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Space vs Time - a fundamental frontier

SPACE(log t) ⊆ TIME(t) ⊆ SPACE(t)

Is either containment strict?
L vs P problem.
Natural candidate : Circuit Value Problem
(CVP).
Conjecture is that CVP is not in L.
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Space vs Time - a fundamental frontier

Surprise: Barrington’s Theorem

continues to inspire further surprises
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The Tree Evaluation Problem - TEPd ,k,h - [CMWBS 12]

Fix: the complete d-ary tree, of height h, alphabet [k].
Input:

Values from [k] at the leaves.
Tables of size [k]d with entries from [k] at each internal node.

Task: Compute the value at the root.
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The Tree Evaluation Problem - TEPd ,k,h - [CMWBS 12]

Fix: the complete d-ary tree, of height h (number of nodes), alphabet [k].
Input:

Values from [k] at the leaves.
Tables of size [k]d with entries from [k] at each internal node.

Task: Compute the value at the root.

Input Size (in bits) dh−1 log k +
(

dh−1−1
d−1

)
kd log k

With d = 2,

2h−1 log k + (2h−1 − 1)k2 log k = 2hpoly(k)

Natural Algorithms: Bottom-up evaluation, Recursive evaluation.
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Model : k-ary Deterministic Branching Programs

s

v=1

v=2

v=3

Trivial upper bound : 2h−1 length and kh width



Complexity Bounds

By the trivial evaluation algorithm :
TEP2,k,h ∈ P (even in NC2).
TEP2,k,h can be solved in space 2h.

Recursive (with reuse of space) : TEP2,k,h is in space O(h log k).

Conjecture [CMWBS 2012] : TEP2,k,h /∈ L.

That is, TEP2,k,h cannot be solved in O(h + log k) space.

Conjecture [KRW 1995] : TEPd,2,h /∈ NC1.

That is, depth(TEPd,2,h) is at least Ω(h log d).
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Why do/did we believe TEP2,k,h /∈ L?

log k bits

log k bits

log k bits

Memory adds up to Ω(h log k) space.
Recall : input size 2hpoly(k).
For TEP2,k,h ∈ L, this should be doable in O(h + log k) space.



Pebbling Algorithms and Tree Evaluation

Graph Pebbling: [Paterson and Hewit 1970]

Pebble can be placed on a leaf any time.
Pebble can be removed from any node at
any time.
To pebble a node, all its children should be
pebbled.
Minimise the number of pebbles used at
any point of time.

[Pebbling Bound] Pebbling of T h
2 requires Ω(h) pebbles.

[Lower Bound Strategy] From the algorithm that uses space s,
extract a pebbling strategy of T h

2 with number of pebbles function
of s.
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TEP2,k,h cannot be in o(h log k) space if we assume ...

Read-once Branching Programs (ROBP): In any computation path,
the branching program queries values at a node only once.

Thrifty Branching Programs: For each internal node, the algorithm
must query the table only on the correct pair of values.

[CMWBS 2009]
TEP2,k,h requires Ω(kh) size for Thrifty or RO BPs.

[Thrifty Hypothesis]
For TEP2,k,h, any Branching Program can be made thrifty without
increasing the size beyond poly factors.

Many of these results extend to non-deterministic setting as well.
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Conjecture : TEP2,n,k /∈ L

[Stephen Cook’s 100 USD TEP Challenge]

Design an algorithm for TEP2,n,k that uses o(h log k) space.

Design a branching program for TEP2,n,k of size kh−ε for a const ε.

Rest of this talk: how James Cook & Ian Mertz won that 100 USD.
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An Earlier Surprise in Complexity Theory

Barrington’s Theorem (1989):
Any f ∈ NC1 can be computed by width 5
branching programs of polynomial length.

P

L

NC1 = W5BP

ACC0[6]

+

*

3 1

*

2 4

#NC1 =

f :

f computed by log-depth
fan-in 2, poly size
circuits with +/∗ gates
over N


Ben-Or and Cleve (1992):
Any f ∈ #NC1 can be computed in O(log n) space.
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Let us learn from Ben-Or and Cleve

+

*

3 1

*

2 4

Use register programs (1975): Three registers - R0,R1, and R2 each
holding a value in [k]. Total 3 log k space.
Registers are updated by ”invertible” instructions of the form
R0 ← R0 + R1R2.
Program computing f (x) must transform:

R0 = τ1
R1 = τ2
R2 = τ3

→


R0 = τ1 + f (x)
R1 = τ2
R2 = τ3


We will call this as ”clean computation”
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A Quick Proof of Ben-Or and Cleve

+

*

3 1
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2 4

Given a algebraic formula, we construct the program inductively.
Base case for a node xi : R0 ← R0 + xi .
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into R1 and R2 respectively. Run those programs and then the
instructions R0 ← R0 + R1 followed by R0 ← R0 + R2 is enough.
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[Register Programs for Multiplication Gates]
For all nodes g , there is a program Pg which results in

R0 ← R0 + vg
Ri ← Ri ∀i 6= 0

where vg ∈ N is the value at the node g ∈ T computed by the
multiplication gate.
using 3 registers holding values from N and 6 recursive calls.



What did we learn from Ben-Or and Cleve?
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Why did this logic not apply?

Storage + Computation



Storage+Computation : Catalytic Computation [BCKLS14]

The catalytic tape contains a
string w .
Restore the string w at the end
of the computation.

CL is the class where
s(n) = O(log n)
Question : Can anything more
than L be accepted?

0 1 0 0 1 1 0 1 0

M1

x

s(n)

n

|w | = 2s(n)

input tape

work tape

catalytic tape

[BCKLS 2014]

L ⊆ NL ⊆ TC1 ⊆ CL ⊆ ZPP

Picture credit: Bhabya
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[Register Programs for Majority Gates]

For all nodes g , there is a program Pg which results in

R0 ← R0 + vg
Ri ← Ri ∀i 6= 0

where vg ∈ {0, 1} is the value at the node g ∈ T computed by the
Majority gate.

using poly(n) registers holding values from {0, 1} and O(1) recursive
calls.

MAJ(x1, x2, . . . xn) =
n∑

k= n
2

1−(∑
i

xi − k
)p−1

 mod p

[BCKLS 2014] : Designed programs for unbounded sum and powering.
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How do we do TEP? (Cook and Mertz 2020)

Idea: storage + computation.

Encode : the value in vector from.

A vector ~vp ∈ Fk
2 stores x ∈ [k] if

~vp,i =

{
1 if i = x
0 otherwise

~vp,x =
∑

(y ,z)∈f −1
p (x)

[v`,y = 1][vr ,z = 1]

log k bits

log k bits
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` r
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How do we do TEP? (Cook and Mertz 2020)

~vp,x =
∑

(y ,z)∈f −1
p (x)

[v`,y = 1][vr ,z = 1]

Similar to the instruction R0 ← R0 − R1R2:

for x , y , z such that fp(y , z) = x do the following:

Rp,x ← Rp,x − R`,yRr ,z

This will result in

Rp,x = τp,x −
∑

(y ,z)∈f −1
p (x)

(
τ`,yτr ,z + v`,yvr ,z

)
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~vp,x =
∑

(y ,z)∈f −1
p (x)

[v`,y = 1][vr ,z = 1]

lifted from CM20 paper



How do we do TEP? (Cook and Mertz 2020)

~vp,x =
∑

(y ,z)∈f −1
p (x)

[v`,y = 1][vr ,z = 1]

3k registers, 4k2 instructions
Two recursive calls to P` and Pr each.
Register program : 4hk2 length, 3k binary registers.
Branching program with 4hpoly(k) length and 23k width.

This gives an algorithm that uses O(h + k) space.
Better than O(h log k) when h >> k

log k .
Sanity Check: not thrifty, not read-once.
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TEP (attempt to improve) (Cook and Mertz 2020)

Idea : use binary encoding - vp , v`, vr are binary encodings of the value in
[k].

~vp,b =
∑

(x ,y ,z)∈[k]3
[xb = 1][f (y , z) = x ]

∏
b′∈[log k]

[v`,b′ = y ′][vr ,b′ = zb′ ]

Instead of binary products, now we have (2 log k)-ary products !
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Evaluating t-ary products

Given {Pi}i∈[t] programs to compute {vi}i∈[t]
We need to compute R0 = R0 +

∏t
i=1 vi ”cleanly”.

t + 1 registers -
R0,R1 . . .Rt

PS is program that gets
Ri = τi + vi for i /∈ S
Ri = τi for i ∈ S

for each S ⊆ [t]
Run PS

R0 ← τ0 + cS
∏d

i=1 Ri

R0 ← τ0 +
∑

S⊆[t]
cS

(∏
i∈S

τi

)(∏
i /∈S

(τi + vi)

)

Choose cS ’s such that this is R0 ← τ0 +
∏t

i=1 vi

2t recursive calls + 2t additional instructions
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Plugging in to TEP2,k,h

~vp,b =
∑

(x ,y ,z)∈[k]3
[xb = 1][f (y , z) = x ]

∏
b′∈[log k]

[v`,b′ = y ′][vr ,b′ = zb′ ]

We need to evaluate 2 log k-ary products.
3 log k registers, O(k3 log k) additional instructions.
2k2 recursive calls.
Register program : (2k)2h length, 3 log k binary registers.
Branching program with (2k)2hpoly(k) length and poly(k) width.
This gives an algorithm that uses O(h log k) space.
NOT Better than O(h log k).



TEP (hybrid and improved) (Cook and Mertz 2020)

a ∈ log k
Break [k] into blocks of length 2a − 1.
Encode each value as a pair - (A,B) - block number, and non-zero
index into block.
~v ∈ {0, 1}t where t = a × k

2a−1 .
Program needs to compute 2a-ary products.
Choose a = log

( ck
h + 1

)
for a constant c.

[Cook and Mertz 2020] For h ≥ k 1
2+

ε
4 , then TEP can be solved by

branching programs of size much less than kh−ε



TEP (100 USD prize !) (Cook and Mertz 2021)

Fix b, d such that bd ≥ k.
Write v as d digits in base b, and then encode each digit using a
characteristic vector encoding of length b.

[Cook and Mertz 2021] TEP2,k,h can be computed by branching
programs of size

kO
(

h
log h

)
+ 2O(h)



TEP in O(log n. log log n) space (Cook and Mertz 2024)

[Cook and Mertz 2024]
TEP2,k,h can be solved in space

O((h + log k) log log k)

[Cook and Mertz 2024]
TEPd,k,h can be solved in space

O((h + d log k) log(d log k))



Arithmetize !

2 3 1
1 3 1
1 2 2

1 2 1
2 2 2
3 3 3

2 1

1 2 2
2 2 1
3 3 1

3 2



Arithmetize !

p : Flog k
2 × Flog k

2 → Flog k
2

p` : Flog k
2 × Flog k

2 → Flog k
2

∈ Flog k
2 ∈ Flog k

2

pr : Flog k
2 × Flog k

2 → Flog k
2

∈ Flog k
2 ∈ Flog k

2



From multiplication to polynomial gates

[Register Programs for Polynomial Gates]
For all nodes g , there is a program Pg which results in

R0 ← R0 + vg
Ri ← Ri ∀i 6= 0

where vg ∈ Flog k
2 is the value at the node g ∈ T computed by the

polynomial pg(~y ,~z) : Flog k
2 × Flog k

2 → Flog k
2

using 3 log k registers holding values from F2 and deg(p) recursive
calls.



Building Blocks

m = |F| − 1.

Roots of unity of order m : ω ∈ F such that ωm = 1.
Primitive if ∀m′ < m, ωm′ 6= 1.
Fact:

∑m
j=1 ω

j
m = 0.

Fact:
∑m

j=1 ω
jb
m = 0 for all 0 < b < m.

We can build indicators for [b = 0]
There is ωm and m−1 such that for all 0 ≤ b < m,

m−1
m∑

j=1
ωjb

m =

{
1 if b = 0
0 otherwise
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The Root-of-unity Trick

m∑
j=1

d∏
i=1

(ωj
mτi + vi)

=
m∑

j=1

∑
S⊆[d]

(∏
i∈S

ωj
mτi

)(∏
i /∈S

vi

)

=
m∑

j=1

∑
S⊆[d]

ω
j|S|
m

(∏
i∈S

τi

)(∏
i /∈S

vi

)

=
∑

S⊆[d]

 m∑
j=1

ω
j|S|
m

(∏
i∈S

τi

)(∏
i /∈S

vi

)
= m

d∏
i=1

vi

m∑
j=1

m−1
d∏

i=1
(ωj

mτi + vi) =
d∏

i=1
vi

Generalizing:
m∑

j=1
m−1p(ωj

mτ1 + v1, . . . , ω
j
mτn + vn) = p(v1, v2, . . . vn)
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Register Program for Polynomial Evaluation

m∑
j=1

m−1p(ωj
mτ1 + v1, . . . , ω

j
mτn + vn) = p(v1, v2, . . . vn)

Choose field to be F2r for r > log deg(p) + 1.
Choose ωm to be any generator of the multiplicative group.

for each j :

Prepare: ∀i ∈ [n] : Ri ← Riω
j
m Ri = τiω

j
m

Load: ∀i ∈ [n] : Run Pi Ri = τiω
j
m + vi

Evaluate: R0 ← R0 + m−1p(R1,R2, . . .Rn)

Unload: ∀i ∈ [n] : Run P−1
i Ri = τiω

j
m

Unprepare: ∀i ∈ [n] : Ri ← Riω
−j
m Ri = τi

Number of recursive calls is linear in m and the degree.
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Implementing for TEP2,k,h

In our case the polynomial is p : Flog k
2 × Flog k

2 → Flog k
2 at the node u

with ` and r as the children.
Let P` and Pr be the programs computing values v` and vr .
Recall i-th bit of the function can be written as:

fu(y , z)i =
∑

(α,β,γ)∈[k]3
[αi = 1][fu(β, γ) = 1][y = β][z = γ]

Turn this into a 2 log k-variate polynomial with degree ≤ 2 log k.
[y = β] is same as

∏log k
i=1 (1− yi + (2yi − 1)βi) for yi ∈ {0, 1}.

Number of registers is 3 log k each holding an element in F.
Number of instructions is (4|F|)h log k.

Space used : O((h + log k) log log k)



Demystifying the trick - Goldreich 2024

m∑
j=1

m−1p(ωj
mτ1 + v1, . . . , ω

j
mτn + vn) = p(v1, v2, . . . vn)

[Interpolation View]

Let fu,i(y , z) by the i-th bit of the function at node u.
Define the multilinear extension of the function
f̂ : Flog k × Flog k → F.
If we are given values of f̂ (αx̂ + v1, αŷ + v2) for every
α ∈ {1, 2, . . . 2 log k + 1}, then we interpolate and find out the
value of f̂ (0x̂ + v1, 0ŷ + v2) = f̂ (v1, v2).
The above choices based on ωm are specific points for
evaluation and interpolation.

(Improved) space used : O(h log log k + log k)
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α ∈ {1, 2, . . . 2 log k + 1}, then we interpolate and find out the
value of f̂ (0x̂ + v1, 0ŷ + v2) = f̂ (v1, v2).
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α ∈ {1, 2, . . . 2 log k + 1}, then we interpolate and find out the
value of f̂ (0x̂ + v1, 0ŷ + v2) = f̂ (v1, v2).
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Binary Alphabet Case and KRW Conjecture
g1 : {0, 1}n1 → {0, 1}, g2 : {0, 1}n2 → {0, 1},

g1 ◦ g2


x11 x12 . . . x1n2

x21 x22 . . . x2n2
... . . . . . .

...
xn11 xn12 . . . xn1n2

 = g1(g2(x11 . . . x1n2), . . . g2(xn11 . . . xn1n2))

[KRW Conjecture (KRW 1995)]

depth(g1 ◦ g2) ≥ depth(g1) + depth(g2)− O(1)

If true, depth(TEPd,2,h) is Ω(dh)
TEPd,2,h /∈ NC1 when dh is ω(log n)

A random function has g : {0, 1}d → {0, 1},
w.h.p, requires Ω(d) depth.
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Implications : KRW =⇒ NC1 6= L

[Cook and Mertz 2024]
TEPd,k,h can be solved in space

O((h + d log k) log(d log k))

Pad TEPd,2,h instance with 2(h+d) log d zeros
We can solve the TEP instance in L.
If L = NC1, this contradicts the KRW conjecture since it results in
O((h + d) log d) formula depth - which is o(dh).
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Implications : KRW =⇒ Formulas 6= Branching Programs

[Cook and Mertz 2024]
TEPd,k,h can be solved in space

O((h + d log k) log(d log k))

Pad TEPd,2,h instance with 2(h+d) log d zeros

Fix d = log n and h = log n
log log n .

Input size is N = 2O(log n log log n)

Function computable by a BP of size poly in N.
By KRW conjecture, the formula depth is Ω(dh) = Ω

(
log2 N

log3 logN

)
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What next?

Can TEP be solved in O(log n) space?

Does non-determinism help? Can we show TEP ∈ NL?
Are there combinatorial counter parts to these algorithms?
Is there a direct combinatorial catalytic algorithm for reachability?
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