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Abstract—WiFi-based sensing, a non-intrusive technology that
leverages existing communication infrastructure, has become
widely used for environmental monitoring by extracting Channel
State Information (CSI). However, the vulnerability of these
systems to adversarial attacks, a core challenge within Integrated
Sensing and Communication (ISAC), highlights the need for
practical and robust defenses. In this work, we introduce a
practical black-box defense strategy designed to protect CSI
data from adversarial manipulation, significantly reducing an
attacker’s classification accuracy from 98% to 17% while pre-
serving communication quality. Our approach achieves a minimal
median Signal-to-Noise Ratio (SNR) difference of 1 dB, ensuring
stable throughput and reliable system performance. This defense
represents a crucial step forward in securing WiFi-based sensing
systems, offering a resilient, low-impact solution that safeguards
both sensing integrity and communication efficacy.

I. INTRODUCTION

Recently, radio frequency (RF)-based sensing has gained
significant attention from the research community due to its
promising potential for joint communication and sensing tasks,
as well as its ability to serve as a standalone sensing modal-
ity. This sensing leverages information related to multipath
fading, which is typically estimated at a wireless receiver. For
instance, the Channel State Information (CSI) available from
a WiFi receiver captures fading statistics at the granularity
of individual OFDM subcarriers. These fading characteristics
are superimposed on the signal itself, providing valuable
environmental data. By processing the CSI collected over time,
one can extract physical signatures or dynamic patterns for a
variety of sensing tasks, including human sensing, elderly fall
detection, activity recognition, location tracking, and imaging
applications [1].
While much of the scientific focus has been on enabling inno-
vative applications through wireless sensing [1]–[3], relatively
little attention has been devoted to the security risks and
privacy concerns associated with such sensing modalities [4]–
[6]. Although wireless sensing might appear to be beneficial
and innocuous, this only presents a partial view of the picture.
A malicious receiver eavesdropping on the wireless medium
can observe and learn from the relevant RF signatures, poten-
tially launching an adversarial sensing attack [7], [8]. These
attacks exploit the wireless channel to infer sensitive contex-
tual information about the surrounding environment, which is
otherwise considered private and vulnerable to misuse. Our
primary focus is to develop effective countermeasures against
such attacks, while minimizing disruption to the underlying
data communication in the network.
Existing Defence Mechanisms. Current defense strategies

generally involve perturbing the transmitted signal in a way
that the CSI observed at the receiver (from the attacker’s
perspective) serves as an adversarial sample for the attacker’s
sensing model (details are discussed in Section 2). A related
strategy involves using Intelligent Reflecting Surfaces (IRS)
[9] to artificially alter the channel state. However, we focus
here on perturbations at the transmitter side. It is important
to note that such perturbations must be carefully crafted, as
they can unintentionally affect channel estimation, thereby
degrading communication performance for legitimate receivers
within the network. For example, depending on the extent of
the perturbation, the receiver may switch to a lower MCS
(modulation-and-coding-scheme) such as 16-QAM, where it
would have otherwise used 64-QAM. The throughput of the
link is also influenced by the Signal-to-Noise Ratio (SNR),
which can be estimated using the CSI, as shown in Equation4.
Most of the existing defense methods ( [8], [10], [11]) focus
on minimizing the sensing accuracy for the attacker, often
without considering the communication penalties incurred by
the perturbation. These methods primarily manipulate the
CSI estimated at the receiver, creating adversarial samples
by perturbing it. Some examples include adding zero-mean
Gaussian noise to each OFDM subcarrier amplitude [10], or
zeroing out specific subcarrier frequencies deemed important
for sensing based on PCA [11], among others. Recent work
has demonstrated the effectiveness of adversarial machine
learning techniques, such as the Fast Gradient Sign Method
(FGSM) and Projected Gradient Descent Method (PGDM),
for generating adversarial perturbations in CSI [8] and for
deep learning-based attacks like those in [12]. In particular,
[13] introduces perturbations that are applied selectively to
priority pixels, determined using Class Activation Mapping
(CAM), to minimize the impact on the original signal while
maximizing the attack’s effectiveness. Similarly, [14] takes an
optimization approach to perturbation generation but requires
access to the model, though it presents transfer learning-
based black-box results minimally. While above mentioned
techniques effectively create adversarial samples with minimal
perturbations to the original data, their practical applicability
in adversarial settings is limited. These methods, often referred
to as white-box attacks, assume full access to the internals of
the attacker’s sensing model (e.g., neural network architecture,
trained weights, and gradients), which is unrealistic in real-
world scenarios.
We argue that such assumptions are not practical, as they
overlook the challenges posed by unknown or black-box sens-
ing models used by attackers. Therefore, developing practical



countermeasures against adversarial sensing attacks requires
strategies that do not rely on privileged access to the attacker’s
model, ensuring robustness against a wide range of adversarial
conditions. Based on the aforementioned background, in this
work, we propose a blackbox solution towards defending
against adversarial WiFi sensing attacks. We formulate the
CSI perturbation as an optimization problem so as to decrease
the inference accuracy of the attacker’s model while making
minimal changes to the CSI (which also roughly preserves the
SNR). Unlike methods based on FGSM or PGDM, we do not
assume access to the model’s internal parameters. We validate
our approach on a real testbed where we defend against
an adversarial receiver that attempts to localize itself in the
region of interest using estimated CSI instances. Additionally,
using simulation studies, we show that our method is robust
against throughput drops caused by the SNR fluctuations due
to perturbation of CSI. To our knowledge, this is the first work
which addresses the SNR aspect of integrated communication
and sensing problem.

II. SYSTEM MODEL

We consider a system schematic as shown in Figure 1.
The system represents a generic WiFi communication network
consisting of an access-point (AP) and legitimate receiver
clients (CL). The CLs have access to the downlink CSI that
are leveraged to perform sensing tasks or train models. In
addition, there are eavesdropper nodes (ED) that have access to
the wireless medium and can use their respective CSI estimates
to perform adversarial sensing.

Consider R to be the OFDM signal at the receiver location
for a transmitted signal S, where the estimated channel state
due to the physical environment is denoted by Henv and η

denotes noise, i.e., R = HenvS+η . The adversarial agent ED
can estimate Henv at its location and either has access to or can
train a model Madv to infer the physical context surrounding
the channel. To protect the network from adversarial sensing,
we propose to distort/perturb the estimated Henv such that, its
inference model, Madv has substantially reduced accuracy and
communication at CL sites (e.g., channel equalization, MCS
choice) are not reasonably degraded.
A. CSI Perturbation - Defense Against Adversarial Sensing

The perturbations are generally modeled using a finite im-
pulse response filter, FIRspoof. In time-domain, the transmitted
signal can be estimated by FIRspoof convoluted over the
original. In frequency domain, this manifests as an artificial
channel response Hspoof bundled with the transmitted signal
as HspoofS. Hence, the received signal at receiver i,

Ri = Hi
env(HspoofS)+η (1)

Effectively, the receiver node estimates the CSI to be
Hi

per = Hi
envHspoof, where Hi

env is the original channel state
at the receiver i. In this work, we focus on understand-
ing how Hper can be used to attack the adversarial model
Madv while approximately maintaining the signal’s SNR, i.e.,

|Hper| ∼ |Henv| ≤ ε , where ε is the magnitude of a small
perturbation.

Our experimental evaluations (§ IV) are based on a SISO
case, however, the principles apply to MIMO channels as well.
Further, although the CSI is a complex-valued vector, for H
we only consider its magnitude, i.e., H ∈ R1×N for N WiFi
(OFDM) sub carrier frequencies. Second, we restrict ourselves
only to the methodology of perturbation and its effect on the
adversarial sensing model – implementation details (eqn. 1)
on real WiFi hardware is beyond the scope of this letter.

III. PROPOSED METHOD

For distorting the CSI, we introduce perturbations at the
transmitter itself, directly into the digital signal at the final
stage of the OFDM block (precisely after the IFFT operation)
before passing on to the analog processing chain.
Given a CSI sample H ∈ R1×N , our task is to construct
another sample Hper = H+δ , where δ ∈ R1×N is amount of
perturbation we introduce with the following constraints. First,
the accuracy of the inference model Madv must be diminished.
For instance, if Madv(H) be the predicted inference class for
input H, on an average Madv(H) and Madv(Hper) should
create different outputs. Second, H and Hper must result in
similar communication performance. For instance, the MCS
chosen for communication must not change drastically with a
perturbed CSI.

A. Exisitng Defense with Whitebox Approach

Before moving on to our proposed method, to calibrate
the reader, we present a sketch of the existing whitebox
technique (FGSM) that is primarily used in majority of the
adversarial WiFi sensing literature. For simplicity, consider a
linear classifier model Madv : w⊤H, where w is the weight
matrix and H the CSI. On passing Hper to the model, the
logits take the form:

w⊤Hper = w⊤H+w⊤
δ (2)

The crucial idea here is that, even if δ is small enough such
that H ≈ Hper, the factor w⊤δ is what affects the model’s log-
its and hence the accuracy. As we want the adversarial sensing
model Madv to be unsuccessful, as a defensive mechanism
w⊤δ should drive the model towards an incorrect prediction.
In theory, it is possible to create a strong adversarial sample
even with a negligible perturbation δ , dictated by the average
magnitude of the weights in w as well as its dimension [15].
Now, to estimate δ , FGSM adopts an innovative strategy
- it computes the gradient over the model’s loss function
with respect to the input (H), however steps in the direction
opposite to the gradient, thereby maximizing the model’s loss
(in contrast, recall that the gradient descent used while training
a model minimizes such loss moving in the direction of the
gradient). The perturbed sample, as estimated by FGSM, can
be expressed as,

Hper = H+ ε.sign(∇H(L(w,H,Y))) (3)



Fig. 1. Schematic of our system framework. As the transmitter infuses the original Henv with Hspoof precisely after the IFFT operation to transmit the spoofed
time domain signals.

L is the loss function, ε is a control parameter determining
the magnitude of perturbation and Y denotes the corresponding
true inference for input H.

B. Practical Defense with Blackbox Approach

Being a whitebox approach, FGSM assumes access to the
internals of the adversarial model including its weights. In our
setting, such assumption is impractical. Also the technique
does not explicitly attempt to restrict the modulation and
coding scheme (MCS) switching by preserving the signal’s
Signal-to-Noise Ratio (SNR).
Why is SNR Important? SNR is a critical factor in wireless
communication because it directly influences the Modulation
and Coding Scheme (MCS) used by the transmitter. Higher
SNR values allow the use of higher MCS levels, which
increases the number of bits sent per symbol, effectively
raising the total data rate. Conversely, lower SNR values
require lower MCS levels to maintain reliable communication,
reducing the number of bits per symbol and thus decreasing
the achievable data rate. Our method stabilizes the SNR while
introducing controlled perturbations. This ensures that the
adversary’s inference model is disrupted, without degrading
the communication quality or link reliability between the
Access Point (AP) and legitimate users.

We illustrate how different SNR ranges affect the mod-
ulation type, coding rate, and resulting data rate in Table
I [16]. This table highlights how maintaining a high SNR
affects the MCS levels to be used for ongoing communication.
High MCS levels imply maximizing data throughput, while
lower SNR levels imply a reduction in data rate to preserve
communication reliability.

In our proposed method, we do not assume any knowledge
on the internal model parameters. The only information that
we assume access to are the inferences drawn by the model,
typical of a blackbox technique. In a nutshell, we formulate
the CSI perturbation as an optimization problem, where we
attempt to minimize the SNR difference between the original
and the perturbed version. We also introduce a loss term to
keep track of the model’s failure rate (without accessing the
model’s internal weights).

SNR Estimation. To address the SNR constraint, i.e., making
minimal effective changes to the SNR, we estimate a metric,
shown below, based on the CSI (H) that correlates highly with
the signal’s true SNR. Let fsnr(H) be such an estimator. We
use this to estimate the change in SNR as a result of the
perturbation, i.e., fsnr(H+δ ). Specifically, we use,

fsnr(H) =−10log10(
N

∑
n=1

|hn|2)+C (4)

In the above equation, |hn| represents the gain magnitude at
the nth OFDM subcarrier, where H = [h1,h2, · · ·hN]. The offset
C is learned from the multitude of packets historically received
and automatically takes care of artifacts like automatic gain
control, noise floor etc. Additionally, on using neural network
models for fsnr we observe marginal improvement in the
estimation accuracy, however the inference delay (few 10s of
ms) was prohibitive to adopt in a real-time system.

Adversarial Sample Generation. In this section, we formal-
ize the process of generating an adversarial sample as an
optimization problem. Given an original CSI sample, repre-
sented by H, and a desired target output, Yt (distinct from the
original model output, Y), we aim to find a perturbation δ

that modifies H to approximate Yt, while minimally affecting
signal properties critical for transmission quality, such as SNR.
We pose this as the following optimization problem:

arg min
δ

|fsnr(H)− fsnr(H+δ )|+λ ·Ladv(H+δ ,Yt) (5)

In Equation 5, Ladv(.) represents the adversarial loss func-
tion, designed to guide H+δ towards being misclassified as
the target class Yt. The hyperparameter λ balances the preser-
vation of the signal-to-noise ratio (SNR) with the strength of
the adversarial perturbation. The first term in the minimization
problem ensures that the SNR difference between the original
and perturbed sample is minimal, preserving the transmission
quality and reducing the likelihood of detection. For the
adversarial loss Ladv(.), we use the Cross-Entropy Loss, which
operates solely on the model’s output without requiring access



TABLE I
SNR VS. MCS INDEX

SNR (dB) Range MCS Index Modulation Type Coding Rate Data Rate (Mbps)
< 5 0 BPSK 1/2 Low

5 – 10 1 QPSK 1/2 Moderate
10 – 15 2 QPSK 3/4 Moderate
15 – 20 3 16-QAM 1/2 High
20 – 25 4 16-QAM 3/4 High
25 – 30 5 64-QAM 2/3 Very High
30 – 35 6 64-QAM 3/4 Very High
> 35 7 64-QAM 5/6 Maximum

to its internal weights or parameters. This loss function is given
by:

Ladv(H +δ ,Yt) =−∑
c

Yt
(c) log

(
f(H +δ )(c)

)
(6)

where f(H +δ )(c) represents the output probability of class
c for the perturbed sample H+δ . This formulation allows
the perturbation δ to be optimized, yielding an adversarial
sample that can induce misclassification with minimal impact
on the underlying transmission characteristics, as shown in
Equation 4.

IV. TESTBED AND EMPIRICAL EVALUATION

This section describes our experimental setup and data
collection methodology for evaluating the proposed black-
box defense mechanism against an adversarial eavesdropper,
referred to as ED. We assume ED is equipped with a pretrained
localization model, Madv, boasting an accuracy of 98% when
tested on unperturbed data. Our defense is compared with
two baseline perturbation techniques: FGSM [8], a common
adversarial attack method, and Gaussian noise as a naive noise
addition approach.

A. Arena Description

Our testbed is a controlled indoor localization environment
measuring 13.5 × 11 meters, specifically structured to facil-
itate reliable CSI data collection. The arena layout includes
100 distinct positions, chosen to provide spatial diversity for
consistent evaluation of our defense method. The controlled
environment allows for reproducibility in experiments and en-
ables precise localization by both the transmitter and receiver
devices.

B. Dataset Description

For dataset creation, we collect Channel State Information
(CSI) data from 100 designated locations within the arena. The
data collection setup employs two ESP32 devices [17], which
are low-cost, power-efficient microcontrollers with built-in Wi-
Fi and Bluetooth capabilities, commonly used in IoT and
wireless sensing applications. One ESP32 device acts as a
static transmitter, fixed in position, while the other serves as
a dynamic receiver, systematically moving across specified
positions within the arena to capture CSI data signatures.

Each CSI entry consists of 64 complex IQ values (In-
phase and Quadrature components), representing the signal

properties across 64 subcarriers, as defined by the WiFi 802.11
standard. This high-resolution CSI data provides detailed in-
sights into the multipath environment, essential for accurate
localization and sensing.

Instead of using a traditional train-test split, we collect two
temporally distinct datasets—one for training and another for
testing the eavesdropper’s model (ED)—to ensure temporal
diversity and reduce potential data leakage. Each dataset
(train/test) includes approximately 3000 samples per location,
providing a robust basis for accurate and unbiased evaluation
of the adversarial model Madv under different perturbation
strategies. This setup enables reliable testing of the proposed
defense mechanism in realistic conditions while maintaining
control over environmental variables.

C. Model Training

To assess the effectiveness of the proposed perturbation
technique, we simulate ED’s localization capabilities by train-
ing a multilayer perceptron (MLP) model on the training
dataset, using PyTorch [18]. The model architecture consists
of four fully connected layers with ReLU activations [19].
Each sample from the training dataset represents one of
the 100 locations, and the model is trained exclusively on
this dataset, achieving high accuracy to mimic ED’s optimal
localization performance in an unperturbed setting.

D. Defense Evaluation

The evaluation involves applying the proposed perturbation
technique to the CSI samples in the test dataset and mea-
suring its impact on the adversarial model Madv’s localization
accuracy. We compare our method’s effectiveness with FGSM-
based perturbations and Gaussian noise addition, assessing
how each technique degrades the localization accuracy of
Madv. For each perturbation method, we report key perfor-
mance metrics, including the adversary’s post-perturbation
localization error, signal quality (SNR), and trade-off in com-
munication reliability, i.e., the throughput.

E. Results

1) SNR Variations Across Perturbation Methods: We
first evaluate the Signal-to-Noise Ratio (SNR) variations
introduced by different perturbation methods. The cumulative
distribution function (CDF) of SNR differences for each
perturbation method is shown in Figure 2. As observed, the
FGSM technique causes minimal SNR alteration, making



it effective for preserving transmission quality, while our
proposed defense also achieves a median SNR change of
less than 1 dB. This balance of maintaining low SNR
impact is essential, as large deviations can disrupt primary
communication objectives.

By contrast, Gaussian noise introduces significant SNR
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Fig. 2. CDF of difference in SNR by different perturbation techniques.

variations, which, while effective in disrupting eavesdropping,
undermines the primary communication link quality. This
result demonstrates that FGSM performs well under a full
knowledge assumption of the adversarial model, which
may be impractical. Our defense, by limiting SNR variation
without assuming access to the adversary’s model, is therefore
well-suited for real-world scenarios where stealth is critical.

2) Accuracy and Throughput Impact of Perturbations:
To assess the effectiveness of each perturbation in reducing
the accuracy of Madv and its impact on link throughput,
we conducted a Monte Carlo analysis with 1000 randomly
selected samples. Figure 3 shows the trade-off between model
accuracy and effective throughput under each perturbation
method. FGSM is shown to best preserve throughput while
applying perturbations, an advantageous feature for network
performance. However, our method achieves a more pro-
nounced drop in adversarial model accuracy (median accuracy
of 0.17) with an acceptable SNR difference (median of 1.8
dB), positioning it as a favorable choice for adversarial defense
in real-world blackbox scenarios. The figure indicates that our
approach achieves an effective balance, reducing adversarial
model accuracy significantly while keeping SNR impacts man-
ageable. This supports the idea that our blackbox defense is
more practical for real-time applications where full adversarial
model knowledge is unavailable.

3) Localization Error Analysis: In addition to accuracy,
we measure the localization error introduced by each per-
turbation technique. Figure 4 illustrates the localization error
across methods, showing that both FGSM and our proposed
defense yield a median localization error of approximately
7 meters. This result is noteworthy because, despite the
different approaches, both FGSM and our method achieve
similar localization error rates. This suggests that our defense
maintains spatial fidelity within an acceptable range, even
without model knowledge. These findings underscore that
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Fig. 3. The figure above shows how accuracy and effective throughput are
affected with the perturbation techniques.
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our proposed defense introduces sufficient localization error
to mislead the eavesdropper while preserving communication
quality. It demonstrates that our technique provides a practical
balance, safeguarding against eavesdropping without relying
on model-specific information.

V. CONCLUSION

This study presents a robust blackbox defense strategy
for perturbing CSI samples, designed to counter adversarial
attacks on WiFi-based sensing systems without compromising
communication quality. Our experimental results demonstrate
the effectiveness of our approach, achieving a median SNR
difference of only 1 dB (Figure 2), a dramatic reduction in the
adversarial model’s classification accuracy from 98% to 17%
(Figure 3), and a median localization error of 7 meters (Fig-
ure 4), comparable to the best-performing techniques. These
outcomes highlight our method’s capacity to protect against
eavesdropping while preserving the essential characteristics of
WiFi signals for reliable sensing.

By enhancing security in integrated sensing and commu-
nication systems, our approach addresses critical challenges
posed by adversarial entities in modern wireless environments.
This work provides a valuable contribution to the advancement
of secure, resilient, and efficient wireless sensing systems,
paving the way for future developments in safeguarding sens-
ing applications against sophisticated threats.
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