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Space vs Time - a fundamental frontier

| BELIEVE P=NP PSPACE

The only things that matter in a theoretical study are those that you can prove, but
it's always fun to speculate. After worrying about P vs. NP for half my life, and
having carefully reviewed the available “evidence” | have decided I believe that P N P

NP.
A main justification for my belief is history:
1.1n the 1950's that of n-bit integers.

requires time 2:(n*). That's the time it takes to multiply using the method
that mankind has used for at least six millennia. Presumably, If a better P

algorithm unleashed a new age of fast algorithms, including the next one.
| recommend Karatsuba’s own account [2] of this compelling story. 2
elimination is not optimal” [12].

3.1n the 1970s Valiant showed that the graphs of circuits computing certain

linear mustbe a a graph which
certain strong connectivity properties. He conjectured that super-
concentrators must have a super-linear number of wires, from which

super-linear circuit lower bounds follow [13]. However, he later disproved
the conjectured [14]: building on a result of Pinsker he constructed super-
concentrators using a linear number of edges.
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Space vs Time - a fundamental frontier

5. After finite automata, a natural step in lower bounds was to study sightly
more general programs with constant memory. Consider a program that
only maintains O(1) bits of memaory, and reads the input bits in a fixed
order, where bits may be read several times. It seems quite obvious that
such a program could not compute the majority function in polynomial
time. This was explicitly conjectured by several people, including [5].
Barrington [4] famously disproved the conjecture by showing that in fact
those seemingly very restricted constant-memory programs are in fact
equivalent to log-depth circuits, which can compute majority (and many
other things).

Surprise: Barrington's Theorem

continues to inspire further surprises
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The Tree Evaluation Problem - TEP4 4, - [CMWBS 12]

Fix: the complete d-ary tree, of height h, alphabet [k].
Input:

o Values from [k] at the leaves.
o Tables of size [k]? with entries from [k] at each internal node.

Task: Compute the value at the root.



The Tree Evaluation Problem - TEP; 4, - [CMWBS 12]

d=2 k=3 h=4

3

NN ™M

M - ™M

— AN ™M

o ™

AN

3

ofoloteleteleto



The Tree Evaluation Problem - TEP; 4, - [CMWBS 12]

d=2 k=3 h=4

- AN

M AN ™M

- AN ™M

NN ™M

n o Q)

NN ™M

M - ™M

— AN ™M

AN N ™M

— AN N

NESDKS

N —~ N

oM MmN

AN~

- AN ™M

— Qo

HOOOOOOE




The Tree Evaluation Problem - TEP; 4, - [CMWBS 12]

d=2 k=3 h=4

O m

- AN ™M

M ™

AN N

NN ™M

M - ™M

— AN ™M

AN ™M

AN N

— N

- O
M oA

AN o~

AN ™

N ™

AN ™M

AN ™M

N ™M

ofoloteleteleto




The Tree Evaluation Problem - TEP; 4, - [CMWBS 12]

d=2 k=3 h=4

- AN

M AN ™M

- AN ™M

M ™

AN N

(k)

M — ™M

- AN ™M

AN ™M

AN N

— N

N —~ N

oM MmN

AN~

AN ™

N ™

AN ™M

AN ™M

N ™M

ofoloteleteleto




The Tree Evaluation Problem - TEP4 4, - [CMWBS 12]

Fix: the complete d-ary tree, of height h (number of nodes), alphabet [k].
Input:

o Values from [k] at the leaves.
o Tables of size [k]? with entries from [k] at each internal node.

Task: Compute the value at the root.



The Tree Evaluation Problem - TEP4 4, - [CMWBS 12]

Fix: the complete d-ary tree, of height h (number of nodes), alphabet [k].
Input:

o Values from [k] at the leaves.
o Tables of size [k]? with entries from [k] at each internal node.

Task: Compute the value at the root.

Input Size (in bits) ~d"log k+ (L2 ) k¥ log k



The Tree Evaluation Problem - TEP4 4, - [CMWBS 12]

Fix: the complete d-ary tree, of height h (number of nodes), alphabet [k].
Input:

@ Values from [k] at the leaves.

o Tables of size [k]? with entries from [k] at each internal node.

Task: Compute the value at the root.

Input Size (in bits) ~d"log k+ (L2 ) k¥ log k
With d = 2,

2 "1log k 4 (21 — 1)k? log k = 2"poly(k)



The Tree Evaluation Problem - TEP4 4, - [CMWBS 12]

Fix: the complete d-ary tree, of height h (number of nodes), alphabet [k].
Input:

o Values from [k] at the leaves.
o Tables of size [k]? with entries from [k] at each internal node.

Task: Compute the value at the root.

Input Size (in bits) ~d"log k+ (L2 ) k¥ log k
With d = 2,

2 "1log k 4 (21 — 1)k? log k = 2"poly(k)

Natural Algorithms: Bottom-up evaluation, Recursive evaluation.



Model : k-ary Deterministic Branching Programs

Trivial upper bound : 2"~1 length and k" width
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Complexity Bounds

@ By the trivial evaluation algorithm :
o TEP, ., € P (even in NC?).
o TEP; 4 can be solved in space 2h.

@ Recursive (with reuse of space) : TEP y  is in space O(hlog k).
Conjecture [CMWBS 2012] : TEP, x5 ¢ L.

That is, TEP, x 5 cannot be solved in O(h + log k) space.

Conjecture [KRW 1995] : TEP,, 4 ¢ NC?.
That is, depth(TEPg42 ) is at least Q(hlog d).
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@ Memory adds up to Q(hlog k) space.
@ Recall : input size 2"poly(k).
@ For TEP, x4 € L, this should be doable in O(h + log k) space.
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Pebbling Algorithms and Tree Evaluation

Gra

o

ph Pebbling: [Paterson and Hewit 1970]

Pebble can be placed on a leaf any time.
Pebble can be removed from any node at
any time.

To pebble a node, all its children should be
pebbled.

Minimise the number of pebbles used at
any point of time.

[Pebbling Bound] Pebbling of T requires Q(h) pebbles.

[Lower Bound Strategy| From the algorithm that uses space s,
extract a pebbling strategy of T with number of pebbles function
of s.
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TEP, 4 cannot be in o(hlog k) space if we assume ...

Read-once Branching Programs (ROBP): In any computation path,
the branching program queries values at a node only once.

Thrifty Branching Programs: For each internal node, the algorithm
must query the table only on the correct pair of values.

[CMWBS 2009]
TEP2 k » requires Q(k") size for Thrifty or RO BPs.

[Thrifty Hypothesis]
For TEP; x 4, any Branching Program can be made thrifty without
increasing the size beyond poly factors.

Many of these results extend to non-deterministic setting as well.
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Conjecture : TEPy,x ¢ L

[Stephen Cook’s 100 USD TEP Challenge]
Design an algorithm for TEP; , x that uses o(hlog k) space.

Design a branching program for TEP ,  of size kh=¢ for a const e.

Rest of this talk: how James Cook & lan Mertz won that 100 USD.
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An Earlier Surprise in Complexity Theory

Barrington’s Theorem (1989):
Any f € NC! can be computed by width 5

P
L
branching programs of polynomial length. |

NC! = W5BP

|
a ACCO[6]
c c f computed by log-depth
fan-in 2, poly size

1 _ .
#NC =147 circuits with +/x gates

Ben-Or and Cleve (1992):
Any f € #NC! can be computed in O(log n) space.
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Let us learn from Ben-Or and Cleve

@ Use register programs (1975): Three registers - Ry, Ry, and Ry each
holding a value in [k]. Total 3log k space.

@ Registers are updated by "invertible” instructions of the form
Ry <+ Ry + RiR».

@ Program computing f(x) must transform:

R():Tl R0:T1+f(X)
R1=T2 — R1=T2
Ry =3 Ry =3

We will call this as "clean computation”
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A Quick Proof of Ben-Or and Cleve

@ Given a algebraic formula, we construct the program inductively.

@ Base case for a node x; : Ry + Ry + x;.

e If g = h1 + hy, and inductively, h1(x) and ha(x) can be computed
into Ry and R, respectively. Run those programs and then the
instructions Ry < Ry + Ry followed by Ry < Ry + R» is enough.
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g = h1 x hy and inductively, vi = hi(x) and v, = hy(x) can be computed
into Ry and Ry by programs Py and P» resp.

o Initialization Ro=m, Ri =71, Re =1
e P, P Ri=nm+wvi, Re=m+w
@ Ry + Ry + RiR> Ro =710 +71m2 +T1va +viT2 + vivp
o Pfl Ri=m
o Rp«+ Ry— RiR> Ro=m+wvm+wvwv
o P; Ri=m1+wn
° Pyt Ry =m
o Rp +— Ry— RiR> Ro =10 — 1m0 + viva.
° Pl—l Rl =T1
o

Ro+ Ry + RiR» Ro =10 + vivo.
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Ben-Or and Cleve Construction for Multiplication Gate

g = h1 X hy and inductively, vi = h1(x) and v» = hy(x) can be computed
into Ry and R, by programs P; and P» resp.

o Initialization Ro=1, Ri=71, Re=m
° P, Ri=m+wn
o Ry — Ry— RiR> Ry =1 — 1m0 —wvim
° P, Ro=m+w
e R+ R+ RiR Ro=10+71v2 —v1iv2
° Pl—l Rl =T1
o Rp+ Ry— RiR» Ro=m—m11m+wwn
o P2—1 Ry =m



Ben-Or and Cleve Construction for Multiplication Gate

g = h1 X hy and inductively, vi = h1(x) and v» = hy(x) can be computed
into Ry and R, by programs P; and P» resp.

o Initialization Ro=1, Ri=71, Re=m
° P Ri=7m+wn
o Ry — Ry— RiR> Ry =1 — 1m0 —wvim
° P, Ro=m+w
@ Ro+ Ry + RiR> Ro=10+7mvo—wvivo
° Pl—l Rl =T1
o Rp+ Ry— RiR» Ro=1—m11im+wviv
o P2—1 Ry =m
o Ry + Ry— RiR> Ro=1+wviwv



[Register Programs for Multiplication Gates]
For all nodes g, there is a program P, which results in

R0<—R0+Vg
R;(—R,' VI#O

where v € N is the value at the node g € T computed by the
multiplication gate.
using 3 registers holding values from N and 6 recursive calls.
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What did we learn from Ben-Or and Cleve?

N

log k bits

N\

log k bits

log

Why did this logic not apply?

Storage + Computation



Storage+Computation : Catalytic Computation [BCKLS14]

@ The catalytic tape contains a
string w.

@ Restore the string w at the end
of the computation.
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Storage-+Computation : Catalytic Computation [BCKLS14]

@ The catalytic tape contains a

string w.
input tape

@ Restore the string w at the end

of the computation. My /
. work tape

@ CL is the class where
s(n) = O(log n) \\V s(n)
) ) [0[1]0f0[1][1]0]1[0]  catalytic tape
@ Question : Can anything more W= 2™

than L be accepted?



Storage-+Computation : Catalytic Computation [BCKLS14]

@ The catalytic tape contains a
string w.

@ Restore the string w at the end
of the computation.

@ CL is the class where
s(n) = O(log n)

@ Question : Can anything more
than L be accepted?

input tape

My

work tape

— s

[0[1[0[0[1]1]0I1[0]  catalytic tape

[BCKLS 2014]
LCNLCTCtCCLCZPP

[w[=2°™

Picture credit: Bhabya



[Register Programs for Majority Gates]

For all nodes g, there is a program P, which results in

Ro < Ro + vg
R,'%R,' VI#O

where vz € {0,1} is the value at the node g € T computed by the
MAJORITY gate.

using poly(n) registers holding values from {0,1} and O(1) recursive
calls.



[Register Programs for Majority Gates]

For all nodes g, there is a program P, which results in
Ro < Ro + vg
R,' = R,' Vi 75 0
where vz € {0,1} is the value at the node g € T computed by the

MAJORITY gate.

using poly(n) registers holding values from {0,1} and O(1) recursive
calls.

n

p—1
MAJ(x1, X2, ... %n) = Z 1-— (Zx,-—k) mod p

k=1

[BCKLS 2014] : Designed programs for unbounded sum and powering.
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@ Idea: storage + computation.

log k bits
@ Encode : the value in vector from. A
A vector v, € F5 stores x € [k] if log k bits
L1 ifi=x

Vpj = ]
P! 0 otherwise log k bits



How do we do TEP? (Cook and Mertz 2020)

@ Idea: storage + computation.

@ Encode : the value in vector from.
A vector v, € F5 stores x € [k] if
. J1 ifi=x

p,i = .
0 otherwise

Vo= > [y =1v:=1]

(v,2)efy (%)

A

log k bits
log k bits

log

o

N

bits

A



How do we do TEP? (Cook and Mertz 2020)

Vo= > [y =1v:=1]

(v.2)efy (x)



How do we do TEP? (Cook and Mertz 2020)

Vo= > [y =1v:=1]

(v.2)€fy ()
Similar to the instruction Ry < Ry — R1Ro:
for x,y, z such that f,(y,z) = x do the following:
Rpx < Rpx — ReyRr 2

This will result in

Rpx = Tpx — Z (Tf,yThz +vey Vf,Z)
(v.2)efy (%)



How do we do TEP? (Cook and Mertz 2020)

Vox= > [y =1w.=1]

o

RIS

(v,2)€f; H(x)

. n

. for z; (y,z) such that fu(y,z) = do
Rpz ¢ Rpo — Rey Ry -
> Rpo =Tpe — z(yvz)gfp—l(l)(ﬁ,yﬂ.z + VeyTr,z)
: end for
P
. for z; (y, z) such that f,(y,z) =z do
Ry ¢ Rpo + Ry y Ry

b Rpe =Tpat+ Z(ylz)ef;l(_r](’rf\yvr@ + Ve,yVr,z)

: end for
Pt
. for x; (y,z) such that f,(y,z) =z do

Rpx ¢ Rpz— ReyRy -
P e = Tpe + 3 me gy (T T T U2
: end for
c Pt

. for z; (y, z) such that f,(y,z) =z do

Rpo ¢ Bpo + Rey Rz
> Rps = Tpao + Z(y,z)sf‘,"(z) Vi yUr,z

: end for

lifted from CM20 paper



How do we do TEP? (Cook and Mertz 2020)

Vo= > [y =1vz=1]

(y,z)Efpfl(x)

3k registers, 4k? instructions
Two recursive calls to P, and P, each.

Register program : 47k? length, 3k binary registers.

Branching program with 4"poly(k) length and 23k width.



How do we do TEP? (Cook and Mertz 2020)

Vo= > [y =1vz=1]

(v.2)€fy H(x)

3k registers, 4k? instructions

Two recursive calls to P, and P, each.

Register program : 47k? length, 3k binary registers.
Branching program with 4"poly(k) length and 23k width.

e 6 6 o o

This gives an algorithm that uses O(h + k) space.
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Vo= > [y =1vz=1]

(v.2)€fy H(x)

3k registers, 4k? instructions

Two recursive calls to P, and P, each.

Register program : 47k? length, 3k binary registers.
Branching program with 4"poly(k) length and 23k width.
This gives an algorithm that uses O(h + k) space.
Better than O(hlog k) when h >> @.
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How do we do TEP? (Cook and Mertz 2020)

Vo= > [y =1vz=1]

(v,2)efy (%)

3k registers, 4k? instructions

Two recursive calls to P, and P, each.

Register program : 47k? length, 3k binary registers.
Branching program with 4"poly(k) length and 23k width.
This gives an algorithm that uses O(h + k) space.
Better than O(hlog k) when h >> @.

Sanity Check: not thrifty, not read-once.

® 6 6 6 o o o
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TEP (attempt to improve) (Cook and Mertz 2020)

Idea : use binary encoding - v,, vy, v, are binary encodings of the value in

[K].

Vo= >, be=Uf,2)=x] J] v =yllviy = 2]

(X7Y7z)e[k]3 b/€[|0g k]

Instead of binary products, now we have (2log k)-ary products !



Evaluating t-ary products

Given {P;}c[g programs to compute {Vv;}ic[

We need to compute Ry = Ry + Hle v; "cleanly”.



Evaluating t-ary products

Given {P;}c[g programs to compute {Vv;}ic[

We need to compute Ry = Ry + Hle v; "cleanly”.
@ t+ 1 registers -

Ro, Ry ... Ry for each S C [t]
@ Ps is program that gets ® Run Ps
Ri=7i+vifori¢$§ 0Ro<—To+CSH7=1Ri

R,-:T,-fories

Ro« 10+ > cs (H 7',-) (H(r,- + v,-)>

sCl ies i¢s

Choose cs's such that this is Ry < 79 + Hle Vi



Evaluating t-ary products

Given {P;}c[g programs to compute {Vv;}ic[

We need to compute Ry = Ry + Hle v; "cleanly”.
@ t+ 1 registers -

Ro, Ry ... Ry for each S C [t]
@ Ps is program that gets ® Run Ps
Ri=7i+vifori¢$§ 0Ro<—7'0+CSH7=1Ri

Ri=r; forie$S
Ro < 10 + Z Cs (Hﬂ') (H(Ti + Vi))
SC[t] ics i¢s
Choose cs's such that this is Ry < 79 + Hle Vi

2t recursive calls + 2! additional instructions



Plugging in to TEP2 x5

Vo= > e=1Uf,2)=x [[ Mwr=y1vs=2]

(x.y,2)€[k]? b’€|log ]

We need to evaluate 2 log k-ary products.

3log k registers, O(k>log k) additional instructions.

2k? recursive calls.

Register program : (2k)2" length, 3log k binary registers.
Branching program with (2k)2"poly(k) length and poly(k) width.
This gives an algorithm that uses O(hlog k) space.

NOT Better than O(hlog k).



TEP (hybrid and improved) (Cook and Mertz 2020)

aclogk
@ Break [k] into blocks of length 27 — 1.

@ Encode each value as a pair - (A, B) - block number, and non-zero

index into block.
o V€ {0,1} where t = a x 5.
@ Program needs to compute 2a-ary products.

@ Choose a = log (C—,f + 1) for a constant c.

[Cook and Mertz 2020] For h > k2+4, then TEP can be solved by
branching programs of size much less than k"¢



TEP (100 USD prize !) (Cook and Mertz 2021)

e Fix b, d such that b? > k.

@ Write v as d digits in base b, and then encode each digit using a
characteristic vector encoding of length b.

[Cook and Mertz 2021] TEP y  can be computed by branching
programs of size

kO (5) 4 90(h)



TEP in O(log n.loglog n) space (Cook and Mertz 2024)

[Cook and Mertz 2024]
TEP; i, can be solved in space

O((h + log k) log log k)

[Cook and Mertz 2024]
TEP4 .n can be solved in space

O((h+ dlog k) log(d log k))



Arithmetize !
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Arithmetize !

. mlog k log k log k
p:F* xFy2" = T,

. mlog k log k log k
pe  F2" xF*" = I,

. mlog k log k log k
pr i F25 X F2 — Ty




From multiplication to polynomial gates

[Register Programs for Polynomial Gates]
For all nodes g, there is a program P, which results in

Ro(—Ro—f—Vg
R,‘%R,' VI#O

where v € IFlzogk is the value at the node g € T computed by the
polynomial pg(y,Z) : IFlzogk X ]Flzogk — Fl2°gk

using 3log k registers holding values from F, and deg(p) recursive
calls.
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@ Roots of unity of order m : w € F such that w™ = 1.
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@ Roots of unity of order m : w € F such that w™ = 1.
o Primitive if Vm' < m, w™ # 1.
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m=|F| — 1.

Roots of unity of order m : w € F such that w” = 1.
Primitive if Vm' < m, w™ # 1.

Fact: ijzl Wi = 0.



Building Blocks

m=|F| — 1.

Roots of unity of order m : w € F such that w” = 1.
Primitive if Vm' < m, w™ # 1.

Fact: ijzl Wi = 0.

Fact: 7 wh =0 forall 0 < b < m.

e 6 o o
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Roots of unity of order m : w € F such that w” = 1.
Primitive if Vm' < m, w™ # 1.

Fact: ijzl Wi = 0.

Fact: 7 wh =0 forall 0 < b < m.

We can build indicators for [b = 0]
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Building Blocks

m=|F| — 1.

Roots of unity of order m : w € F such that w” = 1.
Primitive if Vm' < m, w™ # 1.

Fact: ijzl Wi = 0.

Fact: 7 wh =0 forall 0 < b < m.

We can build indicators for [b = 0]
There is w, and m™1 such that for all 0 < b < m,

mlz"’:w,r-,n):{l if b=0
Jj=1 0

e 6 o o

otherwise



The Root-of-unity Trick

m d
> T @hmi+w)

j=1i=1



The Root-of-unity Trick

éﬁ(@r’nﬂ +vi) Zm: (H w{,m-) <H v,->

j=1sC[d] \ies i¢s



The Root-of-unity Trick

m d m
ZH(L&{,,T,’ +v) = Z (Hw’ 7',) < v,)
j=1i=1 J=1 SC[d] \ieS i¢S
-5 () (1)
j=1 sC[d] ics i¢s



The Root-of-unity Trick

m d m
ZH(M,',,TNL vi) = Z (Hw’ 7',) < v,)
j=1i=1 J=1 SC[d] \ieS i¢S
-5 () ()
Jj=1 SC[d] ieS i¢S
= Zm:wj,ls‘ (H T,') (H V,')
SC[d] | j=1 i€eS i¢S




The Root-of-unity Trick

m d m
ZH(M,',,TNL vi) = Z (Hw’ 7',) < v,)
j=1i=1 J=1 SC[d] \ieS i¢S
- 33 (I (T
=1 SC[d] ics i¢s
m d
= Zu/,ls‘ (Hﬂ') (H Vi) = mH Vi
sCld] | j=1 ics i¢s i—1
m d d



The Root-of-unity Trick

m

jz:n;i]j]l(w,'nﬂw,-) = > (]}m,) <’¢Sv,>

j=1 sC[d] \ieS

Sre )

j=15C[d] ics i¢s

Jj=1

SCld]

Generalizing:

m
Z milp(wjr.nTl + V17 Tt 70‘)]!.777—17 + Vn) = p(V17 V27 e Vn)
j=1



Register Program for Polynomial Evaluation

m

Z m_lp(u)’,;,Tl + Vi, W T v) = p(vi, v, .. )
j=1



Register Program for Polynomial Evaluation

m

Z m_lp(w{nﬁ + Vi, W T v) = p(vi, v, .. )
j=1

@ Choose field to be Fyr for r > logdeg(p) + 1.
@ Choose wp, to be any generator of the multiplicative group.

for each j :

Prepare: Vi € [n] : R; + R,w’,',, R; = 7',-w’,'n
Load: Vi€ [n] : Run P; Ri = Tiwh + v;
Unload: Vi € [n] : Run P;! R; = Tiwh

Unprepare: Vi € [n] : R; + Riwn? R =i



Register Program for Polynomial Evaluation

m

Z m_lp(w{nﬁ + Vi, W T v) = p(vi, v, .. )
j=1

@ Choose field to be Fyr for r > logdeg(p) + 1.
@ Choose wp, to be any generator of the multiplicative group.

for each j :

Prepare: Vi € [n] : R < Riwh R = Tiwh,
Load: Vi € [n] : Run P; Ri = Tiwhy + v;
Evaluate: Ry «+ Ry + m~'p(Ri, Ry, ... Ry,)

Unload: Vi € [n] : Run P;! R; = Tiwh

Unprepare: Vi € [n] : R; + Riwn? R =i



Implementing for TEP; 5

@ In our case the polynomial is p : IE‘Izogk X Flzogk — Flzogk at the node u
with £ and r as the children.

Let P, and P, be the programs computing values vy and v,.

Recall i-th bit of the function can be written as:

fuly:2)i= Y, lai=1f(8,7) = Uly = Bllz =]
(c.B)ElhP?

Turn this into a 2 log k-variate polynomial with degree < 2 log k.

[y = f] is same as [[28*(1 — yi + (2y; — 1)3;) for y; € {0,1}.
Number of registers is 3 log k each holding an element in F.

e 6 o6 o

Number of instructions is (4|F|)" log k.

Space used : O((h + log k) log log k)



Demystifying the trick - Goldreich 2024

m
Z mrp(w i+ v, wh T V) = p(vi, va, . V)
j=1

[Interpolation View]

(Improved) space used : O(hloglog k + log k)
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m

Z mrp(w i+ v, wh T V) = p(vi, va, . V)
j=1

[Interpolation View]
o Let f,i(y, z) by the i-th bit of the function at node u.

(Improved) space used : O(hloglog k + log k)



Demystifying the trick - Goldreich 2024

m

Z mrp(w i+ v, wh T V) = p(vi, va, . V)
j=1

[Interpolation View]
o Let f,i(y, z) by the i-th bit of the function at node u.

@ Define the multilinear extension of the function
f :TFlogk » Flogk _y .

(Improved) space used : O(hloglog k + log k)



Demystifying the trick - Goldreich 2024

m
Z mrp(w i+ v, wh T V) = p(vi, va, . V)
j=1

[Interpolation View]
o Let f,i(y, z) by the i-th bit of the function at node u.
@ Define the multilinear extension of the function
ek x Flogk I,

o If we are given values of ?(a)? + v1,ay + v») for every
a€{1,2,...2logk + 1}, then we interpolate and find out the

value of ?(O)? +v1,0y + w) = /f\(vl, v2).

(Improved) space used : O(hloglog k + log k)



Demystifying the trick - Goldreich 2024

m
Z mrp(w i+ v, wh T V) = p(vi, va, . V)
j=1

[Interpolation View]

o Let f,i(y, z) by the i-th bit of the function at node u.

@ Define the multilinear extension of the function
f : Flogk x logk _ T,

o If we are given values of ?(oo? + v1,ay + v») for every
a € {1,2/,\. ..2logk + 1}, then/\\/ve interpolate and find out the
value of f(0X + v1,0y + v2) = f(v1, v2).

@ The above choices based on w,, are specific points for
evaluation and interpolation.



Demystifying the trick - Goldreich 2024

m
Z mrp(w i+ v, wh T V) = p(vi, va, . V)
j=1

[Interpolation View]

o Let f,i(y, z) by the i-th bit of the function at node u.

@ Define the multilinear extension of the function
f : Flogk x logk _ T,

o If we are given values of ?(a)? + v1,ay + v») for every
a € {1,2/,\. ..2logk + 1}, then/\\/ve interpolate and find out the
value of f(0X + v1,0y + v2) = f(v1, v2).

@ The above choices based on w,, are specific points for
evaluation and interpolation.

(Improved) space used : O(hloglog k + log k)
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Binary Alphabet Case and KRW Conjecture
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[KRW Conjecture (KRW 1995)]
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If true, depth(TEP4 2 p) is Q(dh)
TEPy 2. ¢ NC! when dh is w(log n)
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Binary Alphabet Case and KRW Conjecture

g1:{0,1}m — {0,1}, g»: {0,1}™ — {0,1},

X11 X12 cee Xlny
X21 X22 e in2

giog| . | = gi(g(xa1 - Xiny), - - 82(Xmy1 - - Xnyny )
Xm1  Xnp2 ceo Xnpny

[KRW Conjecture (KRW 1995)]

depth(g1 © g2) > depth(g1) + depth(g2) — O(1)

If true, depth(TEP4 2 p) is Q(dh) /\
TEPy 2. ¢ NC! when dh is w(log n) A A
A random function has g : {0,1}¢ — {0, 1},
w.h.p, requires Q(d) depth. A A A A
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Implications : KRW = NC!' # L

[Cook and Mertz 2024]
TEPy k,n can be solved in space

O((h + dlog k) log(d log k))

o Pad TEP,, j, instance with 2(/+d)logd zeros

@ We can solve the TEP instance in L.



Implications : KRW = NC!' # L

[Cook and Mertz 2024]
TEPy k,n can be solved in space

O((h + dlog k) log(d log k))

o Pad TEP,, j, instance with 2(/+d)logd zeros
@ We can solve the TEP instance in L.

o IfL= NCl, this contradicts the KRW conjecture since it results in
O((h+ d) log d) formula depth - which is o(dh).
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[Cook and Mertz 2024]
TEPy k,n can be solved in space
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e Pad TEP, 5 4 instance with 2(htd)logd Zarqg



Implications : KRW = Formulas # Branching Programs

[Cook and Mertz 2024]
TEPy k,n can be solved in space

O((h+ dlog k) log(d log k))

e Pad TEP, 5 4 instance with 2(htd)logd Zarqg

log n

@ Fixd=lognand h= loglogn




Implications : KRW = Formulas # Branching Programs

[Cook and Mertz 2024]
TEPy k,n can be solved in space

O((h+ dlog k) log(d log k))

e Pad TEP, 5 4 instance with 2(htd)logd Zarqg

log n
loglogn-®

o Input size is N = 20(lognloglogn)

@ Fixd=lognand h=




Implications : KRW = Formulas # Branching Programs

[Cook and Mertz 2024]
TEPy k,n can be solved in space

O((h+ dlog k) log(d log k))
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[Cook and Mertz 2024]
TEPy k,n can be solved in space

O((h+ dlog k) log(d log k))

Pad TEP, 5 5 instance with 2(ht+d)logd ;erng

log n
loglogn-®

Input size is N = 20(log nloglog n)
Function computable by a BP of size poly in N.
e By KRW conjecture, the formula depth is Q(dh) = Q ( log? N )

Fix d =logn and h =

(]

log3 log N
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What next?

Can TEP be solved in O(log n) space?
Does non-determinism help? Can we show TEP € NL?
Are there combinatorial counter parts to these algorithms?

Is there a direct combinatorial catalytic algorithm for reachability?



Thank You



