
Ad Hoc Networks 178 (2025) 103915 

A
1

 

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc  

WISDOM: A framework for scaling on-device Wi-Fi sensing solutionsI

Manoj Kumar Lenka , Ayon Chakraborty ∗

Sensing and Networks Systems Engineering (SeNSE) Lab, Department of CSE, IIT Madras, Chennai 600036, India

A R T I C L E  I N F O

Keywords:
Wireless sensing
Wi-Fi
IoT
On-device inferencing
Model compression
TinyML
Utility maximization

 A B S T R A C T

Recent innovations in Wi-Fi sensing capitalizes on a host of powerful deep neural network architectures that 
make inferences based on minute spatio-temporal dynamics in the wireless channel. Many of such inference 
techniques being resource intensive, conventional wisdom recommends offloading them to the network Edge 
for further processing. In this paper, we argue that edge based sensing is often not a viable option for many 
applications (due to cost, bandwidth, latency etc.). Rather, we explore the paradigm of on-device Wi-Fi sensing 
where inference is carried out locally on resource constrained IoT platforms. We present extensive benchmark 
results characterizing the resource consumption (memory, energy) and the performance (accuracy, inference 
rate) of some typical sensing tasks. We propose WISDOM, a framework that, depending on capabilities of the 
hardware platform and application’s requirements, can compress the inference model. Such context aware 
compression aims to improve the overall utility of the system — maximal inference performance at minimal 
resource costs. We demonstrate that models obtained using the WISDOM framework achieve higher utility 
compared to baseline models that are just quantized for 83% of the cases. While for non-compressed models 
it has higher utility 99% of the time.
1. Introduction

Wi-Fi sensing has gained significant traction from the research 
community due to its versatility and ability to leverage existing wireless 
infrastructure itself as a sensing modality. In fact, the recent IEEE 
802.11bf [1–3] amendment (2024) outlines sensing specific proce-
dures and protocols in a WLAN setting, advocating for large scale 
adoption, standardization and interoperability among Wi-Fi devices 
doubling as ‘wireless sensors’. This opens up new opportunities for IoT 
platforms to perform large scale wireless sensing, specifically leverag-
ing Wi-Fi networks. Recent literature in this area have majorly focused 
on designing sophisticated inferencing models (e.g., utilizing deep neu-
ral networks) [4–7] to make Wi-Fi sensing robust and accurate, across 
a variety of application scenarios ranging from human sensing, activity 
recognition to healthcare monitoring. While such efforts have lead 
to several pioneering contributions disrupting the Wi-Fi sensing land-
scape, a prominent research gap exists in realizing the systemic bottlenecks 
involved in translating such solutions to an IoT based ecosystem. In this 
paper, we highlight the key challenges associated with Wi-Fi sensing 
on resource constrained IoT devices and perform extensive benchmark 
experiments to understand the various system bottlenecks [8].

In a nutshell, Wi-Fi sensing leverages the multipath characteristics 
of the underlying wireless channel as a sensing metric. The Channel 
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State Information (CSI) estimated on a Wi-Fi receiver captures such 
multipath effects and provides a reasonable signature to learn specific 
dynamics of a physical environment (more on this later). In this paper, 
we consider a generic Wi-Fi network setting, where a number of 
IoT devices act as receivers and have access to their individual CSI 
estimates. Such CSI data is typically used to pre-train sensing models 
relevant to specific applications of interest [1,4] as well for inference 
tasks. These tasks are often resource intensive and the conventional folk 
wisdom conveniently recommends offloading them off the device — 
for instance, to the network edge [8–10]. A detailed background on 
wireless sensing is presented in Section 2.

1.1. Deploying wireless sensing models: Local vs. edge-based inference

As wireless sensing applications evolve to tackle increasingly com-
plex tasks – such as human activity recognition, gesture detection, 
or environmental monitoring – they often rely on computationally 
intensive inference models, including transformer architectures and 
attention-based networks. These models offer higher accuracy and 
richer semantic interpretation but come with substantial memory and 
processing requirements that exceed the capabilities of typical IoT 
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devices. Consequently, local deployment of such models becomes in-
feasible, shifting the computational burden to more capable edge or 
cloud platforms. In the following sections, we examine both deploy-
ment alternatives and argue that while edge-based inference has its 
own merits, local on-device processing often emerges as a practi-
cal and context-aware solution for a wide range of wireless sensing 
applications.
■ Edge-Based Inference.  Inference on edge-based platforms offers 
significant advantages in many contexts. It enables the use of more 
sophisticated models than those feasible on-device, while avoiding 
the high latencies and privacy risks associated with cloud offloading. 
Edge platforms also support rapid model updates and coordination 
across multiple devices, which are valuable for large-scale deploy-
ments. In well-connected environments with sufficient bandwidth and 
power resources-such as smart buildings or factory floors — edge 
inference can strike an effective balance between computational ca-
pability and responsiveness. Although suitable for certain contexts, 
we argue that edge-based inferencing is often not a viable option 
for many real-world wireless sensing applications, particularly those 
requiring low-latency, reliable decision-making in dynamic or resource-
constrained environments. We highlight two representative scenarios 
where such limitations become especially evident.

First, consider an unmanned aerial vehicle (UAV) tasked with 
sensing-driven exploration, such as structural inspection or search-
and-rescue operations [11]. These missions often occur in remote 
or infrastructure-poor environments—deep indoors, hilly terrains, or 
disaster-struck zones, where network connectivity is intermittent or 
unavailable. In such cases, continuous streaming of CSI or other sensory 
data to a remote edge server is infeasible. Even when a connection is 
available, the latency introduced by round-trip transmission to the edge 
can undermine real-time responsiveness, especially for control-loop 
tasks like obstacle avoidance or path replanning. Relying on edge infer-
ence in such scenarios jeopardizes the mission success and compromises 
autonomy. As a second example, in intelligent transportation systems, 
edge-based inferencing may not meet the latency demands of safety-
critical applications. For example, drowsiness detection or real-time 
distraction monitoring in driver-assist systems must trigger alerts or 
control overrides within milliseconds to prevent accidents [12]. Rout-
ing such inference through the edge introduces unpredictable delays, 
and a missed inference window could lead to catastrophic outcomes. 
Here, even a marginal increase in accuracy afforded by larger models at 
the edge cannot justify the risk introduced by delayed decision-making. 
Overall, the following concerns challenge the practicality of edge-based 
sensing:

• Network usage. Streaming sensory data off-device consumes 
significant bandwidth and stresses shared wireless networks. In 
our testbed, with just five IoT nodes streaming CSI data at ap-
proximately 120 samples/s per node, we observe a 2× increase in 
average ping latency and a 1.5–2× reduction in average through-
put across the network (see Fig.  1(c)). This impact becomes 
more pronounced with dense deployments or shared network 
infrastructure, where Quality of Experience (QoE) of network 
applications are impacted.

• Inference latency. The round-trip time incurred by transmitting 
data to the edge and awaiting inference results adds non-trivial 
delay, which is detrimental for time-sensitive applications such 
as emergency braking, fall detection, or intrusion response. These 
delays may range from 50–150 ms under ideal conditions, which 
can be unacceptable depending on the sensing task.

• Operational expenditures (OpEx). Continuous use of commer-
cial edge computing services incurs both energy and monetary 
costs. Surveying five globally prominent edge platforms, we find 
that running continuous inference workloads — such as human 
activity recognition from CSI streams — can cost upwards of 
$50–$60 per month per node, assuming minimal pricing tiers. 
These recurring costs scale poorly for large sensor deployments 
and diminish the cost–benefit appeal of edge solutions.
2 
Finally, other factors including privacy implications of the sensory 
data or availability of the last-mile link itself, particularly in pervasive 
environments are critical in deciding off-device deployments.
■ Local or On-device Inference. Fig.  1(a) presents a diverse set of 
twenty commercially available, microcontroller-based (MCU) platforms 
that are representative of the compute and memory capabilities of 
commercial-off-the-shelf (COTS) IoT devices deployed in real-world 
settings. While edge or cloud-based inference offers scalability and 
model flexibility, it comes with network, latency, and operational cost 
trade-offs, as discussed earlier. In contrast, on-device inference enables 
immediate decision-making, preserves privacy, and eliminates network 
dependency. However, this approach is far from trivial due to inherent 
hardware constraints.

Recent research in Wi-Fi-based wireless sensing has proposed a 
variety of deep neural network architectures for tasks such as activity 
recognition, gesture classification, and occupancy estimation [13–15]. 
These models are typically evaluated under assumptions of abundant 
compute and memory resources. However, when attempting to deploy 
them directly on resource-constrained MCUs, a clear gap emerges. 
There is no one-size-fits-all solution for on-device inference in such 
settings. To illustrate this, we trained a state-of-the-art convolutional 
neural network (CNN) model [16] on CSI data for human activity 
classification and observed robust performance in simulation (accuracy 
≥95%). Yet, deployment trials on our device set revealed that 75% (15 
out of 20) of these platforms failed to even host the model due to insuf-
ficient memory — both in terms of runtime RAM and available flash for 
storing weights. This is unsurprising given that many of these devices 
are powered by 8-bit or 16-bit MCUs operating at clock frequencies in 
the tens of MHz range. Such platforms are fundamentally limited in 
their ability to support high-throughput inference or store models with 
millions of parameters, especially when represented in double-precision 
floating-point format. These limitations are exacerbated when trying to 
achieve real-time or near-real-time inference.

Is vanilla model compression sufficient? To mitigate these constraints, 
model compression techniques — such as quantization, pruning, and 
weight clustering — have been proposed in literature [17,18]. We 
experimented with forced compression of our baseline model to en-
able deployment on constrained platforms. As shown in Fig.  1(b), 
moderately compressed models could be deployed on approximately 
50%–75% of the devices. However, this came at a significant cost to 
classification accuracy, often degrading performance by 10–20 percent-
age points. Beyond model size and inference latency, energy consump-
tion remains a critical factor. IoT devices are typically battery-powered, 
and even a few additional millijoules per inference can impact device 
lifetime in always-on sensing scenarios. Further, the achievable infer-
ence rate – i.e., how frequently the device can process incoming CSI 
streams without stalling or missing data – is tightly coupled with both 
the model complexity and the microcontroller’s processing budget [17,
19,20].

Summarizing the above arguments, if wireless data communication 
and sensing need to co-exist, improving sensing at the cost of commu-
nication is clearly not a proposition that scales well. For instance, the
wireless sensory data footprint takes a toll on the network performance, 
degrading QoS/QoE. Similarly, deploying models for on-device infer-
encing tasks needs tailor made solutions that do not scale well, often 
affecting applications running locally. We present extensive benchmark 
results to showcase the performance of three popular neural network 
architectures (commonly used in wireless sensing) and how specific 
parameterization or compression of the models impact the overall 
system performance. Namely, we look at architectures based on Con-
volutional Neural Network (CNN), Recurrent Neural Network (RNN) 
and Fully Connected Network (FCN) and explore various compression 
strategies including quantization, pruning, clustering or their specific 
combinations. We highlight how specific strategies for compression 
impact various key performance metrics including inferencing accu-
racy, inferencing rate, energy consumption per inference and memory 
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Fig. 1. Fig.  1(a) shows how increase in resources i.e., compute and memory leads to increase in energy consumption. Fig.  1(b) shows a specific sensing model tested on a 
collection of 20 test devices (shown in Fig.  1(a)). Only 25% of the test devices are able to host the original model. Although model compression improves the deployability or 
coverage, the model’s accuracy takes a drastic hit, from 95% in the original model to ≈50% in the highly compressed version. Fig.  1(c) shows the decrease in download throughput 
and increase in ping latency as we increase the number of devices that are sending CSI data to access point. The percentage decrease/increase is w.r.t to the scenario when no 
devices are sending CSI data.
usage. We propose WISDOM, a framework that can cater to specific 
requirements/constraints of a deployment and finetune sensing mod-
els accordingly. WISDOM internally implements a decision tree based 
structure that recommends best effort compression strategies to meet 
such constraints. Our framework recommended models outperform 
vanilla compression strategies like weight quantization (often a de 
facto choice) in 85%–95% of the cases. We make the following key 
contributions:

• System Deployment Perspective. We present one of the first 
comprehensive studies that approach Wi-Fi sensing from a system 
deployment perspective. Rather than optimizing solely for classifi-
cation accuracy using large-scale, over-parameterized models, we 
focus on deployability — identifying models that can operate on 
resource-constrained hardware while still achieving reasonably 
high accuracy (e.g., ≥95%) for real-world tasks such as activity 
recognition and occupancy estimation.

• Dataset Contribution and Reproducibility. We conduct exten-
sive benchmarking across 20 commercially available IoT plat-
forms, encompassing a range of microcontroller architectures and 
memory footprints. We observe that most wireless sensing models 
proposed in recent literature are infeasible to be deployed without 
modification, due to memory or execution-time constraints. Even 
after applying compression techniques, we observe a trade-off in 
model accuracy, highlighting the lack of a one-size-fits-all solution
for heterogeneous deployment context. All our datasets, traces, 
scripts and models are open-sourced at https://sense.cse.iitm.ac.
in/wisdom/ [21].

• Optimal Inference Model Selection. We design and implement 
an automated model optimization framework, WISDOM, that as-
sists practitioners in selecting and customizing inference models 
based on user-defined constraints such as maximum model size, 
inference latency, or minimum accuracy targets. Given a set of 
deployment requirements, WISDOM returns a compressed and 
quantized model tailored to the target platform, achieving up 
to 20%–25% reduction in model size and 70%–80% reduction 
in inference latency, with bounded degradation in performance 
(accuracy degradation is ≤5%).

2. Wi-Fi sensing primer and related works

In the following we provide some preliminary background on the 
wireless sensory data, i.e., the above mentioned CSI metric. Second, 
we introduce state-of-the-art compression techniques that we use to 
optimize our inferencing models used for sensing. Third, we showcase 
the state-of-the-art literature on Wi-Fi sensing and demonstrate the 
research gaps that motivate our current direction of work.
3 
2.1. Wi-Fi sensing and the CSI metric

Wi-Fi sensing leverages from the phenomenon of multipath reflec-
tions within the wireless channel. When a modulated RF signal is 
transmitted, it not only reaches the receiver device along a direct or 
shortest path, but also gets reflected and scattered around by reflectors 
present in the environment before finally reaching the receiver at 
delayed intervals. Such delays in the time domain typically introduce 
distortions that can be perceived in the corresponding frequency re-
sponse. To improve communication efficiency, these distortions need 
to be estimated and corrected - a process known as channel equaliza-
tion which is fundamental to a wireless receiver. For instance, Wi-Fi 
receivers estimate the Channel State Information (CSI) that represents 
the signal attenuation at the granularity of individual OFDM subcarrier 
frequencies present within its modulation bandwidth (e.g., 52 or 108 
subcarriers for 20MHz or 40MHz bandwidths). While CSI helps a 
wireless device to adapt and modulate its communication parame-
ters based on dynamic channel conditions, it also provides signatures 
capturing characteristics of the ambient environment or the dynamics 
of reflectors in its vicinity. The CSI is estimated from the preamble 
symbols each time the receiver receives a new data packet. Note that, 
such information is environmentally superimposed on the signal itself and 
is not affected by the actual data bits being communicated.
CSI Toolkits. Today, a host of hardware–software solutions make CSI 
available from Wi-Fi chipsets. One of the foremost solutions was based 
on the Intel-5300 chipset and the Linux 802.11n CSI toolkit [22]. This 
was followed by toolkits for the Qualcomm Atheros chipsets [23]. 
Solutions based on software defined radio continued to be developed 
that led to extensive frameworks like OpenWiFi [24] or Picoscenes [25]. 
Note that majority of the research on Wi-Fi sensing in the past decade 
was based on one of such tools that mandated heavy compute ma-
chinery to capture or process such data. Recently, the community have 
explored portable options like the Nexmon toolkit [26] that can extract 
CSI from some Broadcom chipsets (Raspberry Pi, Google Nexus smart-
phones). The Esp-8266 Wi-Fi chipset from Espressif Systems provide 
direct register access to read CSI through its platform native APIs. Such 
recent developments have made it possible to experiment with CSI data 
available from low cost, microcontroller based systems resembling IoT 
devices.
Sensing with CSI Spectrograms. CSI captures the instantaneous state of 
the channel (coherence time), however, often the phenomena we want 
to sense span a duration of time that is several orders of magnitude 
more than the coherence time. Naturally, instead of analyzing such CSI 
vectors individually, a common practice is to look at an aggregation of 
such vectors obtained within a specific time window (e.g., 1 s). Such 
time ordered and aggregated vectors represent a CSI spectrogram (see 
Fig.  4).

https://sense.cse.iitm.ac.in/wisdom/
https://sense.cse.iitm.ac.in/wisdom/
https://sense.cse.iitm.ac.in/wisdom/
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Fig. 2. Schematic of various model compression techniques. For weight clustering, only two clusters (colored red and blue) are used. The solid lines (top row) denote non-quantized 
weights while the dashed lines (bottom row) denote quantized weights.
2.2. IoT-izing models - compression of neural networks for edge or local 
inference

CSI spectrograms are typically used to train neural network models 
for various inferencing tasks. A key observation from the above line 
of works is that a majority of them have a single dimensional focus 
on improving the (classification) accuracy that result in heavy, over-
parameterized models. In the following, we mention the state-of-the-art 
strategies [17,19,20] for compressing such models (see Fig.  2).
Pruning. [27] Pruning is a technique used to reduce the size and com-
putational complexity of a neural network by identifying and removing 
irrelevant or low-magnitude weights, thus inducing sparsity in the 
model.
Weight Clustering [18]. Weight clustering involves grouping similar 
weights together into clusters and then representing all the weights in a 
cluster with a single centroid value. This reduces the number of unique 
weight values in a layer to a maximum of 𝐶, where 𝐶 is the number of 
clusters. The centroids can be learned through various methods, such 
as K-means clustering. Note that both Pruning and Weight Clustering 
can be simultaneously applied to a network architecture.
Weight Quantization [28]. Quantization reduces the precision of the 
weights, for instance from single precision (4 byte float) to a single 
byte. This is achieved by creating a mapping between the real valued 
weights (𝑟) and the quantized weight values (𝑞). The discretization is 
done at a desired scale (𝑆) with an origin or zero-point at 𝑍. The 
mapping can be expressed as 𝑟 = 𝑆(𝑞 −𝑍).

Note that quantization can occur (a) post training, i.e., the model 
is trained using floating point weights and the trained weights are 
henceforth quantized, or, (b) the training can itself be quantization 
aware, i.e., quantized weights are introduced during forward propaga-
tion and is used to calculate the loss. Although for back propagation, 
floating point weights are used as usual. This keeps the function (neural 
network) continuous and allows us to calculate gradients for updat-
ing the weights. Model compression leads to several key advantages, 
including reducing the memory footprint of the model, speeding up 
inference time, and potentially improving the model’s generalization 
ability. However, it is essential to strike a balance between choosing 
the right hyperparameters (e.g., pruning sparsity or number of clusters 
or the level of quantization etc.) and maintaining model performance.

2.3. Existing research gaps in related literature

As mentioned earlier, a host of existing literature on Wi-Fi sensing 
exclusively focus on building better deep learning models for the infer-
encing tasks. Some of the recent examples include El [7], DeepMV [13], 
4 
DeepSeg [29], BiLSTM [14,30], DeepSense [31], Wisdar [32] for HAR; 
Widar 3.0 [5], WiHF [33], WiGRUNT [15], WiGR [34] for gesture 
recognition, and WiCount [6] for people counting. However, the above 
works prioritizes solely on the model’s classification accuracy. Second, 
such works present results primarily from trace-based analysis and not 
much insights regarding the deployment of the proposed solutions in 
the upcoming IoT landscape are highlighted. Third, many such works 
use the CSI data of highest fidelity. For instance, SDR based toolkits 
(e.g., Picoscenes) or wireless NIC driver patches for Intel-5300 can 
provide CSI data even at 1000 samples/s, one order of magnitude more 
than what IoT class devices (e.g., ≤100) can barely support. Such high 
data rates are favorable for implementing efficient noise filter algo-
rithms. Also, estimating Doppler shifts on CSI data becomes relatively 
straightforward in such cases. Our goal is primarily to cope with low 
fidelity CSI data being processed on barely provisioned devices.
Systems Considerations. With the growing interest in IoT based wireless 
sensing, some recent works [35,36] have indeed highlighted the ne-
cessity of on-device sensing both from a computation as well from a 
security/privacy viewpoint. Some initial works on model compression 
are reported in the work by Hernandez [35,37] focuses on only model 
quantization aspects. EfficientFi [36] demonstrates an actual system 
deployment for Wi-Fi sensing but restricted to the edge/cloud sensing 
paradigms.
Embedded Machine Learning. We resort to some recent works and plat-
forms that enable performing neural network compute on embedded 
devices. A lot of efforts went in creating frameworks (e.g., TinyML) 
that implement ML stacks for resource constrained devices [18,27,28,
38–40], particularly introducing techniques for model compression. 
Frameworks like Google’s TensorFlow (TF) [41] along with tools like
TFLite or TFLite-Micro [42] provides hooks to make models optimized 
and lightweight for various target microcontroller architectures [19,
20]. Motivated by the existing research gap and equipped with the 
recent advances in embedded ML/DL frameworks, we move forward 
to investigate on-device inferencing for Wi-Fi sensing tasks.
Data Compression. Recent works have recognized the complexity associ-
ated with processing wireless sensing data and have proposed methods 
to compress such data — such as CSI spectrograms — prior to offload-
ing it to Edge computing services [9,10,43]. While these techniques aim 
to reduce network transmission loads, many introduce their own signif-
icant computational overheads, making real-time application challeng-
ing on resource-constrained IoT devices. For instance, approaches based 
on AutoEncoder-driven compression [9,36] require non-trivial compute 
and memory resources, which are often unavailable on low-power 
embedded platforms. Simpler strategies such as spectrogram quanti-
zation are more feasible, however, deep neural compression, despite 
its effectiveness in minimizing data size, remains largely impractical 
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Table 1
Comparison of existing Wi-Fi sensing works highlighting system-level considerations.
Work Model complexity Compression Power analysis Deployment Scalability
 (High/Low) (Data/Model) (Yes/No) (Yes/No) (Yes/No)
El [7] High None No No No
Deepsense [31] High None No No No
Wisdar [32] High None No No No
Widar 3.0 [5] High None No No No
WiHF [33] High None No No No
WiGRUNT [15] High None No No No
WiGR [34] High None No No No
WiCount [6] Medium None No No No
CFNet [10] Medium Data (CSI) No No No
RScNet [9] Medium Data (CSI) No No No
CSI compression [43] High Data (CSI) Yes Yes No
EfficientFi [36] Medium Data (CSI) No Yes Yes
Edge sensing [35] Medium Model No Yes Yes
WiSDOM (Ours) Lowa Data + Model Yes Yes Yes

a WISDOM chooses the model with the least complexity while preserving sensing accuracy and respecting available 
hardware resources.
at the IoT scale (see, Section 4.1). In fact, the computational cost of 
applying deep compression on-device can, in some cases, approach 
that of running the full inference model locally—undermining the very 
purpose of offloading to the edge. 

Overall, the existing body of work on Wi-Fi sensing predominantly 
focuses on maximizing inference accuracy through complex neural 
network models, often evaluated using ideal, high-fidelity CSI data 
collected with specialized hardware. Such studies, however, offer lim-
ited insights into the practical feasibility of deploying these solutions 
on constrained IoT devices in realistic scenarios. Additionally, prior 
work on embedded machine learning has demonstrated the potential 
for model compression and optimization, yet a systematic evaluation 
and deployment-focused analysis specifically targeting Wi-Fi sensing 
tasks remains largely unexplored. Table  1 summarizes a range of recent 
representative works. The top (blue-shaded) block lists efforts that 
primarily focus on improving sensing accuracy, while offering little to 
no consideration of practical deployment challenges such as device-level 
resource constraints, power consumption for battery-operated nodes, or 
overall system scalability. In contrast, the lower (green-shaded) block 
highlights more recent studies that begin to acknowledge systems-level 
bottlenecks in real-time wireless sensing deployments.  [35] does not 
look into power consumption and uses a fixed sensing model. Our 
primary contribution goes beyond recognizing resource limitations: We 
actively optimize the sensing models themselves based on the hardware and 
energy constraints of the target IoT platforms.

3. Wireless sensing testbed

To perform system benchmark experiments we create an exten-
sive measurement setup that enables us to estimate various system 
parameters related to the inferencing tasks.

3.1. Measurement setup

Device Choice. A few key factors modulate our choice for the test device. 
As shown in Fig.  1, we performed preliminary experiments on a host of 
twenty test devices. While single board computers like Raspberry Pi or 
Beagle Boards (various models) prove to be overprovisioned in some 
cases, 8-bit microcontrollers (e.g., Atmega328P used in some Arduino 
devices) have insufficient resources to demonstrate any interesting cost-
performance tradeoff. For the various micro-benchmarks, we choose
Esp32-C3-Mini that features a 160MHz single core RISC-V processor 
with a 400KB main memory (RAM) and a 4MB onchip flash memory. 
This device allows us a sweetspot to experiment with various cost-
performance configurations and make observations representative of 
IoT class devices. Most importantly, Esp-32 has an integrated Wi-Fi chip 
that exports CSI making it convenient to build a complete on-device 
sensing application.
5 
Energy Measurement. Instead of reporting raw power consumption dur-
ing inferencing, we advocate reporting the total energy consumption 
per inference. This helps us make a fair comparison across various 
models and compression techniques. We use a Nordic Semiconductor 
Power Profiler Kit II (Ppk2) [44] for such measurements. The Ppk2
supplies a constant voltage of 5 V to the device, and measures the 
current drawn in milliamperes scale with a nanoampere precision. For 
relative comparison across inferencing models 𝑀𝐴 and 𝑀𝐵 , we take the 
ratio, 𝑅𝐴𝐵 =

𝑖2𝐴𝑇𝐴
𝑖2𝐵𝑇𝐵

, where 𝑖𝐴, 𝑖𝐵 are the current draws and 𝑇𝐴, 𝑇𝐵 are the 
inferencing times for the respective models. We use energy consumed 
per inference as one of our benchmark metrics.
Memory Usage. Memory availability is restrictive in low end microcon-
troller devices that directly modulates the size of the inferencing model 
that can be possibly hosted. The device flash (typically, few MBs) is 
a non-volatile memory that holds such models as well as application 
programs. The RAM (typically, few hundred KBs) holds the runtime 
parameters such as inputs, outputs and the values of the intermediate 
layers. Esp-32 used for benchmarking has 4MB worth of flash and 
≈250KB worth of RAM remaining for running the application.
On-Device Deployment. We attempt to create various optimized versions 
of a given inferencing model by applying the respective compression 
techniques or their combination as discussed earlier. In order to deploy 
such models on a microcontroller based device (Esp-32), we use the 
Tensorflow [41] Model Optimization Toolkit, TFLite-Miro [42] that 
provides necessary hooks to achieve the same. Additionally, TFLite-
Miro helps to preserve sparsity of the model as well as weight clusters 
when performing quantization aware training. It also preserves sparsity 
when performing weight clustering.

3.2. Target application and models

Dataset. We build an extensive dataset to test the performance of our 
models. The target wireless sensing application we choose is Human 
Activity Recognition (HAR), where the literature have effectively demon-
strated its feasibility with a high degree of accuracy. The number of 
activities considered in HAR varies across works – roughly 4–6. For 
our dataset, we consider six activity classes – two static: standing and 
sitting, three dynamic: sitting up/down, jumping, walking, and a class 
indicating human absence. To make the dataset robust, we collect data 
at four different locations – two indoors and two outdoors – using 
five different human volunteers. For each location, every volunteer 
performs five different activities (sixth indicates human absence) for 
a period of 30 s while the CSI was simultaneously recorded, roughly 
at 90–100 samples/s. The experiments were repeated ten times, at 
different times of the day to reduce any bias whatsoever. Overall, 
we record a rich dataset of ≈300K CSI samples spanning all the six 
classes, more or less uniformly. Each CSI sample contains 52 complex 
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Fig. 3. The Ppk2-based measurement setup shows a couple of sample current draw profiles for two different inference models. Note the difference in inference times.
Fig. 4. Sample CSI spectrograms for the six activity classes in our dataset. Each spectrogram is a 100 × 48 dimensional real valued matrix.
IQ components (inphase-byte and quadrature-byte) along the 52 OFDM 
subcarriers at 20MHz bandwidth. Out of 52, we only consider 48 data 
subcarriers leaving out the four pilot subcarriers. Our CSI spectrograms 
consist of 100 CSI samples, i.e., each spectrogram has a dimension of 
100 × 48 amplitude values (norm of the complex IQ component).
Neural Network Architectures. Existing literature on Wi-Fi sensing based 
HAR majorly looks at variations of three different architectures - Con-
volutional Neural Networks (CNN), Recurrent Neural Networks (RNN) 
and Fully Convolutional Networks (FCN). For each such architecture, 
we create nine models with increasing number of parameters starting 
from 250 for the simplest base model. The other eight versions have 
1500, 3𝐾, 6𝐾, 12𝐾, 24𝐾, 50𝐾, 90𝐾 and 180𝐾 parameters. Each model 
takes the 100 × 48 dimensional CSI spectrogram as input and predicts 
one of the six HAR classes.

For the CNN, we use a ResNet-like [16] structure where the number 
of residual blocks are increased to capture higher number of parame-
ters. For FCN, we simply increase the number of layers in the network, 
as well as the number of neurons in each layer. We use a specific variant 
of RNN called Long Short Term Memory (LSTM) [45], that helps in 
preserving long distance relationship within the samples. To increase 
the number of parameters we increase size of the weight matrix for 
the different gates in an LSTM cell, later we also stack multiple LSTM 
cells on top of each other, which further increases the number of 
parameters. To avoid over-fitting, we use standard techniques like 
batch normalization [46] and drop-out [47] at each layer.

3.3. Relative performance benchmarks

Before we delve deeper into model compression and how perfor-
mance is impacted by such strategies in the next section, here we 
showcase some macro performance results and discuss their implica-
tions. Fig.  5 demonstrates a comparison among the RNN, CNN and the 
FCN derived models for all their parameterized versions. We focus on 
four key performance indicators — the accuracy obtained by the model, 
energy consumed to do a single inference computation, inferencing rate 
and the amount of runtime memory (RAM) consumed when the model 
actively runs the inferencing tasks. For CNN as well as RNN, their 
accuracy saturates to about 95%, beyond 12𝐾 parameters. FCN can 
only yield 80% accuracy even with judicious over-parameterization. 
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However, CNNs are at least two orders of magnitude slower than their 
FCN counterparts. For instance, in Fig.  5  (lower left) for the model 
with 12𝐾 parameters, FCN has an inferencing rate of ≈150, i.e., about 
7 ms per prediction while a CNN takes close to a second. Being on 
the slower side, the energy consumed per inference is also relatively 
high for CNNs and RNNs. Another interesting observation is how CNN’s 
runtime memory consumption (reserved RAM) is always much higher 
compared to the RNN and FCN counterparts. Note that this is different 
from the model’s actual size which is generally stored in the system’s 
flash memory. Fig.  5 implicitly indicates a room for trade-off with 
prioritizing one performance metric over the other. For instance, if 
accuracy is of the highest priority, CNNs are the way to go, while if 
it is higher inference rates or low energy consumption FCNs can be a 
good choice.

4. Compression benchmarks

In Section 3.3, we present how various system performance met-
rics are impacted by the architecture chosen for the neural network 
model as well as its parameter count. It is evident that although over-
parameterized models may boost accuracy, however, considering the 
cost to run them (energy, memory usage etc.) may lead to diminishing 
returns. In this section, we explore possible ways to compress our 
inference models and draw insights about the performance benefits (or 
losses) such compression entails.

4.1. Data compression or model compression?

Before attempting to move forward with model compression tech-
niques, we discuss a popular alternative, i.e., compressing the sensory 
data itself. Note that the entries in our CSI spectrogram are real valued 
(32-bit floats). It is intuitive to think that compressing these entries 
itself may lead to lightweight models and also be less taxing on the CPU 
or memory consumption. We argue that this is always not the case.
Data Quantization: This method is quite trivial that truncates the given 
entries to a desired bit resolution, for instance to a single byte. Although 
this improves the data intake rate (up to 4×) or the runtime memory 
consumption (2–4×), it affects the classification accuracy non-trivially. 
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Fig. 5. Compares the change in accuracy, energy per inference, inference rate, and RAM reserved for the different architectures as we increase the number of parameters. The 
models are non-compressed.
Across various models, our consistent observation is that a brute-force 
bit truncation strategy is detrimental to the model’s performance. For a 
byte-sized truncation the average accuracy across the models dropped 
by 15%–20%.
Low Rank Approximation of CSI Spectrograms: Instead of naively getting 
rid of the least significant bits as in the previous case, a more effective 
way is to quantize while preserving the general structure of the data. 
This is done using the Singular Value Decomposition (Svd) algorithm [48] 
that gives us a tuning knob to compress data according to a desired 
rank. Svd generates a list of singular values that encode the full-rank
representation of our 100 × 48 dimensional spectrogram image [43]. 
Truncating the top-𝐾 singular values generates a rank-𝐾 approximation 
of the CSI spectrogram image, thereby intelligently compressing it. 
Although we found the inference models to work well even for 𝐾 as 
low as 8–10, we found the accuracy being sensitive to the value of 
𝐾. This is due to the changing nature of the spectrogram structure. 
However, running SvD has a few limitations. First, we require a set 
(e.g., tens or hundreds) of CSI spectrograms to find its ‘eigen structure’. 
This process is extremely memory intensive. Second, the computational 
time complexity of Svd is in the order of (𝑚𝑖𝑛(𝑚𝑛2, 𝑚2𝑛)), where 𝑚 is 
the cardinality of the set and 𝑛 is the dimension of the CSI spectrogram 
(i.e., 𝑛 = 100 × 48). Clearly, running Svd at frequent intervals is 
prohibitive and defeats the purpose of saving systems resources.

It is apparent that we vouch for model compression compared to 
data compression for IoT-based wireless sensing tasks. In the remaining 
part of this section, we primarily concentrate on the choice of the model 
architecture and relevant compression strategies that can make such 
models lightweight while retaining sensing accuracy.

4.2. Effects of model compression

In the previous section, we discuss general performance trends and 
the way it is affected by a model’s architecture and parameter count. 
In the following, we reexamine these trends in the premise of model 
compression. In particular, we analyze, (i) sensing performance related 
measures, viz., accuracy and inference rate, (ii) cost measures, i.e., met-
rics related to resource consumption, viz., energy, runtime and flash 
memory consumption. We perform extensive benchmark experiments 
with the results presented in Figs.  6, 7, 8, 9.
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For our experiments we tried different cluster sizes and sparsity 
levels (percentage of weights that are set to 0). Increase in cluster size 
or decrease in sparsity level improves accuracy of the models, but at the 
cost of higher resource consumption (memory and energy). Therefore, 
for all the benchmarks discussed below we chose a cluster size and 
sparsity level that provides the best cost-performance trade off, and 
avoids diminishing returns. We chose a cluster size of 8 and a sparsity 
level of 50%.
Sensing Performance.  Typically, the general notion is to characterize 
such performance with accuracy, however, we feel that analyzing the 
inference rate (or the prediction latency) is crucial for a real-time 
sensing system.
Accuracy. Fig.  6  (left column) shows the impact of pruning, clustering 
and both combined on the classification accuracy when compared to 
an uncompressed version of the same model. Even after compression, 
CNNs continue to provide higher accuracy and FCNs continue to pro-
vide quicker inference times or lower resource usage (albeit at the 
cost of accuracy). Another interesting observation is on RNNs. Though 
uncompressed RNNs provided a reasonable middle ground between 
CNNs and FCNs, its accuracy is quite sensitive to model compression, in 
particular pruning and clustering (see Fig.  6  (top-left)). On quantizing 
the models Fig.  7  (left column) shows the impact on accuracy. Initially, 
for smaller models, the drop is not much as the absolute accuracy 
itself is poor. For moderate-sized models it impacts accuracy, before the 
models become over-parameterized and robust against quantization.
Inference Rate. Pruning and clustering have minimal effects on the 
execution time of the inference task, primarily because of the floating 
point operations. However, quantization bumps up the inference rate 
to as high as 30×, see Fig.  8  (left). Quantization optimizes the model 
for integer arithmetic, hence offers a substantial benefit.
Cost Measures.  We benchmark the system resource consumption and 
observe how it is impacted by various compression strategies.
Energy Consumption. Energy consumption is heavily affected by the 
arithmetic type — integer vs. floating point operations. Hence, in 
this case also (like inference rate), quantization provides the expected 
benefits. Fig.  8  (right) shows how the energy consumed per infer-
ence improves with quantization, particularly for models with high 
parameter count.
Flash Memory Consumption. As the parameter count increases, the accu-
racy figures remain robust in the face of compression. This is accompa-
nied by a significant savings in the flash memory consumption, so much 
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Fig. 6. Percentage decrease in accuracy and flash consumption due to Clustering (C), Pruning (P) and both (P&C) when compared to a uncompressed model. The left column shows 
decrease in accuracy, while the right one shows decrease in flash consumption.
so that the flash consumption figures become equivalent to models with 
lower parameter count (with lower accuracy). Hence, a best practice 
will be to choose a compressed model with a higher parameter count 
than an uncompressed model with a lower parameter count. See Figs. 
6 and 7  (right columns). Note, that quantizing models that are already 
weight-clustered provides minimal improvements in saving flash (see 
Fig.  7  (right)). This is because clustering, in effect, has an approach 
that is similar to quantization in representing the weights. For instance, 
using 𝐾-means to cluster weights will result in 𝐾 clusters, where 𝐾 is 
much lesser than the total number of weights (although the weights 
themselves are still floats).
RAM Usage. We show the impact on runtime memory consumption in 
Fig.  9. For a CNN, although the RAM consumption does not change 
appreciably with the size of the model, i.e., parameter count, quantiza-
tion can improve this by up to 72%. For, RNNs, quantized models do 
free up the RAM, but note that it affects accuracy non-trivially. Overall 
RAM usage for FCNs are much lower compared to CNNs/RNNs. Further, 
post-training-quantization (PTQ) is slightly better that quantization-
aware-training (QAT). This is not the case for CNNs/RNNs.

4.3. Insights from empirical results

In the following, we make some general observations from the 
above illustrated benchmark results.

• Although FCNs are generally less accurate when compared to 
CNNs/RNNs (≈10%–15% in our studies), however the trade-off 
is justified when factors like inference rate, runtime memory 
usage or energy footprint per inference is considered. For such 
factors, there is at least an order of magnitude improvement that 
is observed.
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• It is recommended to use a compressed version of a larger model 
(higher number of parameters) than an uncompressed version 
of a smaller model itself. Although both have similar energy 
and memory footprint, the compressed model generally shows a 
higher accuracy (≈20%–40%) in our studies.

• RNNs are worst affected by compression. For instance, we observe 
an accuracy loss of up to 30% even for a large RNN model when 
compared with only 5% for larger CNNs/FCNs.

• Many low-end processors typical of IoT class devices are re-
stricted to integer operations. In such scenarios, model quantiza-
tion significantly affects critical performance metrics like runtime 
memory, inference rate and energy footprints. Energy per infer-
ence decreases while inference rate increases by 15–30×, wheres 
runtime memory consumption decreases by up to 70%.

• Clustering (and P&C) provides the most significant decrease in 
flash consumption (≈80% for large models). Though quantization 
on top of clustering does not further decrease flash consumption 
by much. Drop in flash consumption <5% for CNNs/RNNs and 
<20% for FCNs when a clustered model is further quantized. For 
other cases the drop in flash consumption after quantization goes 
up to 70%.

5. WISDOM framework

The results above demonstrate a complicated interplay among vari-
ous system parameters and its impact on the overall performance. This 
necessitates a unified framework that draws intelligent conclusions on 
such performance data and recommends a suitable model optimization 
strategy. We define WISDOM, a framework that can automate the 
process of picking the best compression strategy based on specific 
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Fig. 7. Percentage decrease due to quantization when compared to their non-quantized counterparts. The left columns shows decrease in accuracy, while the right one shows 
decrease in flash consumption.

Fig. 8. Percentage decrease in inference throughput and energy per inference of quantized models compared to their non-quantized counterparts for different model architectures.

Fig. 9. Comparing RAM reserved for different architectures when quantized or otherwise. For CNN and RNN, quantization-aware-training (QAT) and post-training-quantization (PTQ) 
reserve the same amount of RAM, while for FCN they are different.
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Fig. 10. Schematic diagram of the WISDOM framework, implemented as a complete end-to-end system in our testbed. Target devices span from highly resource-constrained IoT 
platforms to moderately powered edge-class nodes. Operating within a serverless ecosystem, each compute node requires an optimized model to function efficiently.
contexts, for instance, accuracy requirements, hardware constraints, 
latency constraints, energy goals etc. Fig.  10 presents a schematic 
overview of the WISDOM framework. In brief, once the target device is 
selected, essential system parameters are evaluated, including available 
runtime memory (RAM), flash storage capacity for the model, CPU 
clock speed, and power consumption characteristics (e.g., see Fig.  3). 
Additionally, the user specifies two key performance constraints: the 
desired model accuracy and the acceptable inference latency.

Given that complex models often achieve higher accuracy at the cost 
of increased latency, energy consumption, and memory footprint, we 
define a utility metric (Section 5.1) that balances performance goals 
against system constraints. To optimize this trade-off, WISDOM employs 
a decision-tree based search (Section 5.3) to select the best-suited 
model architecture that maximizes the utility. Importantly, this model 
selection occurs offline during the deployment phase. By enabling 
users to specify system priorities and by automatically adapting model 
choices to device capabilities, WISDOM facilitates scalable wireless 
sensing across a heterogeneous landscape of IoT and edge platforms.

5.1. The utility metric

A system with more resources (higher cost) naturally offers a better 
performance, similarly system with less resources (low cost) perform 
worse. The challenge is to find suitable a middle ground where neither 
the performance is critically affected due to lower costs, nor does 
increasing the cost result in diminishing returns. To capture this trade-
off between cost and performance, we define a utility function   (Eq. 
(1)) that we intend to maximize. 
 (𝒊) = (𝒊) − (𝒊) (1)

In the above equation, we use 𝒊 to encode details of the underlying 
model architecture (𝑡) along with its parameter count (𝑛) and compres-
sion technique (𝑜) being used. The various choices for 𝑡, 𝑛 and 𝑜, that 
we use in this work, are provided in Eq.  (2). 
𝒊 ∈ 𝐈 = {[𝑡, 𝑛, 𝑜]|𝑡 ∈ 𝐓, 𝑛 ∈ 𝐍, 𝑜 ∈ 𝐎} 𝑤ℎ𝑒𝑟𝑒

𝐓 = {𝐹𝐶𝑁, 𝐶𝑁𝑁, 𝐿𝑆𝑇𝑀}

𝐍 = {250, 1.5𝐾, 3𝐾, 6𝐾, … , 180𝐾}

𝐎 = {𝑛𝑜𝑛𝑒, 𝑝𝑟𝑢𝑛𝑒, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑞𝑎𝑡, … , 𝑝𝑐𝑝𝑡𝑞}

(2)

(𝒊) denotes performance and (𝒊) denotes the cost of running 
an inference model with configuration 𝒊. We define  (Eq.  (3)) as a 
weighted sum of accuracy () and inference throughput (), where the 
respective weights 𝑤𝑎𝑐𝑐 and 𝑤𝑖𝑛𝑓  can be tuned by the user adhering to 
application requirements. 

(𝒊) = 𝑤𝑎𝑐𝑐(𝒊) +𝑤𝑖𝑛𝑓(𝒊)

𝑤ℎ𝑒𝑟𝑒  ≥ 𝐴𝑚𝑖𝑛  ≥ 𝐼𝑚𝑖𝑛
(3)

Similarly, we define the cost (𝒊) (Eq.  (4)) as the weighted sum 
of the energy per inference (), runtime memory requirements () 
and flash memory () consumed by the model configuration 𝒊. The 
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respective weights are denoted by 𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚 and 𝑤𝑓𝑙ℎ respectively. 
Such weights directly determine the priority a user assigns to various 
system resources. 

(𝒊) = 𝑤𝑒𝑛𝑔(𝒊) +𝑤𝑟𝑎𝑚(𝒊) +𝑤𝑓𝑙ℎ (𝒊)

𝑤ℎ𝑒𝑟𝑒  ≤ 𝐸𝑚𝑎𝑥  ≤ 𝑅𝑚𝑎𝑥  ≤ 𝐹𝑚𝑎𝑥
(4)

Henceforth, we use a weight vector 𝒘 to denote all the different 
weights [𝑤𝑎𝑐𝑐 , 𝑤𝑖𝑛𝑓 , 𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚, 𝑤𝑓𝑙ℎ]. Also all the metrics are subject 
to constrains as defined in Eqs.  (3) and (4). For performance metrics 
 and , we define 𝐴𝑚𝑖𝑛 and 𝐼𝑚𝑖𝑛 as respective lower bounds. For 
cost metrics  , and  , we define 𝐸𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥, and 𝐹𝑚𝑎𝑥 as upper 
bounds. 𝒄 denotes the vector [𝐴𝑚𝑖𝑛, 𝐼𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥, 𝑅𝑚𝑎𝑥, 𝐹𝑚𝑎𝑥] for all the 
constraints. Note that the metrics ,,  , and  are normalized in 
the range [0,1] using min–max feature scaling. Similarly, the weight 
vector 𝒘 ∈ [0, 1]5. We also ensure that 𝑤𝑎𝑐𝑐 +𝑤𝑖𝑛𝑓 = 1 for performance 
 , and 𝑤𝑟𝑎𝑚 +𝑤𝑓𝑙ℎ +𝑤𝑒𝑛𝑔 = 1 for cost . This leads both  and  to be 
in the range [0,1] and the utility metric   in the range [−1, 1].

5.2. Representative scenarios

We present a few representative scenarios to demonstrate the im-
pact of weight vector (𝒘) on the  and  metrics and how it modulates 
the choice of the model configuration.

• Scenario-1 (S1): In this scenario, we assign a higher weight to 
accuracy (𝑤𝑎𝑐𝑐 = 0.9) compared to the inference rate (𝑤𝑖𝑛𝑓 =
0.1). The weights related to the cost metrics are assigned uni-
formly  (𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚 and 𝑤𝑓𝑙ℎ are all assigned 0.33). From Fig. 
11(a) we observe that CNNs and RNNs (both quantized and 
non-quantized) exhibit better performance — higher accuracy 
with lower inference rate. However, FCNs are significantly cost 
efficient compared to CNNs/RNNs with a minor compromise 
in performance. CNNs/RNNs are typically energy hungry and 
memory intensive compared to FCNs.

• Scenario-2 (S2): In contrast to S1, in this case, we assign equal 
weights to accuracy and inference rate (𝑤𝑎𝑐𝑐 = 𝑤𝑖𝑛𝑓 = 0.5). 
Weights related to the cost metrics remain the same, as in S1. 
FCNs perform significantly better providing reasonable accuracy 
(≈70%–80%) and higher inference rate (by up to two orders of 
magnitude) (see Fig.  11(b)).

• Scenario-3 (S3): In this case, we prioritize accuracy moderately 
higher than inference rate (𝑤𝑎𝑐𝑐 = 0.7 and 𝑤𝑖𝑛𝑓 = 0.3). Regarding 
the cost metrics, primary importance is given to lower the flash 
memory consumption (𝑤𝑓𝑙ℎ = 0.8). Energy and runtime mem-
ory related metrics are assigned equal weights of 0.1. Although 
CNNs/RNNs are energy intensive and showcase a higher runtime 
memory footprint compared to FCNs, it has negligible effect on 
the cost due to the minimal weights assigned to such factors. It 
is important to note that the flash memory footprint for all the 
three architectures are roughly similar (depends on the number 
of parameters). We do not observe a prominent cost-performance 
trade-off in such scenarios.



M.K. Lenka and A. Chakraborty Ad Hoc Networks 178 (2025) 103915 
 
Fig. 11. The cost-performance trade-off as exhibited by various model architectures in the four representative scenarios. For each scenario, a specific combination of weights are 
assigned to the vector, [𝑤𝑎𝑐𝑐 , 𝑤𝑖𝑛𝑓 , 𝑤𝑒𝑛𝑔 , 𝑤𝑟𝑎𝑚 , 𝑤𝑓𝑙ℎ].
• Scenario-4 (S4): In contrast to S3, we assign higher weights to 
runtime memory consumption and energy per inference (𝑤𝑒𝑛𝑔,
𝑤𝑟𝑎𝑚 = 0.45 and 𝑤𝑓𝑙ℎ = 0.1). The performance related metrics are 
the same as in S3. Fig.  11(d) shows a clear trade-off in terms of 
model selection — the FCN exhibits the maximal performance at 
minimal cost.

The constrains used for all the above scenarios are as follows: 𝐴𝑚𝑖𝑛 =
0.70, 𝐼𝑚𝑖𝑛 =0.03Hz, 𝑅𝑚𝑎𝑥 =200KB, 𝐹𝑚𝑎𝑥 =2048KB and 𝐸𝑚𝑎𝑥 =50 mA 
(please note that these absolute values are normalized when actually 
applied for filtering). All the points in Fig.  11 are of valid models that 
satisfy these constraints.

5.3. Model selection using decision trees

The goal of WISDOM framework is to choose a model 𝒊 that max-
imizes the utility metric  , given weight vector 𝒘 and a constraint 
vector 𝒄. Overall we can summarize our objective as finding the optimal 
model 𝒊∗ as defined below: 
𝒊∗ = argmax

𝑖
 (𝚆𝙸𝚂𝙳𝙾𝙼(𝒘, 𝒄))

𝑤ℎ𝑒𝑟𝑒 𝚆𝙸𝚂𝙳𝙾𝙼 ∶ {𝒘, 𝒄} → 𝐈
(5)

WISDOM uses a decision tree that takes as input 𝒘, 𝒄 and outputs 
𝒊. As the length of 𝒊 is 3, denoting the model architecture 𝑡, number 
of parameters 𝑛 and compression technique 𝑜 as defined in Eq.  (2), it 
therefore performs three classification tasks simultaneously. We decide 
to use a single decision tree with three outputs instead of three inde-
pendent decision trees, because the outputs 𝑡, 𝑛 and 𝑜 are correlated 
to each other, e.g., certain compression techniques work better with 
certain architectures (refer Section 4).

In order to train the decision tree we create a dataset with ≈27𝐾
different 𝒘 and 𝒄 configurations. For each 𝒘, we calculate   for all 
the models we have trained (i.e., 3 architectures, 9 different parameter 
counts, and 12 compression techniques yielding a total of 324 models). 
We choose the one (𝒊∗) that has maximum utility while satisfying the 
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constraints 𝒄. 𝒊∗ serves as our ground truth for a given weight vector 
𝒘. We handcraft 126 unique test cases covering different scenarios like 
the ones described in Section 5.2, and ensure that these are not part 
of training set. The trained decision tree has an accuracy of 97.61%, 
where accuracy denotes the fraction of cases the optimal model 𝒊∗ is 
chosen.

5.4. Comparison with baseline models

We demonstrate the effectiveness of WISDOM in choosing the opti-
mal model 𝒊∗ by comparing utilities of the chosen model over a host of 
baselines.

Baseline Models. The baseline models span three architecture types 
(FCN, CNN and RNN). For each type, we consider three different pa-
rameter counts (≈1500, ≈6 K and ≈24 K) regulating the overall size of 
the model — small, moderate and large. This yields nine uncompressed 
model configurations (NQ). We also create a quantized counterpart of 
these nine models referred as Q. The baseline models are indicative of 
a naive (non-informed) choice.

As shown in Fig.  12(a), for scenario S1, increasing the cost increases 
the utility till a certain point after which it starts decreasing (diminish-
ing returns). 𝒊∗ is the model whose  corresponds to the peak of the 
plot i.e., maximum utility. The three dashed vertical lines correspond to 
the best quantized (Q), non-quantized (NQ) and WISDOM recommended 
models. Observe that, compared to the WISDOM recommended model, 
the best non-quantized model (FCN) has lower cost as well as lower 
accuracy. Similarly, the best quantized model (CNN/RNN) has greater 
cost but lower utility.

Fig.  12(b) presents the (average) relative utility of the quantized, 
non-quantized and WISDOM recommended models. The relative utility 
is measured as  (𝒊)

 (𝒊∗) . First, the WISDOM recommended models achieve 
a relative utility close to one. Second, in terms of relative utility, such 
models outperform the Q and NQ counterparts by 0.5 or more. In 
Fig.  12(c), we plot the empirical CDF for the difference in relative 
utility values between the WISDOM recommended models and the 
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Fig. 12. Fig.  12(a) shows the diminishing return of utility with increase in cost for a particular configuration of 𝒘. Fig.  12(b) compares the utility of all NQ baseline model and 
all Q baseline model, and the model recommended by WISDOM. The utility is relative to the model with highest utility for that scenario i.e., 𝒊∗. Here S1, S2, S3 and S4 denote 
different scenarios with different weights 𝒘, as defined in Section 5.2. Fig.  12(c) shows CDF of the utility difference between WISDOM recommended model and utility values of 
all the Q and NQ baseline models for all test cases. Fig.  12(d) shows the percentage decrease in various cost/performance metrics of models chosen by WISDOM and compare it 
with Q baseline models. The percentage decrease is w.r.t NQ models.
Q/NQ models respectively. For both cases, the median stands at ≈0.5
while the 75th percentile is at ≈0.7. Overall, the WISDOM recommended 
model achieves a higher utility over the Q and NQ baseline models for 
85% and 99% of the test cases respectively. Further, we observe that 
models recommended by WISDOM on average consumes similar amount 
of resources compared to Q models, but have negligible decrease in 
accuracy. However, if the models are simply quantized, we observe a 
≈15% drop in accuracy on an average (see Fig.  12(d)).

6. Discussion and insights

In this section we discuss some key takeaway points based on the 
performance of WISDOM. First, majority of the models suggested by
WISDOM are large (more number of parameters) with some form of 
compression rather than smaller (less number of parameters) models. 
This is in agreement with our benchmark results where larger mod-
els that are compressed have better accuracy than smaller models, 
while having a similar resource footprint. Second, almost all models 
suggested by WISDOM perform quantization. This follows from our 
benchmark results where quantization leads to a significant decrease in 
runtime memory and energy consumption, while increasing inference 
rate. Third, RNNs are rarely suggested by WISDOM, and also when 
RNNs are chosen, they are not compressed. We observe that RNNs 
are very susceptible to compression that causes a significant drop in 
accuracy. Fourth, CNNs are often suggested by WISDOM when 𝑤𝑎𝑐𝑐 is 
high (more priority is given to model accuracy), while in other cases 
FCNs are suggested. This follows from our benchmark results, where we 
observe that CNNs have higher accuracy than FCNs, though it also con-
sumes more resources. Finally, since clustering and pruning combined 
with clustering (P&C) show a significant decrease in flash consumption 
(Fig.  6 – right) compared to only pruning. Clustering (or P&C) is often 
suggested by WISDOM along with quantization, especially if 𝑤𝑓𝑙ℎ is 
high (more priority to lower flash consumption). Quantization on top 
of clustering does not significantly decrease flash consumption, but it 
provides huge savings to runtime memory and energy consumption, 
12 
it also improves inference rate. Therefore, clustering and quantization 
were often used together in models suggested by WISDOM.

The above discussion reflects the similarities between the models 
suggested by WISDOM and our key observations from the benchmarking 
experiments. This further solidifies the effectiveness of our framework.

In this work we primarily focus on on-device computation in con-
trast to edge based computation for CSI based sensing applications. 
There may be a middle ground where we split the deep learning 
model [49], and run it on different operators in the computing contin-
uum i.e., on-device, access point, gateways, micro-datacenters, cloud 
servers, etc. Depending on the user requirements (accuracy, latency, 
etc.) and budget (Opex, energy, etc.) how much should the learning 
model be split, and on which operators it should run on changes. 
This creates a very general and interesting optimization problem. We 
believe a lot more benchmarking is required in order to understand 
such systems. This would enable us to make intelligent deployment 
decisions, which would increase the adaptation of Wi-Fi sensing in the 
real world.

7. Conclusion

In this work, we address these challenges through the design of
WISDOM, a framework that systematically recommends an optimized 
inference model — defined by its architecture, parameter count, and 
compression techniques — based on specific deployment requirements 
and device constraints. To this end, we make the following key contri-
butions. First, we present one of the first comprehensive studies that 
approach Wi-Fi sensing from a system deployment perspective. Rather 
than pursuing higher classification accuracy alone, we prioritize model 
deployability on constrained hardware, demonstrating that real-world 
performance requires a balance between accuracy, resource footprint, 
and inference rate. Second, we conduct extensive benchmarking across 
20 commercially available IoT platforms, revealing that most state-
of-the-art sensing models are infeasible to deploy without significant 
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modification. To support reproducibility and further research, we open-
source our datasets, benchmarking scripts, and models at https://
sense.cse.iitm.ac.in/wisdom/ [21]. Third, we develop an automated 
model optimization framework, WISDOM, that selects compressed and 
quantized models tailored to user-defined constraints, achieving up to 
20%–25% reduction in model size and 70%–80% reduction in inference 
latency, while maintaining bounded accuracy degradation (≤5%).

We thoroughly benchmark candidate models by measuring their 
inference accuracy, inference rate, energy per inference, RAM, and 
flash memory consumption across our testbed. Experimental evaluation 
shows that WISDOM outperforms naive baselines: around 83% of the 
models recommended by WISDOM achieve higher utility compared 
to the best quantized models, and in 99% of cases outperform the 
best non-quantized models. These results demonstrate that simplis-
tic strategies like pure quantization or uncompressed small models 
are insufficient; effective model selection and compression must be 
jointly optimized, guided by application-specific constraints and sys-
tem goals. We believe WISDOM represents an important step toward 
sustainable and scalable wireless sensing deployments for the emerging 
IoT landscape.
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