . . . a0 and b = bnbn−1 . . .b0 do the following:

• Do c0 = a× b0, c1 = a× b1, . . ., cn = a× bn
• Write down the number

∑n
i=0 ci × 10i.
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Integer multiplication

Figure 1: Anonymous 1458 textbook - Treviso Arithmetic
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Integer multiplication

Peasant’s multiplication (1650 B.C)
Given two numbers a, b
Start with c = 0, until a = 0
• Check parity of a
• Addition - If a is odd, do
c = c+ b

• Duplation - b = 2× b
• Mediation - a = b a2 c

a b c
0

35 +46 46
17 +92 138
8 184 138
4 368 138
2 736 138
1 +1472 1610

How do we know if this algorithm is correct?

What is the running time of this algorithm?

Measured in terms of what?
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Detour : Ruler and Compass Constructions

• You have a ruler and a compass and a pencil to draw lines.

• And you are given a line segment which is of length 2 units.
• Aim : to bisect this line - that is, to produce line segments of 1
unit length each.
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Bisection !
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What else can be done?

• Can you construct an equivalenteral triangle?

• Can you construct a square?
• Can you construct a polygon with 10 sides?

Are there things that cannot be done? (A question from ancient
greeks !)
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Gauss ....

Carl Frederich Gauss

1796 : He devised a method for consrtucting the regular 17-gon.

About 40 years later - he had a characterization of when it is
possible and when is it not.

[Gauss-Wantzel Theorem - 1837] A regular n-gon can be con-
structed with compass and straightedge

if and only if

n is a power of 2 or the product of a power of 2 and any number
of distinct Fermat primes.
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Coming back : Integer multiplication

Question Can you perform multiplication using a compass and
straight-edge?

Given two line segments of length a and b, with one endpoint
as the origin and another line segment of unit length, construct
a line segment of length a× b

What if a and b

are not integers
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Integer multiplication

Why is thismethod correct?

• Hint : Triangles AEC
and AFZ are similar !!.

• Prove: |AZ| = |AD|×|AC|
|AB|

• Use the unit length
given as the line AB.
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Integer multiplication

• Which is a better algorithm or are they all equally good?

• How do we measure the goodness of an algorithm?
• Are there algorithms for integer multiplication that are better?

• When do we decide to stop searching for better algorithms?

12



Integer multiplication

• Which is a better algorithm or are they all equally good?
• How do we measure the goodness of an algorithm?

• Are there algorithms for integer multiplication that are better?
• When do we decide to stop searching for better algorithms?

12



Integer multiplication

• Which is a better algorithm or are they all equally good?
• How do we measure the goodness of an algorithm?
• Are there algorithms for integer multiplication that are better?

• When do we decide to stop searching for better algorithms?

12



Administrative Details



Administrative details

• When: ’D’ slot
• 3 lectures (Mon, Tue, Wed) + 1 tutorial (Thu)

• Contact: By email or WA.
• Discussion Page : https://edstem.org
• Course page:
www.cse.iitm.ac.in/~jayalal/teaching/home.php?courseid=82

• TAs: Ayman, Chahel, Dinesh, Harish, Nagashri, Parag, Raju,
Rupankar, Sambhav, Shaun, Subramanian, Tejasvi.

13
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Administrative details

Grading scheme:

Relative grading

• Best 3 out of 4 short exams: 3× 6 = 18%.
• Two Quizzes - 1 & 2: 2 × 20% = 30%
• End-sem Exam: 42%

Attendance requirements: as mandated by the institute.

14



Course Textbooks

We will not be following one textbook. Our main sources of
reference will be the following textbooks.

E - Algorithms by Jeff Erickson.
KT - Algorithm Design by Jon Klienberg and Eva Tardos.

CLRS - Introduction to Algorithms- Cormen, Leiserson, Rivest & Stein.
DPV - Algorithms by Dasgupta, Papadimitriou and Vazirani.

15



What constitutes a good algorithm?

• Proposed procedure in unambiguous terms.
• Proof of termination.
• Proof correctness.
• Proof of running time or space used by the algorithm.

this may involve using the right data structures.
• Proof of tightness, if possible.

16



What constitutes a good algorithm?

• Proposed procedure in unambiguous terms.
• Proof of termination.
• Proof correctness.
• Proof of running time or space used by the algorithm.
this may involve using the right data structures.

• Proof of tightness, if possible.

16



JOSAA and SEAT



SEAT algorithm at IITM

Student Elective Allocation Tool :
http://www.cse.iitm.ac.in/~meghana/seat/

• Set of students with preference order for courses offered in the
institute

• Set of courses with some preference order for students (GPA
based?)

• Allocate students to courses so that the course instructors and
students are ”happy”

• How should we define ”happy”?

17
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The Stable Marriage problem

c0 s0

c1 s1

c2 s2

c3 s3

c4 s4

Preference orders for students and
courses
• S1 : (C0,C1,C2,C3,C4),
S2 : (C0,C3,C4,C1,C2), . . .

• C0 : (S1, S3, S4, S0, S2),
C3 : (S2, S1, S0, S4, S3), . . .

• If S1 is assigned the course C0, then S1 and C0 are happy!
• If S2 is assigned the course C3, he/she may not be happy but
cannot do anything about it! (why?)

• The notion of happiness has to be modified to one of stability

18
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Stable marriages

C0 S0

C1 S1

C2 S2

(C0,C1,C2)

(C2,C0,C1)

(C0,C1,C2)

(S1, S0, S2)

(S1, S2, S0)

(S1, S0, S2)

• How should the students be mapped to the courses?

• S0 − C0, S1 − C2, S2 − C1

• Should such mappings always exist?
• Can there be more than one such mapping? If so, which one is
”better”?

• If a mapping exists, how will we find it?

19
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Stable marriages

• Nobel prize in Economics (2012) for Shapley and Roth - ”for the
theory of stable allocations and the practice of market design”
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Matchings and unstable pairs

Input: Set of students, courses and the list of preferences

1st 2nd 3rd

C0 S0 S1 S2
C1 S1 S0 S2
C2 S0 S1 S2

1st 2nd 3rd

S0 C1 C0 C2
S1 C0 C1 C2
S2 C0 S1 S2

Output: A matching between the set of courses and the set of
students.

• Each course is assigned exactly one student.
• Each student is allotted exactly one course.

22
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Matchings and unstable pairs

1st 2nd 3rd

C0 S0 S1 S2
C1 S1 S0 S2
C2 S0 S1 S2

1st 2nd 3rd

S0 C1 C0 C2
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S2 C0 C1 C2

Matching: S0 ↔ C2, S1 ↔ C1, S2 ↔ C0

Unstable pair A pair (Si,Cj) is said to be an unstable pair if

• Si prefers Cj to the currently allotted course, and
• Cj prefers Si to the currently assigned student

Question Are there any unstable pairs in the matching above?

An unstable pair can improve theirmutual happiness by break-
ing the current matching!
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Stable matchings

A stable matching is a matching where every course is allotted
a student such that there are no unstable pairs

Stable Marriage problem Given a set of courses, students and
preference lists, find a stable matching (if one exists)

1st 2nd 3rd

C0 S0 S1 S2
C1 S1 S0 S2
C2 S0 S1 S2

1st 2nd 3rd

S0 C1 C0 C2
S1 C0 C1 C2
S2 C0 C1 C2

S0 ↔ C0, S1 ↔ C1, S2 ↔ C2
S0 ↔ C1, S1 ↔ C0, S2 ↔ C2

}
– two stable matchings
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Stable roommates

• 2n people - each person ranks the remaining 2n− 1
• Construct a matching with no unstable pairs

1st 2nd 3rd

S1 S2 S3 S4
S2 S3 S1 S4
S3 S1 S2 S4
S4 S1 S2 S3

: (S2, S3) unstable
: (S1, S2) unstable
: (S1, S3) unstable
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Gale-Shapley algorithm: A pseudocode

Set M← ∅
while ∃ unmatched student S and course to which (s)he
has not applied do

C← first course in list of S to which (s)he has not
applied
if C is unmatched then

M← M+ {(C, S)}
else

if C prefers S to its current student S′ then
M← M− {(C, S′)}+ {(C, S)}

else

C rejects S
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Gale-Shapley algorithm: an example

1st 2nd 3rd 4th

S0 C1 C0 C3 C2
S1 C3 C1 C0 C2
S2 C1 C2 C3 C0
S3 C0 C3 C2 C1

1st 2nd 3rd 4th

C0 S0 S1 S3 S2
C1 S2 S1 S3 S0
C2 S1 S2 S3 S0
C3 S0 S3 S2 S1
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Gale-Shapley algorithm: pseudocode

Set M← ∅
while ∃ unmatched student S and course to which (s)he
has not applied do
C← first course in list of S to which (s)he has not
applied
if C is unmatched then

M← M+ {(C, S)}
else

if C prefers S to its current student S′ then
M← M− {(C, S′)}+ {(C, S)}

else
C rejects S
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Gale-Shapley algorithm: termination

Lemma: Once a course is matched to a student, the following
are true
• The course is never unmatched
• If the course is assigned a new student, (s)he will be
higher in preference order for the course

• Only reason for a course to change the assigned student is if a
student who is higher in its preference order applies
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Gale-Shapley algorithm: termination

Lemma: The Gale-Shapley algorithm terminates after n2 itera-
tions of the while-loop with a matching

• Each student applies to a course at most once
• After n2 steps, every course has been applied to at least once
• Once a course is applied to, it remains matched
• If all courses are matched, then all students are also matched
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Gale-Shapley algorithm: stability

Lemma: If M is the matching returned by the Gale-Shapley al-
gorithm, then M has no unstable pairs

Consider a pair (C, S) /∈ M - Can (C, S) form an unstable pair?

• S never applied to C
• S applies to courses in the decreasing order of preference
• S is matched to a course C′ higher in its preference order

• S applied to C at some iteration
• S was rejected by C because C was assigned a more preferred
student

• S was ditched by C when it received request from a student higher
in the preference order

Question Do all executions of the Gale-Shapley algorithm lead to
the same stable matching?
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Gale-Shapley algorithm: running time

The while-loop executes at most n2 times
• How long does it take to find an unmatched student and a course
that (s)he has not applied to?

• Queue of students who are not matched
• Queue of courses not applied to (for every student)

• How should the matching be stored so that you can check if C is
matched in O(1) time?

One bit per course/student to indicate whether the course is
matched, and id of the matched course/student

• The data structure storing the matching should allow an update
of the matching in O(1) time

Update the corresponding bits, and change the course/student
information
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Gale-Shapley algorithm: running time

The while-loop executes at most n2 times
• How long does it take to find an unmatched student and a course
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• Update the matching O(1)-time

Gale-Shapley algorithm runs in time O(n2)
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Gale-Shapley algorithm: properties of the solution

1st 2nd 3rd

C0 S0 S1 S2
C1 S1 S0 S2
C2 S0 S1 S2

1st 2nd 3rd

S0 C1 C0 C2
S1 C0 C1 C2
S2 C0 C1 C2

S0 ↔ C0, S1 ↔ C1, S2 ↔ C2
S0 ↔ C1, S1 ↔ C0, S2 ↔ C2

}
– two stable matchings

• There is no stable matching that matches S2 to C0 or C1
• There is no stable matching that matches C2 to S0 or S1
• M is the best matching for the students, and the worst for the
courses

• M′ is the best matching for the courses, and the worst for the
students
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Gale-Shapley algorithm: properties of the solution

1st 2nd 3rd

C0 S0 S1 S2
C1 S1 S0 S2
C2 S0 S1 S2

1st 2nd 3rd

S0 C1 C0 C2
S1 C0 C1 C2
S2 C0 C1 C2

S0 ↔ C0, S1 ↔ C1, S2 ↔ C2
S0 ↔ C1, S1 ↔ C0, S2 ↔ C2

}
– two stable matchings

Theorem:
• If the students apply to the courses, then the output
obtained will be the best matching for the students, and
the worst for the courses.

• If the courses propose to the students, then the output
obtained will be the best matching for the courses, and
the worst for the students.
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Gale-Shapley algorithm: Optimality

1st 2nd 3rd

C0 S0 S1 S2
C1 S1 S0 S2
C2 S0 S1 S2

1st 2nd 3rd

S0 C1 C0 C2
S1 C0 C1 C2
S2 C0 C1 C2

• A course Cj is a valid match for Si if there exists a stable
matching that matches Cj to Si

C0 is a valid match for S0 and S1, but not for S2
• Cj is the best valid match for Si if in every stable matching M′,
either Cj is matched to Si, or if C′ is matched to Si, then C′ is
lower in the preference order than Cj

Theorem: Let M∗ = {(Si, best(Si))|1 ≤ i ≤ n}. If Gale-Shapley
algorithm is run with students making requests, then it al-
ways returns M∗ irrespective of the order in which the students
make the requests.
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Gale-Shapley algorithm: Optimality

Theorem: Let M∗ = {(Si, best(Si))|1 ≤ i ≤ n}. If Gale-Shapley
algorithm is run with students making requests, then it al-
ways returns M∗ irrespective of the order in which the students
make the requests.

Proof: Suppose the GS algorithm returns matching M 6= M∗

Consider first instance where a student is rejected by a course that
is a valid match

• Si is rejected by a valid match Cj

• Cj matched to S′, higher in preference order

Consider a stable matching M′ where (Si,Cj) ∈ M′, and (S′,C′) ∈ M′

Question Which course does S′ prefer more: Cj or C′?

• S′ was not rejected by a valid match when it is matched to Cj
• S′ prefers Cj to C′ ⇒ (S′,Cj) is unstable in M′

contradicts the fact that

M′ is a stable matching
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Gale-Shapley algorithm: Optimality

Theorem: Let M̂ = {(worst(Cj),Cj)|1 ≤ j ≤ n}. Then M̂ = M∗

Proof: Consider (Si,Cj) ∈ M∗ such that Si 6= S = worst(Cj)

• ∃ a stable matching M′ such that (S,Cj) ∈ M′, and
• Cj prefers Si to S

Suppose (Si,C′) ∈ M′

• Si prefers Cj to C′

• (Si,Cj) is an unstable pair in M′

Cj = best(Si)
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What constitutes a good algorithm?

• Proposed procedure in unambiguous terms.
• Proof of termination.
• Proof correctness.
• Proof of running time or space used by the algorithm.

this may involve using the right data structures.
• Proof of tightness, if possible.
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What do we intend to do?

• Incremental and Decremental Design
• Recursion & Divide-and-conquer Strategy
• Greedy Algorithm Strategy
• Dynamic Programming Strategy
• Incremental Strategy
• Limitations and Intractability

As a part of the analysis techniques, we will see data structures,
amortization.
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• The material is based on book on Algorithms by Jeff Erickson.
Please see the course homepage for details.

• Slides for the first lecture is derived from Yadu Vasudev’s slides
from 2023 edition of the course.
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