
Ad Hoc Networks 178 (2025) 103915

A
1

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

WISDOM: A framework for scaling on-device Wi-Fi sensing solutionsI

Manoj Kumar Lenka , Ayon Chakraborty ∗

Sensing and Networks Systems Engineering (SeNSE) Lab, Department of CSE, IIT Madras, Chennai 600036, India

A R T I C L E I N F O

Keywords:
Wireless sensing
Wi-Fi
IoT
On-device inferencing
Model compression
TinyML
Utility maximization

 A B S T R A C T

Recent innovations in Wi-Fi sensing capitalizes on a host of powerful deep neural network architectures that
make inferences based on minute spatio-temporal dynamics in the wireless channel. Many of such inference
techniques being resource intensive, conventional wisdom recommends offloading them to the network Edge
for further processing. In this paper, we argue that edge based sensing is often not a viable option for many
applications (due to cost, bandwidth, latency etc.). Rather, we explore the paradigm of on-device Wi-Fi sensing
where inference is carried out locally on resource constrained IoT platforms. We present extensive benchmark
results characterizing the resource consumption (memory, energy) and the performance (accuracy, inference
rate) of some typical sensing tasks. We propose WISDOM, a framework that, depending on capabilities of the
hardware platform and application’s requirements, can compress the inference model. Such context aware
compression aims to improve the overall utility of the system — maximal inference performance at minimal
resource costs. We demonstrate that models obtained using the WISDOM framework achieve higher utility
compared to baseline models that are just quantized for 83% of the cases. While for non-compressed models
it has higher utility 99% of the time.
1. Introduction

Wi-Fi sensing has gained significant traction from the research
community due to its versatility and ability to leverage existing wireless
infrastructure itself as a sensing modality. In fact, the recent IEEE
802.11bf [1–3] amendment (2024) outlines sensing specific proce-
dures and protocols in a WLAN setting, advocating for large scale
adoption, standardization and interoperability among Wi-Fi devices
doubling as ‘wireless sensors’. This opens up new opportunities for IoT
platforms to perform large scale wireless sensing, specifically leverag-
ing Wi-Fi networks. Recent literature in this area have majorly focused
on designing sophisticated inferencing models (e.g., utilizing deep neu-
ral networks) [4–7] to make Wi-Fi sensing robust and accurate, across
a variety of application scenarios ranging from human sensing, activity
recognition to healthcare monitoring. While such efforts have lead
to several pioneering contributions disrupting the Wi-Fi sensing land-
scape, a prominent research gap exists in realizing the systemic bottlenecks
involved in translating such solutions to an IoT based ecosystem. In this
paper, we highlight the key challenges associated with Wi-Fi sensing
on resource constrained IoT devices and perform extensive benchmark
experiments to understand the various system bottlenecks [8].

In a nutshell, Wi-Fi sensing leverages the multipath characteristics
of the underlying wireless channel as a sensing metric. The Channel

I This document is an extension of the preliminary results published in: Manoj Lenka and Ayon Chakraborty, ‘‘On-Device Deep Learning for IoT-based Wireless
Sensing Applications’’, WiSense Workshop, IEEE PerCom 2024, DOI: https://doi.org/10.1109/PerComWorkshops59983.2024.10502448.
∗ Corresponding author.
E-mail address: ayon@cse.iitm.ac.in (A. Chakraborty).

State Information (CSI) estimated on a Wi-Fi receiver captures such
multipath effects and provides a reasonable signature to learn specific
dynamics of a physical environment (more on this later). In this paper,
we consider a generic Wi-Fi network setting, where a number of
IoT devices act as receivers and have access to their individual CSI
estimates. Such CSI data is typically used to pre-train sensing models
relevant to specific applications of interest [1,4] as well for inference
tasks. These tasks are often resource intensive and the conventional folk
wisdom conveniently recommends offloading them off the device —
for instance, to the network edge [8–10]. A detailed background on
wireless sensing is presented in Section 2.

1.1. Deploying wireless sensing models: Local vs. edge-based inference

As wireless sensing applications evolve to tackle increasingly com-
plex tasks – such as human activity recognition, gesture detection,
or environmental monitoring – they often rely on computationally
intensive inference models, including transformer architectures and
attention-based networks. These models offer higher accuracy and
richer semantic interpretation but come with substantial memory and
processing requirements that exceed the capabilities of typical IoT
https://doi.org/10.1016/j.adhoc.2025.103915
Received 31 January 2025; Received in revised form 28 April 2025; Accepted 14 M
vailable online 2 June 2025
570-8705/© 2025 Elsevier B.V. All rights are reserved, including those for text and
ay 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/adhoc
https://www.elsevier.com/locate/adhoc
https://orcid.org/0009-0004-8302-6034
https://orcid.org/0000-0003-0889-5702
https://doi.org/10.1109/PerComWorkshops59983.2024.10502448
mailto:ayon@cse.iitm.ac.in
https://doi.org/10.1016/j.adhoc.2025.103915
https://doi.org/10.1016/j.adhoc.2025.103915

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
devices. Consequently, local deployment of such models becomes in-
feasible, shifting the computational burden to more capable edge or
cloud platforms. In the following sections, we examine both deploy-
ment alternatives and argue that while edge-based inference has its
own merits, local on-device processing often emerges as a practi-
cal and context-aware solution for a wide range of wireless sensing
applications.
■ Edge-Based Inference. Inference on edge-based platforms offers
significant advantages in many contexts. It enables the use of more
sophisticated models than those feasible on-device, while avoiding
the high latencies and privacy risks associated with cloud offloading.
Edge platforms also support rapid model updates and coordination
across multiple devices, which are valuable for large-scale deploy-
ments. In well-connected environments with sufficient bandwidth and
power resources-such as smart buildings or factory floors — edge
inference can strike an effective balance between computational ca-
pability and responsiveness. Although suitable for certain contexts,
we argue that edge-based inferencing is often not a viable option
for many real-world wireless sensing applications, particularly those
requiring low-latency, reliable decision-making in dynamic or resource-
constrained environments. We highlight two representative scenarios
where such limitations become especially evident.

First, consider an unmanned aerial vehicle (UAV) tasked with
sensing-driven exploration, such as structural inspection or search-
and-rescue operations [11]. These missions often occur in remote
or infrastructure-poor environments—deep indoors, hilly terrains, or
disaster-struck zones, where network connectivity is intermittent or
unavailable. In such cases, continuous streaming of CSI or other sensory
data to a remote edge server is infeasible. Even when a connection is
available, the latency introduced by round-trip transmission to the edge
can undermine real-time responsiveness, especially for control-loop
tasks like obstacle avoidance or path replanning. Relying on edge infer-
ence in such scenarios jeopardizes the mission success and compromises
autonomy. As a second example, in intelligent transportation systems,
edge-based inferencing may not meet the latency demands of safety-
critical applications. For example, drowsiness detection or real-time
distraction monitoring in driver-assist systems must trigger alerts or
control overrides within milliseconds to prevent accidents [12]. Rout-
ing such inference through the edge introduces unpredictable delays,
and a missed inference window could lead to catastrophic outcomes.
Here, even a marginal increase in accuracy afforded by larger models at
the edge cannot justify the risk introduced by delayed decision-making.
Overall, the following concerns challenge the practicality of edge-based
sensing:

• Network usage. Streaming sensory data off-device consumes
significant bandwidth and stresses shared wireless networks. In
our testbed, with just five IoT nodes streaming CSI data at ap-
proximately 120 samples/s per node, we observe a 2× increase in
average ping latency and a 1.5–2× reduction in average through-
put across the network (see Fig. 1(c)). This impact becomes
more pronounced with dense deployments or shared network
infrastructure, where Quality of Experience (QoE) of network
applications are impacted.

• Inference latency. The round-trip time incurred by transmitting
data to the edge and awaiting inference results adds non-trivial
delay, which is detrimental for time-sensitive applications such
as emergency braking, fall detection, or intrusion response. These
delays may range from 50–150 ms under ideal conditions, which
can be unacceptable depending on the sensing task.

• Operational expenditures (OpEx). Continuous use of commer-
cial edge computing services incurs both energy and monetary
costs. Surveying five globally prominent edge platforms, we find
that running continuous inference workloads — such as human
activity recognition from CSI streams — can cost upwards of
$50–$60 per month per node, assuming minimal pricing tiers.
These recurring costs scale poorly for large sensor deployments
and diminish the cost–benefit appeal of edge solutions.
2
Finally, other factors including privacy implications of the sensory
data or availability of the last-mile link itself, particularly in pervasive
environments are critical in deciding off-device deployments.
■ Local or On-device Inference. Fig. 1(a) presents a diverse set of
twenty commercially available, microcontroller-based (MCU) platforms
that are representative of the compute and memory capabilities of
commercial-off-the-shelf (COTS) IoT devices deployed in real-world
settings. While edge or cloud-based inference offers scalability and
model flexibility, it comes with network, latency, and operational cost
trade-offs, as discussed earlier. In contrast, on-device inference enables
immediate decision-making, preserves privacy, and eliminates network
dependency. However, this approach is far from trivial due to inherent
hardware constraints.

Recent research in Wi-Fi-based wireless sensing has proposed a
variety of deep neural network architectures for tasks such as activity
recognition, gesture classification, and occupancy estimation [13–15].
These models are typically evaluated under assumptions of abundant
compute and memory resources. However, when attempting to deploy
them directly on resource-constrained MCUs, a clear gap emerges.
There is no one-size-fits-all solution for on-device inference in such
settings. To illustrate this, we trained a state-of-the-art convolutional
neural network (CNN) model [16] on CSI data for human activity
classification and observed robust performance in simulation (accuracy
≥95%). Yet, deployment trials on our device set revealed that 75% (15
out of 20) of these platforms failed to even host the model due to insuf-
ficient memory — both in terms of runtime RAM and available flash for
storing weights. This is unsurprising given that many of these devices
are powered by 8-bit or 16-bit MCUs operating at clock frequencies in
the tens of MHz range. Such platforms are fundamentally limited in
their ability to support high-throughput inference or store models with
millions of parameters, especially when represented in double-precision
floating-point format. These limitations are exacerbated when trying to
achieve real-time or near-real-time inference.

Is vanilla model compression sufficient? To mitigate these constraints,
model compression techniques — such as quantization, pruning, and
weight clustering — have been proposed in literature [17,18]. We
experimented with forced compression of our baseline model to en-
able deployment on constrained platforms. As shown in Fig. 1(b),
moderately compressed models could be deployed on approximately
50%–75% of the devices. However, this came at a significant cost to
classification accuracy, often degrading performance by 10–20 percent-
age points. Beyond model size and inference latency, energy consump-
tion remains a critical factor. IoT devices are typically battery-powered,
and even a few additional millijoules per inference can impact device
lifetime in always-on sensing scenarios. Further, the achievable infer-
ence rate – i.e., how frequently the device can process incoming CSI
streams without stalling or missing data – is tightly coupled with both
the model complexity and the microcontroller’s processing budget [17,
19,20].

Summarizing the above arguments, if wireless data communication
and sensing need to co-exist, improving sensing at the cost of commu-
nication is clearly not a proposition that scales well. For instance, the
wireless sensory data footprint takes a toll on the network performance,
degrading QoS/QoE. Similarly, deploying models for on-device infer-
encing tasks needs tailor made solutions that do not scale well, often
affecting applications running locally. We present extensive benchmark
results to showcase the performance of three popular neural network
architectures (commonly used in wireless sensing) and how specific
parameterization or compression of the models impact the overall
system performance. Namely, we look at architectures based on Con-
volutional Neural Network (CNN), Recurrent Neural Network (RNN)
and Fully Connected Network (FCN) and explore various compression
strategies including quantization, pruning, clustering or their specific
combinations. We highlight how specific strategies for compression
impact various key performance metrics including inferencing accu-
racy, inferencing rate, energy consumption per inference and memory

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915

Fig. 1. Fig. 1(a) shows how increase in resources i.e., compute and memory leads to increase in energy consumption. Fig. 1(b) shows a specific sensing model tested on a
collection of 20 test devices (shown in Fig. 1(a)). Only 25% of the test devices are able to host the original model. Although model compression improves the deployability or
coverage, the model’s accuracy takes a drastic hit, from 95% in the original model to ≈50% in the highly compressed version. Fig. 1(c) shows the decrease in download throughput
and increase in ping latency as we increase the number of devices that are sending CSI data to access point. The percentage decrease/increase is w.r.t to the scenario when no
devices are sending CSI data.
usage. We propose WISDOM, a framework that can cater to specific
requirements/constraints of a deployment and finetune sensing mod-
els accordingly. WISDOM internally implements a decision tree based
structure that recommends best effort compression strategies to meet
such constraints. Our framework recommended models outperform
vanilla compression strategies like weight quantization (often a de
facto choice) in 85%–95% of the cases. We make the following key
contributions:

• System Deployment Perspective. We present one of the first
comprehensive studies that approach Wi-Fi sensing from a system
deployment perspective. Rather than optimizing solely for classifi-
cation accuracy using large-scale, over-parameterized models, we
focus on deployability — identifying models that can operate on
resource-constrained hardware while still achieving reasonably
high accuracy (e.g., ≥95%) for real-world tasks such as activity
recognition and occupancy estimation.

• Dataset Contribution and Reproducibility. We conduct exten-
sive benchmarking across 20 commercially available IoT plat-
forms, encompassing a range of microcontroller architectures and
memory footprints. We observe that most wireless sensing models
proposed in recent literature are infeasible to be deployed without
modification, due to memory or execution-time constraints. Even
after applying compression techniques, we observe a trade-off in
model accuracy, highlighting the lack of a one-size-fits-all solution
for heterogeneous deployment context. All our datasets, traces,
scripts and models are open-sourced at https://sense.cse.iitm.ac.
in/wisdom/ [21].

• Optimal Inference Model Selection. We design and implement
an automated model optimization framework, WISDOM, that as-
sists practitioners in selecting and customizing inference models
based on user-defined constraints such as maximum model size,
inference latency, or minimum accuracy targets. Given a set of
deployment requirements, WISDOM returns a compressed and
quantized model tailored to the target platform, achieving up
to 20%–25% reduction in model size and 70%–80% reduction
in inference latency, with bounded degradation in performance
(accuracy degradation is ≤5%).

2. Wi-Fi sensing primer and related works

In the following we provide some preliminary background on the
wireless sensory data, i.e., the above mentioned CSI metric. Second,
we introduce state-of-the-art compression techniques that we use to
optimize our inferencing models used for sensing. Third, we showcase
the state-of-the-art literature on Wi-Fi sensing and demonstrate the
research gaps that motivate our current direction of work.
3
2.1. Wi-Fi sensing and the CSI metric

Wi-Fi sensing leverages from the phenomenon of multipath reflec-
tions within the wireless channel. When a modulated RF signal is
transmitted, it not only reaches the receiver device along a direct or
shortest path, but also gets reflected and scattered around by reflectors
present in the environment before finally reaching the receiver at
delayed intervals. Such delays in the time domain typically introduce
distortions that can be perceived in the corresponding frequency re-
sponse. To improve communication efficiency, these distortions need
to be estimated and corrected - a process known as channel equaliza-
tion which is fundamental to a wireless receiver. For instance, Wi-Fi
receivers estimate the Channel State Information (CSI) that represents
the signal attenuation at the granularity of individual OFDM subcarrier
frequencies present within its modulation bandwidth (e.g., 52 or 108
subcarriers for 20MHz or 40MHz bandwidths). While CSI helps a
wireless device to adapt and modulate its communication parame-
ters based on dynamic channel conditions, it also provides signatures
capturing characteristics of the ambient environment or the dynamics
of reflectors in its vicinity. The CSI is estimated from the preamble
symbols each time the receiver receives a new data packet. Note that,
such information is environmentally superimposed on the signal itself and
is not affected by the actual data bits being communicated.
CSI Toolkits. Today, a host of hardware–software solutions make CSI
available from Wi-Fi chipsets. One of the foremost solutions was based
on the Intel-5300 chipset and the Linux 802.11n CSI toolkit [22]. This
was followed by toolkits for the Qualcomm Atheros chipsets [23].
Solutions based on software defined radio continued to be developed
that led to extensive frameworks like OpenWiFi [24] or Picoscenes [25].
Note that majority of the research on Wi-Fi sensing in the past decade
was based on one of such tools that mandated heavy compute ma-
chinery to capture or process such data. Recently, the community have
explored portable options like the Nexmon toolkit [26] that can extract
CSI from some Broadcom chipsets (Raspberry Pi, Google Nexus smart-
phones). The Esp-8266 Wi-Fi chipset from Espressif Systems provide
direct register access to read CSI through its platform native APIs. Such
recent developments have made it possible to experiment with CSI data
available from low cost, microcontroller based systems resembling IoT
devices.
Sensing with CSI Spectrograms. CSI captures the instantaneous state of
the channel (coherence time), however, often the phenomena we want
to sense span a duration of time that is several orders of magnitude
more than the coherence time. Naturally, instead of analyzing such CSI
vectors individually, a common practice is to look at an aggregation of
such vectors obtained within a specific time window (e.g., 1 s). Such
time ordered and aggregated vectors represent a CSI spectrogram (see
Fig. 4).

https://sense.cse.iitm.ac.in/wisdom/
https://sense.cse.iitm.ac.in/wisdom/
https://sense.cse.iitm.ac.in/wisdom/

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
Fig. 2. Schematic of various model compression techniques. For weight clustering, only two clusters (colored red and blue) are used. The solid lines (top row) denote non-quantized
weights while the dashed lines (bottom row) denote quantized weights.
2.2. IoT-izing models - compression of neural networks for edge or local
inference

CSI spectrograms are typically used to train neural network models
for various inferencing tasks. A key observation from the above line
of works is that a majority of them have a single dimensional focus
on improving the (classification) accuracy that result in heavy, over-
parameterized models. In the following, we mention the state-of-the-art
strategies [17,19,20] for compressing such models (see Fig. 2).
Pruning. [27] Pruning is a technique used to reduce the size and com-
putational complexity of a neural network by identifying and removing
irrelevant or low-magnitude weights, thus inducing sparsity in the
model.
Weight Clustering [18]. Weight clustering involves grouping similar
weights together into clusters and then representing all the weights in a
cluster with a single centroid value. This reduces the number of unique
weight values in a layer to a maximum of 𝐶, where 𝐶 is the number of
clusters. The centroids can be learned through various methods, such
as K-means clustering. Note that both Pruning and Weight Clustering
can be simultaneously applied to a network architecture.
Weight Quantization [28]. Quantization reduces the precision of the
weights, for instance from single precision (4 byte float) to a single
byte. This is achieved by creating a mapping between the real valued
weights (𝑟) and the quantized weight values (𝑞). The discretization is
done at a desired scale (𝑆) with an origin or zero-point at 𝑍. The
mapping can be expressed as 𝑟 = 𝑆(𝑞 −𝑍).

Note that quantization can occur (a) post training, i.e., the model
is trained using floating point weights and the trained weights are
henceforth quantized, or, (b) the training can itself be quantization
aware, i.e., quantized weights are introduced during forward propaga-
tion and is used to calculate the loss. Although for back propagation,
floating point weights are used as usual. This keeps the function (neural
network) continuous and allows us to calculate gradients for updat-
ing the weights. Model compression leads to several key advantages,
including reducing the memory footprint of the model, speeding up
inference time, and potentially improving the model’s generalization
ability. However, it is essential to strike a balance between choosing
the right hyperparameters (e.g., pruning sparsity or number of clusters
or the level of quantization etc.) and maintaining model performance.

2.3. Existing research gaps in related literature

As mentioned earlier, a host of existing literature on Wi-Fi sensing
exclusively focus on building better deep learning models for the infer-
encing tasks. Some of the recent examples include El [7], DeepMV [13],
4
DeepSeg [29], BiLSTM [14,30], DeepSense [31], Wisdar [32] for HAR;
Widar 3.0 [5], WiHF [33], WiGRUNT [15], WiGR [34] for gesture
recognition, and WiCount [6] for people counting. However, the above
works prioritizes solely on the model’s classification accuracy. Second,
such works present results primarily from trace-based analysis and not
much insights regarding the deployment of the proposed solutions in
the upcoming IoT landscape are highlighted. Third, many such works
use the CSI data of highest fidelity. For instance, SDR based toolkits
(e.g., Picoscenes) or wireless NIC driver patches for Intel-5300 can
provide CSI data even at 1000 samples/s, one order of magnitude more
than what IoT class devices (e.g., ≤100) can barely support. Such high
data rates are favorable for implementing efficient noise filter algo-
rithms. Also, estimating Doppler shifts on CSI data becomes relatively
straightforward in such cases. Our goal is primarily to cope with low
fidelity CSI data being processed on barely provisioned devices.
Systems Considerations. With the growing interest in IoT based wireless
sensing, some recent works [35,36] have indeed highlighted the ne-
cessity of on-device sensing both from a computation as well from a
security/privacy viewpoint. Some initial works on model compression
are reported in the work by Hernandez [35,37] focuses on only model
quantization aspects. EfficientFi [36] demonstrates an actual system
deployment for Wi-Fi sensing but restricted to the edge/cloud sensing
paradigms.
Embedded Machine Learning. We resort to some recent works and plat-
forms that enable performing neural network compute on embedded
devices. A lot of efforts went in creating frameworks (e.g., TinyML)
that implement ML stacks for resource constrained devices [18,27,28,
38–40], particularly introducing techniques for model compression.
Frameworks like Google’s TensorFlow (TF) [41] along with tools like
TFLite or TFLite-Micro [42] provides hooks to make models optimized
and lightweight for various target microcontroller architectures [19,
20]. Motivated by the existing research gap and equipped with the
recent advances in embedded ML/DL frameworks, we move forward
to investigate on-device inferencing for Wi-Fi sensing tasks.
Data Compression. Recent works have recognized the complexity associ-
ated with processing wireless sensing data and have proposed methods
to compress such data — such as CSI spectrograms — prior to offload-
ing it to Edge computing services [9,10,43]. While these techniques aim
to reduce network transmission loads, many introduce their own signif-
icant computational overheads, making real-time application challeng-
ing on resource-constrained IoT devices. For instance, approaches based
on AutoEncoder-driven compression [9,36] require non-trivial compute
and memory resources, which are often unavailable on low-power
embedded platforms. Simpler strategies such as spectrogram quanti-
zation are more feasible, however, deep neural compression, despite
its effectiveness in minimizing data size, remains largely impractical

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
Table 1
Comparison of existing Wi-Fi sensing works highlighting system-level considerations.
Work Model complexity Compression Power analysis Deployment Scalability
 (High/Low) (Data/Model) (Yes/No) (Yes/No) (Yes/No)
El [7] High None No No No
Deepsense [31] High None No No No
Wisdar [32] High None No No No
Widar 3.0 [5] High None No No No
WiHF [33] High None No No No
WiGRUNT [15] High None No No No
WiGR [34] High None No No No
WiCount [6] Medium None No No No
CFNet [10] Medium Data (CSI) No No No
RScNet [9] Medium Data (CSI) No No No
CSI compression [43] High Data (CSI) Yes Yes No
EfficientFi [36] Medium Data (CSI) No Yes Yes
Edge sensing [35] Medium Model No Yes Yes
WiSDOM (Ours) Lowa Data + Model Yes Yes Yes

a WISDOM chooses the model with the least complexity while preserving sensing accuracy and respecting available
hardware resources.
at the IoT scale (see, Section 4.1). In fact, the computational cost of
applying deep compression on-device can, in some cases, approach
that of running the full inference model locally—undermining the very
purpose of offloading to the edge.

Overall, the existing body of work on Wi-Fi sensing predominantly
focuses on maximizing inference accuracy through complex neural
network models, often evaluated using ideal, high-fidelity CSI data
collected with specialized hardware. Such studies, however, offer lim-
ited insights into the practical feasibility of deploying these solutions
on constrained IoT devices in realistic scenarios. Additionally, prior
work on embedded machine learning has demonstrated the potential
for model compression and optimization, yet a systematic evaluation
and deployment-focused analysis specifically targeting Wi-Fi sensing
tasks remains largely unexplored. Table 1 summarizes a range of recent
representative works. The top (blue-shaded) block lists efforts that
primarily focus on improving sensing accuracy, while offering little to
no consideration of practical deployment challenges such as device-level
resource constraints, power consumption for battery-operated nodes, or
overall system scalability. In contrast, the lower (green-shaded) block
highlights more recent studies that begin to acknowledge systems-level
bottlenecks in real-time wireless sensing deployments. [35] does not
look into power consumption and uses a fixed sensing model. Our
primary contribution goes beyond recognizing resource limitations: We
actively optimize the sensing models themselves based on the hardware and
energy constraints of the target IoT platforms.

3. Wireless sensing testbed

To perform system benchmark experiments we create an exten-
sive measurement setup that enables us to estimate various system
parameters related to the inferencing tasks.

3.1. Measurement setup

Device Choice. A few key factors modulate our choice for the test device.
As shown in Fig. 1, we performed preliminary experiments on a host of
twenty test devices. While single board computers like Raspberry Pi or
Beagle Boards (various models) prove to be overprovisioned in some
cases, 8-bit microcontrollers (e.g., Atmega328P used in some Arduino
devices) have insufficient resources to demonstrate any interesting cost-
performance tradeoff. For the various micro-benchmarks, we choose
Esp32-C3-Mini that features a 160MHz single core RISC-V processor
with a 400KB main memory (RAM) and a 4MB onchip flash memory.
This device allows us a sweetspot to experiment with various cost-
performance configurations and make observations representative of
IoT class devices. Most importantly, Esp-32 has an integrated Wi-Fi chip
that exports CSI making it convenient to build a complete on-device
sensing application.
5
Energy Measurement. Instead of reporting raw power consumption dur-
ing inferencing, we advocate reporting the total energy consumption
per inference. This helps us make a fair comparison across various
models and compression techniques. We use a Nordic Semiconductor
Power Profiler Kit II (Ppk2) [44] for such measurements. The Ppk2
supplies a constant voltage of 5 V to the device, and measures the
current drawn in milliamperes scale with a nanoampere precision. For
relative comparison across inferencing models 𝑀𝐴 and 𝑀𝐵 , we take the
ratio, 𝑅𝐴𝐵 =

𝑖2𝐴𝑇𝐴
𝑖2𝐵𝑇𝐵

, where 𝑖𝐴, 𝑖𝐵 are the current draws and 𝑇𝐴, 𝑇𝐵 are the
inferencing times for the respective models. We use energy consumed
per inference as one of our benchmark metrics.
Memory Usage. Memory availability is restrictive in low end microcon-
troller devices that directly modulates the size of the inferencing model
that can be possibly hosted. The device flash (typically, few MBs) is
a non-volatile memory that holds such models as well as application
programs. The RAM (typically, few hundred KBs) holds the runtime
parameters such as inputs, outputs and the values of the intermediate
layers. Esp-32 used for benchmarking has 4MB worth of flash and
≈250KB worth of RAM remaining for running the application.
On-Device Deployment. We attempt to create various optimized versions
of a given inferencing model by applying the respective compression
techniques or their combination as discussed earlier. In order to deploy
such models on a microcontroller based device (Esp-32), we use the
Tensorflow [41] Model Optimization Toolkit, TFLite-Miro [42] that
provides necessary hooks to achieve the same. Additionally, TFLite-
Miro helps to preserve sparsity of the model as well as weight clusters
when performing quantization aware training. It also preserves sparsity
when performing weight clustering.

3.2. Target application and models

Dataset. We build an extensive dataset to test the performance of our
models. The target wireless sensing application we choose is Human
Activity Recognition (HAR), where the literature have effectively demon-
strated its feasibility with a high degree of accuracy. The number of
activities considered in HAR varies across works – roughly 4–6. For
our dataset, we consider six activity classes – two static: standing and
sitting, three dynamic: sitting up/down, jumping, walking, and a class
indicating human absence. To make the dataset robust, we collect data
at four different locations – two indoors and two outdoors – using
five different human volunteers. For each location, every volunteer
performs five different activities (sixth indicates human absence) for
a period of 30 s while the CSI was simultaneously recorded, roughly
at 90–100 samples/s. The experiments were repeated ten times, at
different times of the day to reduce any bias whatsoever. Overall,
we record a rich dataset of ≈300K CSI samples spanning all the six
classes, more or less uniformly. Each CSI sample contains 52 complex

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
Fig. 3. The Ppk2-based measurement setup shows a couple of sample current draw profiles for two different inference models. Note the difference in inference times.
Fig. 4. Sample CSI spectrograms for the six activity classes in our dataset. Each spectrogram is a 100 × 48 dimensional real valued matrix.
IQ components (inphase-byte and quadrature-byte) along the 52 OFDM
subcarriers at 20MHz bandwidth. Out of 52, we only consider 48 data
subcarriers leaving out the four pilot subcarriers. Our CSI spectrograms
consist of 100 CSI samples, i.e., each spectrogram has a dimension of
100 × 48 amplitude values (norm of the complex IQ component).
Neural Network Architectures. Existing literature on Wi-Fi sensing based
HAR majorly looks at variations of three different architectures - Con-
volutional Neural Networks (CNN), Recurrent Neural Networks (RNN)
and Fully Convolutional Networks (FCN). For each such architecture,
we create nine models with increasing number of parameters starting
from 250 for the simplest base model. The other eight versions have
1500, 3𝐾, 6𝐾, 12𝐾, 24𝐾, 50𝐾, 90𝐾 and 180𝐾 parameters. Each model
takes the 100 × 48 dimensional CSI spectrogram as input and predicts
one of the six HAR classes.

For the CNN, we use a ResNet-like [16] structure where the number
of residual blocks are increased to capture higher number of parame-
ters. For FCN, we simply increase the number of layers in the network,
as well as the number of neurons in each layer. We use a specific variant
of RNN called Long Short Term Memory (LSTM) [45], that helps in
preserving long distance relationship within the samples. To increase
the number of parameters we increase size of the weight matrix for
the different gates in an LSTM cell, later we also stack multiple LSTM
cells on top of each other, which further increases the number of
parameters. To avoid over-fitting, we use standard techniques like
batch normalization [46] and drop-out [47] at each layer.

3.3. Relative performance benchmarks

Before we delve deeper into model compression and how perfor-
mance is impacted by such strategies in the next section, here we
showcase some macro performance results and discuss their implica-
tions. Fig. 5 demonstrates a comparison among the RNN, CNN and the
FCN derived models for all their parameterized versions. We focus on
four key performance indicators — the accuracy obtained by the model,
energy consumed to do a single inference computation, inferencing rate
and the amount of runtime memory (RAM) consumed when the model
actively runs the inferencing tasks. For CNN as well as RNN, their
accuracy saturates to about 95%, beyond 12𝐾 parameters. FCN can
only yield 80% accuracy even with judicious over-parameterization.
6
However, CNNs are at least two orders of magnitude slower than their
FCN counterparts. For instance, in Fig. 5 (lower left) for the model
with 12𝐾 parameters, FCN has an inferencing rate of ≈150, i.e., about
7 ms per prediction while a CNN takes close to a second. Being on
the slower side, the energy consumed per inference is also relatively
high for CNNs and RNNs. Another interesting observation is how CNN’s
runtime memory consumption (reserved RAM) is always much higher
compared to the RNN and FCN counterparts. Note that this is different
from the model’s actual size which is generally stored in the system’s
flash memory. Fig. 5 implicitly indicates a room for trade-off with
prioritizing one performance metric over the other. For instance, if
accuracy is of the highest priority, CNNs are the way to go, while if
it is higher inference rates or low energy consumption FCNs can be a
good choice.

4. Compression benchmarks

In Section 3.3, we present how various system performance met-
rics are impacted by the architecture chosen for the neural network
model as well as its parameter count. It is evident that although over-
parameterized models may boost accuracy, however, considering the
cost to run them (energy, memory usage etc.) may lead to diminishing
returns. In this section, we explore possible ways to compress our
inference models and draw insights about the performance benefits (or
losses) such compression entails.

4.1. Data compression or model compression?

Before attempting to move forward with model compression tech-
niques, we discuss a popular alternative, i.e., compressing the sensory
data itself. Note that the entries in our CSI spectrogram are real valued
(32-bit floats). It is intuitive to think that compressing these entries
itself may lead to lightweight models and also be less taxing on the CPU
or memory consumption. We argue that this is always not the case.
Data Quantization: This method is quite trivial that truncates the given
entries to a desired bit resolution, for instance to a single byte. Although
this improves the data intake rate (up to 4×) or the runtime memory
consumption (2–4×), it affects the classification accuracy non-trivially.

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
Fig. 5. Compares the change in accuracy, energy per inference, inference rate, and RAM reserved for the different architectures as we increase the number of parameters. The
models are non-compressed.
Across various models, our consistent observation is that a brute-force
bit truncation strategy is detrimental to the model’s performance. For a
byte-sized truncation the average accuracy across the models dropped
by 15%–20%.
Low Rank Approximation of CSI Spectrograms: Instead of naively getting
rid of the least significant bits as in the previous case, a more effective
way is to quantize while preserving the general structure of the data.
This is done using the Singular Value Decomposition (Svd) algorithm [48]
that gives us a tuning knob to compress data according to a desired
rank. Svd generates a list of singular values that encode the full-rank
representation of our 100 × 48 dimensional spectrogram image [43].
Truncating the top-𝐾 singular values generates a rank-𝐾 approximation
of the CSI spectrogram image, thereby intelligently compressing it.
Although we found the inference models to work well even for 𝐾 as
low as 8–10, we found the accuracy being sensitive to the value of
𝐾. This is due to the changing nature of the spectrogram structure.
However, running SvD has a few limitations. First, we require a set
(e.g., tens or hundreds) of CSI spectrograms to find its ‘eigen structure’.
This process is extremely memory intensive. Second, the computational
time complexity of Svd is in the order of (𝑚𝑖𝑛(𝑚𝑛2, 𝑚2𝑛)), where 𝑚 is
the cardinality of the set and 𝑛 is the dimension of the CSI spectrogram
(i.e., 𝑛 = 100 × 48). Clearly, running Svd at frequent intervals is
prohibitive and defeats the purpose of saving systems resources.

It is apparent that we vouch for model compression compared to
data compression for IoT-based wireless sensing tasks. In the remaining
part of this section, we primarily concentrate on the choice of the model
architecture and relevant compression strategies that can make such
models lightweight while retaining sensing accuracy.

4.2. Effects of model compression

In the previous section, we discuss general performance trends and
the way it is affected by a model’s architecture and parameter count.
In the following, we reexamine these trends in the premise of model
compression. In particular, we analyze, (i) sensing performance related
measures, viz., accuracy and inference rate, (ii) cost measures, i.e., met-
rics related to resource consumption, viz., energy, runtime and flash
memory consumption. We perform extensive benchmark experiments
with the results presented in Figs. 6, 7, 8, 9.
7
For our experiments we tried different cluster sizes and sparsity
levels (percentage of weights that are set to 0). Increase in cluster size
or decrease in sparsity level improves accuracy of the models, but at the
cost of higher resource consumption (memory and energy). Therefore,
for all the benchmarks discussed below we chose a cluster size and
sparsity level that provides the best cost-performance trade off, and
avoids diminishing returns. We chose a cluster size of 8 and a sparsity
level of 50%.
Sensing Performance. Typically, the general notion is to characterize
such performance with accuracy, however, we feel that analyzing the
inference rate (or the prediction latency) is crucial for a real-time
sensing system.
Accuracy. Fig. 6 (left column) shows the impact of pruning, clustering
and both combined on the classification accuracy when compared to
an uncompressed version of the same model. Even after compression,
CNNs continue to provide higher accuracy and FCNs continue to pro-
vide quicker inference times or lower resource usage (albeit at the
cost of accuracy). Another interesting observation is on RNNs. Though
uncompressed RNNs provided a reasonable middle ground between
CNNs and FCNs, its accuracy is quite sensitive to model compression, in
particular pruning and clustering (see Fig. 6 (top-left)). On quantizing
the models Fig. 7 (left column) shows the impact on accuracy. Initially,
for smaller models, the drop is not much as the absolute accuracy
itself is poor. For moderate-sized models it impacts accuracy, before the
models become over-parameterized and robust against quantization.
Inference Rate. Pruning and clustering have minimal effects on the
execution time of the inference task, primarily because of the floating
point operations. However, quantization bumps up the inference rate
to as high as 30×, see Fig. 8 (left). Quantization optimizes the model
for integer arithmetic, hence offers a substantial benefit.
Cost Measures. We benchmark the system resource consumption and
observe how it is impacted by various compression strategies.
Energy Consumption. Energy consumption is heavily affected by the
arithmetic type — integer vs. floating point operations. Hence, in
this case also (like inference rate), quantization provides the expected
benefits. Fig. 8 (right) shows how the energy consumed per infer-
ence improves with quantization, particularly for models with high
parameter count.
Flash Memory Consumption. As the parameter count increases, the accu-
racy figures remain robust in the face of compression. This is accompa-
nied by a significant savings in the flash memory consumption, so much

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
Fig. 6. Percentage decrease in accuracy and flash consumption due to Clustering (C), Pruning (P) and both (P&C) when compared to a uncompressed model. The left column shows
decrease in accuracy, while the right one shows decrease in flash consumption.
so that the flash consumption figures become equivalent to models with
lower parameter count (with lower accuracy). Hence, a best practice
will be to choose a compressed model with a higher parameter count
than an uncompressed model with a lower parameter count. See Figs.
6 and 7 (right columns). Note, that quantizing models that are already
weight-clustered provides minimal improvements in saving flash (see
Fig. 7 (right)). This is because clustering, in effect, has an approach
that is similar to quantization in representing the weights. For instance,
using 𝐾-means to cluster weights will result in 𝐾 clusters, where 𝐾 is
much lesser than the total number of weights (although the weights
themselves are still floats).
RAM Usage. We show the impact on runtime memory consumption in
Fig. 9. For a CNN, although the RAM consumption does not change
appreciably with the size of the model, i.e., parameter count, quantiza-
tion can improve this by up to 72%. For, RNNs, quantized models do
free up the RAM, but note that it affects accuracy non-trivially. Overall
RAM usage for FCNs are much lower compared to CNNs/RNNs. Further,
post-training-quantization (PTQ) is slightly better that quantization-
aware-training (QAT). This is not the case for CNNs/RNNs.

4.3. Insights from empirical results

In the following, we make some general observations from the
above illustrated benchmark results.

• Although FCNs are generally less accurate when compared to
CNNs/RNNs (≈10%–15% in our studies), however the trade-off
is justified when factors like inference rate, runtime memory
usage or energy footprint per inference is considered. For such
factors, there is at least an order of magnitude improvement that
is observed.
8
• It is recommended to use a compressed version of a larger model
(higher number of parameters) than an uncompressed version
of a smaller model itself. Although both have similar energy
and memory footprint, the compressed model generally shows a
higher accuracy (≈20%–40%) in our studies.

• RNNs are worst affected by compression. For instance, we observe
an accuracy loss of up to 30% even for a large RNN model when
compared with only 5% for larger CNNs/FCNs.

• Many low-end processors typical of IoT class devices are re-
stricted to integer operations. In such scenarios, model quantiza-
tion significantly affects critical performance metrics like runtime
memory, inference rate and energy footprints. Energy per infer-
ence decreases while inference rate increases by 15–30×, wheres
runtime memory consumption decreases by up to 70%.

• Clustering (and P&C) provides the most significant decrease in
flash consumption (≈80% for large models). Though quantization
on top of clustering does not further decrease flash consumption
by much. Drop in flash consumption <5% for CNNs/RNNs and
<20% for FCNs when a clustered model is further quantized. For
other cases the drop in flash consumption after quantization goes
up to 70%.

5. WISDOM framework

The results above demonstrate a complicated interplay among vari-
ous system parameters and its impact on the overall performance. This
necessitates a unified framework that draws intelligent conclusions on
such performance data and recommends a suitable model optimization
strategy. We define WISDOM, a framework that can automate the
process of picking the best compression strategy based on specific

M.K. Lenka and A. Chakraborty

Fig. 7. Percentage decrease due to quantization when compared to their non-quantized counterparts. The left columns shows decrease in accuracy, while the right one shows
decrease in flash consumption.

Fig. 8. Percentage decrease in inference throughput and energy per inference of quantized models compared to their non-quantized counterparts for different model architectures.

Fig. 9. Comparing RAM reserved for different architectures when quantized or otherwise. For CNN and RNN, quantization-aware-training (QAT) and post-training-quantization (PTQ)
reserve the same amount of RAM, while for FCN they are different.

Ad Hoc Networks 178 (2025) 103915

9

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
Fig. 10. Schematic diagram of the WISDOM framework, implemented as a complete end-to-end system in our testbed. Target devices span from highly resource-constrained IoT
platforms to moderately powered edge-class nodes. Operating within a serverless ecosystem, each compute node requires an optimized model to function efficiently.
contexts, for instance, accuracy requirements, hardware constraints,
latency constraints, energy goals etc. Fig. 10 presents a schematic
overview of the WISDOM framework. In brief, once the target device is
selected, essential system parameters are evaluated, including available
runtime memory (RAM), flash storage capacity for the model, CPU
clock speed, and power consumption characteristics (e.g., see Fig. 3).
Additionally, the user specifies two key performance constraints: the
desired model accuracy and the acceptable inference latency.

Given that complex models often achieve higher accuracy at the cost
of increased latency, energy consumption, and memory footprint, we
define a utility metric (Section 5.1) that balances performance goals
against system constraints. To optimize this trade-off, WISDOM employs
a decision-tree based search (Section 5.3) to select the best-suited
model architecture that maximizes the utility. Importantly, this model
selection occurs offline during the deployment phase. By enabling
users to specify system priorities and by automatically adapting model
choices to device capabilities, WISDOM facilitates scalable wireless
sensing across a heterogeneous landscape of IoT and edge platforms.

5.1. The utility metric

A system with more resources (higher cost) naturally offers a better
performance, similarly system with less resources (low cost) perform
worse. The challenge is to find suitable a middle ground where neither
the performance is critically affected due to lower costs, nor does
increasing the cost result in diminishing returns. To capture this trade-
off between cost and performance, we define a utility function (Eq.
(1)) that we intend to maximize.
 (𝒊) = (𝒊) − (𝒊) (1)

In the above equation, we use 𝒊 to encode details of the underlying
model architecture (𝑡) along with its parameter count (𝑛) and compres-
sion technique (𝑜) being used. The various choices for 𝑡, 𝑛 and 𝑜, that
we use in this work, are provided in Eq. (2).
𝒊 ∈ 𝐈 = {[𝑡, 𝑛, 𝑜]|𝑡 ∈ 𝐓, 𝑛 ∈ 𝐍, 𝑜 ∈ 𝐎} 𝑤ℎ𝑒𝑟𝑒

𝐓 = {𝐹𝐶𝑁, 𝐶𝑁𝑁, 𝐿𝑆𝑇𝑀}

𝐍 = {250, 1.5𝐾, 3𝐾, 6𝐾, … , 180𝐾}

𝐎 = {𝑛𝑜𝑛𝑒, 𝑝𝑟𝑢𝑛𝑒, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑞𝑎𝑡, … , 𝑝𝑐𝑝𝑡𝑞}

(2)

(𝒊) denotes performance and (𝒊) denotes the cost of running
an inference model with configuration 𝒊. We define (Eq. (3)) as a
weighted sum of accuracy () and inference throughput (), where the
respective weights 𝑤𝑎𝑐𝑐 and 𝑤𝑖𝑛𝑓 can be tuned by the user adhering to
application requirements.

(𝒊) = 𝑤𝑎𝑐𝑐(𝒊) +𝑤𝑖𝑛𝑓(𝒊)

𝑤ℎ𝑒𝑟𝑒 ≥ 𝐴𝑚𝑖𝑛 ≥ 𝐼𝑚𝑖𝑛
(3)

Similarly, we define the cost (𝒊) (Eq. (4)) as the weighted sum
of the energy per inference (), runtime memory requirements ()
and flash memory () consumed by the model configuration 𝒊. The
10
respective weights are denoted by 𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚 and 𝑤𝑓𝑙ℎ respectively.
Such weights directly determine the priority a user assigns to various
system resources.

(𝒊) = 𝑤𝑒𝑛𝑔(𝒊) +𝑤𝑟𝑎𝑚(𝒊) +𝑤𝑓𝑙ℎ (𝒊)

𝑤ℎ𝑒𝑟𝑒 ≤ 𝐸𝑚𝑎𝑥 ≤ 𝑅𝑚𝑎𝑥 ≤ 𝐹𝑚𝑎𝑥
(4)

Henceforth, we use a weight vector 𝒘 to denote all the different
weights [𝑤𝑎𝑐𝑐 , 𝑤𝑖𝑛𝑓 , 𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚, 𝑤𝑓𝑙ℎ]. Also all the metrics are subject
to constrains as defined in Eqs. (3) and (4). For performance metrics
 and , we define 𝐴𝑚𝑖𝑛 and 𝐼𝑚𝑖𝑛 as respective lower bounds. For
cost metrics , and , we define 𝐸𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥, and 𝐹𝑚𝑎𝑥 as upper
bounds. 𝒄 denotes the vector [𝐴𝑚𝑖𝑛, 𝐼𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥, 𝐹𝑚𝑎𝑥] for all the
constraints. Note that the metrics ,, , and are normalized in
the range [0,1] using min–max feature scaling. Similarly, the weight
vector 𝒘 ∈ [0, 1]5. We also ensure that 𝑤𝑎𝑐𝑐 +𝑤𝑖𝑛𝑓 = 1 for performance
 , and 𝑤𝑟𝑎𝑚 +𝑤𝑓𝑙ℎ +𝑤𝑒𝑛𝑔 = 1 for cost . This leads both and to be
in the range [0,1] and the utility metric in the range [−1, 1].

5.2. Representative scenarios

We present a few representative scenarios to demonstrate the im-
pact of weight vector (𝒘) on the and metrics and how it modulates
the choice of the model configuration.

• Scenario-1 (S1): In this scenario, we assign a higher weight to
accuracy (𝑤𝑎𝑐𝑐 = 0.9) compared to the inference rate (𝑤𝑖𝑛𝑓 =
0.1). The weights related to the cost metrics are assigned uni-
formly (𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚 and 𝑤𝑓𝑙ℎ are all assigned 0.33). From Fig.
11(a) we observe that CNNs and RNNs (both quantized and
non-quantized) exhibit better performance — higher accuracy
with lower inference rate. However, FCNs are significantly cost
efficient compared to CNNs/RNNs with a minor compromise
in performance. CNNs/RNNs are typically energy hungry and
memory intensive compared to FCNs.

• Scenario-2 (S2): In contrast to S1, in this case, we assign equal
weights to accuracy and inference rate (𝑤𝑎𝑐𝑐 = 𝑤𝑖𝑛𝑓 = 0.5).
Weights related to the cost metrics remain the same, as in S1.
FCNs perform significantly better providing reasonable accuracy
(≈70%–80%) and higher inference rate (by up to two orders of
magnitude) (see Fig. 11(b)).

• Scenario-3 (S3): In this case, we prioritize accuracy moderately
higher than inference rate (𝑤𝑎𝑐𝑐 = 0.7 and 𝑤𝑖𝑛𝑓 = 0.3). Regarding
the cost metrics, primary importance is given to lower the flash
memory consumption (𝑤𝑓𝑙ℎ = 0.8). Energy and runtime mem-
ory related metrics are assigned equal weights of 0.1. Although
CNNs/RNNs are energy intensive and showcase a higher runtime
memory footprint compared to FCNs, it has negligible effect on
the cost due to the minimal weights assigned to such factors. It
is important to note that the flash memory footprint for all the
three architectures are roughly similar (depends on the number
of parameters). We do not observe a prominent cost-performance
trade-off in such scenarios.

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915

Fig. 11. The cost-performance trade-off as exhibited by various model architectures in the four representative scenarios. For each scenario, a specific combination of weights are
assigned to the vector, [𝑤𝑎𝑐𝑐 , 𝑤𝑖𝑛𝑓 , 𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚 , 𝑤𝑓𝑙ℎ].
• Scenario-4 (S4): In contrast to S3, we assign higher weights to
runtime memory consumption and energy per inference (𝑤𝑒𝑛𝑔,
𝑤𝑟𝑎𝑚 = 0.45 and 𝑤𝑓𝑙ℎ = 0.1). The performance related metrics are
the same as in S3. Fig. 11(d) shows a clear trade-off in terms of
model selection — the FCN exhibits the maximal performance at
minimal cost.

The constrains used for all the above scenarios are as follows: 𝐴𝑚𝑖𝑛 =
0.70, 𝐼𝑚𝑖𝑛 =0.03Hz, 𝑅𝑚𝑎𝑥 =200KB, 𝐹𝑚𝑎𝑥 =2048KB and 𝐸𝑚𝑎𝑥 =50 mA
(please note that these absolute values are normalized when actually
applied for filtering). All the points in Fig. 11 are of valid models that
satisfy these constraints.

5.3. Model selection using decision trees

The goal of WISDOM framework is to choose a model 𝒊 that max-
imizes the utility metric , given weight vector 𝒘 and a constraint
vector 𝒄. Overall we can summarize our objective as finding the optimal
model 𝒊∗ as defined below:
𝒊∗ = argmax

𝑖
 (𝚆𝙸𝚂𝙳𝙾𝙼(𝒘, 𝒄))

𝑤ℎ𝑒𝑟𝑒 𝚆𝙸𝚂𝙳𝙾𝙼 ∶ {𝒘, 𝒄} → 𝐈
(5)

WISDOM uses a decision tree that takes as input 𝒘, 𝒄 and outputs
𝒊. As the length of 𝒊 is 3, denoting the model architecture 𝑡, number
of parameters 𝑛 and compression technique 𝑜 as defined in Eq. (2), it
therefore performs three classification tasks simultaneously. We decide
to use a single decision tree with three outputs instead of three inde-
pendent decision trees, because the outputs 𝑡, 𝑛 and 𝑜 are correlated
to each other, e.g., certain compression techniques work better with
certain architectures (refer Section 4).

In order to train the decision tree we create a dataset with ≈27𝐾
different 𝒘 and 𝒄 configurations. For each 𝒘, we calculate for all
the models we have trained (i.e., 3 architectures, 9 different parameter
counts, and 12 compression techniques yielding a total of 324 models).
We choose the one (𝒊∗) that has maximum utility while satisfying the
11
constraints 𝒄. 𝒊∗ serves as our ground truth for a given weight vector
𝒘. We handcraft 126 unique test cases covering different scenarios like
the ones described in Section 5.2, and ensure that these are not part
of training set. The trained decision tree has an accuracy of 97.61%,
where accuracy denotes the fraction of cases the optimal model 𝒊∗ is
chosen.

5.4. Comparison with baseline models

We demonstrate the effectiveness of WISDOM in choosing the opti-
mal model 𝒊∗ by comparing utilities of the chosen model over a host of
baselines.

Baseline Models. The baseline models span three architecture types
(FCN, CNN and RNN). For each type, we consider three different pa-
rameter counts (≈1500, ≈6 K and ≈24 K) regulating the overall size of
the model — small, moderate and large. This yields nine uncompressed
model configurations (NQ). We also create a quantized counterpart of
these nine models referred as Q. The baseline models are indicative of
a naive (non-informed) choice.

As shown in Fig. 12(a), for scenario S1, increasing the cost increases
the utility till a certain point after which it starts decreasing (diminish-
ing returns). 𝒊∗ is the model whose corresponds to the peak of the
plot i.e., maximum utility. The three dashed vertical lines correspond to
the best quantized (Q), non-quantized (NQ) and WISDOM recommended
models. Observe that, compared to the WISDOM recommended model,
the best non-quantized model (FCN) has lower cost as well as lower
accuracy. Similarly, the best quantized model (CNN/RNN) has greater
cost but lower utility.

Fig. 12(b) presents the (average) relative utility of the quantized,
non-quantized and WISDOM recommended models. The relative utility
is measured as (𝒊)

 (𝒊∗) . First, the WISDOM recommended models achieve
a relative utility close to one. Second, in terms of relative utility, such
models outperform the Q and NQ counterparts by 0.5 or more. In
Fig. 12(c), we plot the empirical CDF for the difference in relative
utility values between the WISDOM recommended models and the

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915

Fig. 12. Fig. 12(a) shows the diminishing return of utility with increase in cost for a particular configuration of 𝒘. Fig. 12(b) compares the utility of all NQ baseline model and
all Q baseline model, and the model recommended by WISDOM. The utility is relative to the model with highest utility for that scenario i.e., 𝒊∗. Here S1, S2, S3 and S4 denote
different scenarios with different weights 𝒘, as defined in Section 5.2. Fig. 12(c) shows CDF of the utility difference between WISDOM recommended model and utility values of
all the Q and NQ baseline models for all test cases. Fig. 12(d) shows the percentage decrease in various cost/performance metrics of models chosen by WISDOM and compare it
with Q baseline models. The percentage decrease is w.r.t NQ models.
Q/NQ models respectively. For both cases, the median stands at ≈0.5
while the 75th percentile is at ≈0.7. Overall, the WISDOM recommended
model achieves a higher utility over the Q and NQ baseline models for
85% and 99% of the test cases respectively. Further, we observe that
models recommended by WISDOM on average consumes similar amount
of resources compared to Q models, but have negligible decrease in
accuracy. However, if the models are simply quantized, we observe a
≈15% drop in accuracy on an average (see Fig. 12(d)).

6. Discussion and insights

In this section we discuss some key takeaway points based on the
performance of WISDOM. First, majority of the models suggested by
WISDOM are large (more number of parameters) with some form of
compression rather than smaller (less number of parameters) models.
This is in agreement with our benchmark results where larger mod-
els that are compressed have better accuracy than smaller models,
while having a similar resource footprint. Second, almost all models
suggested by WISDOM perform quantization. This follows from our
benchmark results where quantization leads to a significant decrease in
runtime memory and energy consumption, while increasing inference
rate. Third, RNNs are rarely suggested by WISDOM, and also when
RNNs are chosen, they are not compressed. We observe that RNNs
are very susceptible to compression that causes a significant drop in
accuracy. Fourth, CNNs are often suggested by WISDOM when 𝑤𝑎𝑐𝑐 is
high (more priority is given to model accuracy), while in other cases
FCNs are suggested. This follows from our benchmark results, where we
observe that CNNs have higher accuracy than FCNs, though it also con-
sumes more resources. Finally, since clustering and pruning combined
with clustering (P&C) show a significant decrease in flash consumption
(Fig. 6 – right) compared to only pruning. Clustering (or P&C) is often
suggested by WISDOM along with quantization, especially if 𝑤𝑓𝑙ℎ is
high (more priority to lower flash consumption). Quantization on top
of clustering does not significantly decrease flash consumption, but it
provides huge savings to runtime memory and energy consumption,
12
it also improves inference rate. Therefore, clustering and quantization
were often used together in models suggested by WISDOM.

The above discussion reflects the similarities between the models
suggested by WISDOM and our key observations from the benchmarking
experiments. This further solidifies the effectiveness of our framework.

In this work we primarily focus on on-device computation in con-
trast to edge based computation for CSI based sensing applications.
There may be a middle ground where we split the deep learning
model [49], and run it on different operators in the computing contin-
uum i.e., on-device, access point, gateways, micro-datacenters, cloud
servers, etc. Depending on the user requirements (accuracy, latency,
etc.) and budget (Opex, energy, etc.) how much should the learning
model be split, and on which operators it should run on changes.
This creates a very general and interesting optimization problem. We
believe a lot more benchmarking is required in order to understand
such systems. This would enable us to make intelligent deployment
decisions, which would increase the adaptation of Wi-Fi sensing in the
real world.

7. Conclusion

In this work, we address these challenges through the design of
WISDOM, a framework that systematically recommends an optimized
inference model — defined by its architecture, parameter count, and
compression techniques — based on specific deployment requirements
and device constraints. To this end, we make the following key contri-
butions. First, we present one of the first comprehensive studies that
approach Wi-Fi sensing from a system deployment perspective. Rather
than pursuing higher classification accuracy alone, we prioritize model
deployability on constrained hardware, demonstrating that real-world
performance requires a balance between accuracy, resource footprint,
and inference rate. Second, we conduct extensive benchmarking across
20 commercially available IoT platforms, revealing that most state-
of-the-art sensing models are infeasible to deploy without significant

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
modification. To support reproducibility and further research, we open-
source our datasets, benchmarking scripts, and models at https://
sense.cse.iitm.ac.in/wisdom/ [21]. Third, we develop an automated
model optimization framework, WISDOM, that selects compressed and
quantized models tailored to user-defined constraints, achieving up to
20%–25% reduction in model size and 70%–80% reduction in inference
latency, while maintaining bounded accuracy degradation (≤5%).

We thoroughly benchmark candidate models by measuring their
inference accuracy, inference rate, energy per inference, RAM, and
flash memory consumption across our testbed. Experimental evaluation
shows that WISDOM outperforms naive baselines: around 83% of the
models recommended by WISDOM achieve higher utility compared
to the best quantized models, and in 99% of cases outperform the
best non-quantized models. These results demonstrate that simplis-
tic strategies like pure quantization or uncompressed small models
are insufficient; effective model selection and compression must be
jointly optimized, guided by application-specific constraints and sys-
tem goals. We believe WISDOM represents an important step toward
sustainable and scalable wireless sensing deployments for the emerging
IoT landscape.

CRediT authorship contribution statement

Manoj Kumar Lenka: Investigation. Ayon Chakraborty: Writing –
review & editing, Writing – original draft, Supervision, Project admin-
istration, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Ayon Chakraborty reports financial support and administrative support
were provided by Indian Institute of Technology Madras. If there
are other authors, they declare that they have no known competing
financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The data is shared by us and the URL is included in the paper draft.

References

[1] F. Miao, Y. Huang, Z. Lu, T. Ohtsuki, G. Gui, H. Sari, Wi-Fi Sensing Techniques
for Human Activity Recognition: Brief Survey, Potential Challenges, and Research
Directions, ACM Comput. Surv. 57 (5) (2025) 1–30.

[2] F. Meneghello, C. Chen, et al., Towards Integrated Sensing and Communications
in IEEE 802.11bf Wi-Fi Networks, 2022, arXiv preprint.

[3] E. Cianca, M. De Sanctis, et al., Radios as Sensors, IEEE Internet Things J. (2016).
[4] Y. Ma, G. Zhou, et al., Wi-Fi Sensing with Channel State Information: A Survey,

ACM Comput. Surv. (2019).
[5] Y. Zheng, Y. Zhang, et al., Zero-Effort Cross-Domain Gesture Recognition with

Wi-Fi, in: ACM International Conference on Mobile Systems, Applications, and
Services (ACM MobiSys), 2019.

[6] S. Liu, Y. Zhao, et al., WiCount: A Deep Learning Approach for Crowd Counting
Using Wi-Fi Signals, in: IEEE International Symposium on Parallel and Distributed
Processing with Applications and IEEE International Conference on Ubiquitous
Computing and Communications, ISPA/IUCC, 2017.

[7] W. Jiang, C. Miao, et al., Towards Environment Independent Device Free Human
Activity Recognition, in: ACM International Conference on Mobile Computing
and Networking (ACM MobiCom), 2018.

[8] X. Zheng, K. Yang, J. Xiong, L. Liu, H. Ma, Pushing the limits of WiFi sensing
with low transmission rates, IEEE Trans. Mob. Comput. (2024).

[9] B. Barahimi, H. Singh, H. Tabassum, O. Waqar, M. Omer, RSCnet: Dynamic
CSI Compression for Cloud-based WiFi Sensing, in: ICC 2024-IEEE International
Conference on Communications, IEEE, 2024, pp. 4179–4184.

[10] Y. He, M. Wei, D. Li, P. Li, H. Li, CFNet: CSI Compression Feedback Network
based on WiFi Sensing, Eng. Res. Express 7 (1) (2025) 015221.

[11] A. Dhekne, A. Chakraborty, K. Sundaresan, S. Rangarajan, TrackIO: Tracking
First Responders Inside-Out, in: 16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2019.
13
[12] A. Sen, A. Mandal, P. Karmakar, A. Das, S. Chakraborty, Passive Monitoring of
Dangerous Driving Behaviors Using mmWave Radar, Pervasive Mob. Comput.
103 (2024) 101949.

[13] H. Xue, W. Jiang, et al., DeepMV: Multi-View Deep Learning for Device-Free
Human Activity Recognition, Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. (2020).

[14] B. Sheng, F. Xiao, et al., Deep Spatial–Temporal Model Based Cross-Scene Action
Recognition Using Commodity WiFi, IEEE Internet Things J. (2020).

[15] Y. Gu, X. Zhang, et al., WiGRUNT: WiFi-Enabled Gesture Recognition Using
Dual-Attention Network, IEEE Trans. Hum.- Mach. Syst. (2022).

[16] K. He, X. Zhang, et al., Deep Residual Learning for Image Recognition, in: IEEE
Conference on Computer Vision and Pattern Recognition (IEEE CVPR), 2016.

[17] G. Menghani, Efficient Deep Learning: A Survey on Making Deep Learning Models
Smaller, Faster, and Better, ACM Comput. Surv. 55 (12) (2023) 1–37.

[18] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding, 2015, arXiv
preprint.

[19] W. Roth, G. Schindler, B. Klein, R. Peharz, S. Tschiatschek, H. Fröning, F.
Pernkopf, Z. Ghahramani, Resource-efficient Neural Networks for Embedded
Systems, J. Mach. Learn. Res. 25 (50) (2024) 1–51.

[20] Y. Nimmagadda, Model Optimization Techniques for Edge Devices, in: Model Op-
timization Methods for Efficient and Edge AI: Federated Learning Architectures,
Frameworks and Applications, Wiley Online Library, 2025, pp. 57–85.

[21] A. Chakraborty, Sensing and Networked Systems Engineering (SeNSE) Group, IIT
Madras, WISDOM Dataset and Models, URL https://sense.cse.iitm.ac.in/wisdom/.

[22] D. Halperin, W. Hu, et al., Tool release: Gathering 802.11n traces with Channel
State Information, ACM SIGCOMM Comput. Commun. Rev. (2011).

[23] Y. Xie, Z. Li, et al., Precise Power Delay Profiling with Commodity WiFi, in:
ACM International Conference on Mobile Computing and Networking (ACM
MobiCom), 2015.

[24] X. Jiao, W. Liu, et al., openwifi: A Free and Open-source IEEE 802. 11 SDR imple-
mentation on SoC, in: IEEE Vehicular Technology Conference, VTC2020-Spring,
2020.

[25] Z. Jiang, T.H. Luan, et al., Eliminating the Barriers: Demystifying WiFi Baseband
Design and Introducing the PicoScenes WiFi Sensing Platform, IEEE Internet
Things J. (2022).

[26] F. Gringoli, M. Schulz, et al., Free Your CSI: A Channel State Information
Extraction Platform For Modern WiFi Chipsets, in: International Workshop on
Wireless Network Testbeds, Experimental Evaluation & Characterization, 2019.

[27] M. Zhu, S. Gupta, To prune, or not to prune: exploring the efficacy of pruning
for model compression, 2017, arXiv preprint.

[28] B. Jacob, S. Kligys, et al., Quantization and Training of Neural Networks for
Efficient Integer-arithmetic-only Inference, in: IEEE Conference on Computer
Vision and Pattern Recognition (IEEE CVPR), 2018.

[29] C. Xiao, Y. Lei, et al., DeepSeg: Deep-Learning-Based Activity Segmentation
Framework for Activity Recognition Using WiFi, IEEE Internet Things J. (2021).

[30] Z. Chen, L. Zhang, et al., WiFi CSI Based Passive Human Activity Recognition
Using Attention Based BLSTM, IEEE Trans. Mob. Comput. (2019).

[31] H. Zou, Y. Zhou, et al., DeepSense: Device-Free Human Activity Recognition via
Autoencoder Long-Term Recurrent Convolutional Network, in: IEEE International
Conference on Communications, IEEE ICC, 2018.

[32] F. Wang, W. Gong, et al., On Spatial Diversity in Wi-Fi based Human Activity
Recognition: A Deep Learning-Based Approach, IEEE Internet Things J. (2019).

[33] C. Li, M. Liu, et al., WiHF: Enable User Identified Gesture Recognition with WiFi,
in: IEEE Conference on Computer Communications, IEEE ICC, 2020.

[34] X. Zhang, C. Tang, et al., WiFi-Based Cross-Domain Gesture Recognition via
Modified Prototypical Networks, IEEE Internet Things J. (2022).

[35] S.M. Hernandez, E. Bulut, WiFi Sensing on the Edge: Signal Processing Tech-
niques and Challenges for Real-World Systems, IEEE Commun. Surv. Tutorials
(2022).

[36] J. Yang, X. Chen, et al., EfficientFi: Toward Large-scale Lightweight WiFi Sensing
via CSI Compression, IEEE Internet Things J. (2022).

[37] S.M. Hernandez, E. Bulut, Lightweight and Standalone IoT Based WiFi Sensing
for Active Repositioning and Mobility, in: International Symposium on ‘‘A World
of Wireless, Mobile and Multimedia Networks’’, WoWMoM, 2020.

[38] S.S. Saha, S.S. Sandha, et al., Machine Learning for Microcontroller-class
Hardware – A Review, IEEE Sens. J. (2022).

[39] G. Menghani, Efficient deep learning: A survey on making deep learning models
smaller, faster, and better, ACM Comput. Surv. (2023).

[40] H. Cai, C. Gan, et al., TinyTL: Reduce memory, not parameters for efficient
on-device learning, in: Advances in Neural Information Processing Systems,
2020.

[41] M. Abadi, A. Agarwal, et al., TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015, URL https://www.tensorflow.org/.

[42] R. David, J. Duke, et al., TensorFlow Lite Micro: Embedded Machine Learning
on TinyML Systems, 2020, arXiv preprint.

https://sense.cse.iitm.ac.in/wisdom/
https://sense.cse.iitm.ac.in/wisdom/
https://sense.cse.iitm.ac.in/wisdom/
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb1
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb1
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb1
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb1
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb1
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb2
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb2
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb2
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb3
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb4
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb4
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb4
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb5
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb5
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb5
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb5
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb5
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb6
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb6
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb6
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb6
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb6
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb6
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb6
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb7
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb7
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb7
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb7
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb7
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb8
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb8
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb8
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb9
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb9
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb9
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb9
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb9
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb10
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb10
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb10
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb12
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb12
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb12
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb12
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb12
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb13
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb13
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb13
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb13
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb13
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb14
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb14
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb14
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb15
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb15
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb15
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb16
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb16
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb16
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb17
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb17
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb17
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb18
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb18
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb18
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb18
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb18
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb19
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb19
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb19
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb19
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb19
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb20
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb20
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb20
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb20
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb20
https://sense.cse.iitm.ac.in/wisdom/
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb22
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb22
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb22
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb23
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb23
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb23
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb23
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb23
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb24
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb24
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb24
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb24
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb24
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb25
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb25
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb25
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb25
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb25
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb26
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb26
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb26
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb26
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb26
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb27
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb27
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb27
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb28
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb28
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb28
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb28
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb28
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb29
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb29
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb29
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb30
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb30
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb30
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb31
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb31
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb31
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb31
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb31
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb32
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb32
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb32
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb33
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb33
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb33
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb34
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb34
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb34
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb35
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb35
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb35
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb35
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb35
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb36
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb36
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb36
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb37
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb37
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb37
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb37
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb37
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb38
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb38
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb38
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb39
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb39
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb39
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb40
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb40
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb40
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb40
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb40
https://www.tensorflow.org/
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb42
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb42
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb42

M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915
[43] S. Gayen, Y. Shankar, A. Chakraborty, Improving Network Resource Utilization
for Distributed Wireless Sensing Applications, in: Proceedings of the Twenty-
Fifth International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing (ACM MobiHoc), 2024, pp.
452–457.

[44] N. Semiconductor, Power Profiler Kit II, URL https://www.nordicsemi.com/
Products/Development-hardware/Power-Profiler-Kit-2.

[45] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. (1997).
14
[46] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift, in: International Conference on Machine
Learning, 2015.

[47] G.E. Hinton, N. Srivastava, et al., Improving Neural Networks by Preventing
Co-adaptation of Feature Detectors, 2012, arXiv preprint.

[48] G. Strang, Linear algebra and its applications, 2006.
[49] Y. Matsubara, M. Levorato, et al., Split computing and early exiting for deep

learning applications: Survey and research challenges, ACM Comput. Surv.
(2022).

http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb43
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb45
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb46
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb46
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb46
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb46
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb46
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb47
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb47
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb47
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb48
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb49
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb49
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb49
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb49
http://refhub.elsevier.com/S1570-8705(25)00163-5/sb49

	WISDOM: A framework for scaling on-device Wi-Fi sensing solutions
	Introduction
	Deploying Wireless Sensing Models: Local vs. Edge-based Inference

	Wi-Fi Sensing Primer and Related Works
	Wi-Fi Sensing and the CSI metric
	IoT-izing Models - Compression of Neural Networks for Edge or Local Inference
	Existing Research Gaps in Related Literature

	Wireless Sensing Testbed
	Measurement Setup
	Target Application and Models
	Relative Performance Benchmarks

	Compression Benchmarks
	Data Compression or Model Compression?
	Effects of Model Compression
	Insights from Empirical Results

	WISDOM Framework
	The Utility Metric
	Representative Scenarios
	Model Selection using Decision Trees
	Comparison with baseline models

	Discussion and Insights
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

