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Ubiquitous Indoor Mapping using Mobile Radio
Tomography

Amartya Basu, Ayon Chakraborty, Kush Jajal

Abstract—The demand for real-time and accurate mapping is ubiquitous, particularly in complex indoor settings. While SLAM-based
methods are popular, Radio Tomographic Imaging (RTI) offers an essential set of advantages, including mapping inaccessible or
enclosed spaces, shorter scanning trajectories, or even identifying material properties of structures on the map. However, existing RTI
systems typically depend on pre-deployed, precisely calibrated infrastructure with ample computing power, making it challenging to
deploy in a ubiquitous setting. We design UBIQMAP, a lightweight RTI-based end-to-end system capable of mapping indoor spaces in
real-time, with minimal to zero reliance over pre-deployed infrastructure. We evaluate the performance of UBIQMAP in various
scenarios, including two real deployments - a moderately complex residential apartment (800 sq. ft) and a large building foyer area
(3000 sq. ft) and a few simulated scenarios. We demonstrate how UBIQMAP can benefit over traditional SLAM-based techniques in
specific contexts and advocate the fusion of RTI methods with SLAM to improve future mapping technologies. Overall, UBIQMAP

improves the quality of the estimated map by 30%–40% over the state-of-the-art with equivalent resource availability.

Index Terms—Indoor mapping, wireless imaging, tomography
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1 INTRODUCTION

Mapping indoor spaces in real-time is still considered a
challenging task [1], [2], and more so without access to pre-
deployed infrastructure. Such challenges amplify in public
safety scenarios [3] where not only infrastructure is unre-
liable or infeasible to deploy, but also the environment is
dynamic – varying ambient conditions, uncontrolled or fast
movements and so on [4], [5]. To bolster the criticality of the
challenge, we analyze quotes from over 20K first responders
capturing their field experiences (NIST dataset [6]). About
43% of the quotes refer to the unavailability of maps,
unknown building layouts, navigation issues and related
mapping challenges.

In this paper, we design, deploy and evaluate UBIQMAP,
an end-to-end system capable of mapping indoor spaces
in real-time, with minimal or zero reliance over pre-
deployed infrastructure, predominantly targeting time-
critical, resource-constrained environments like first respon-
der scenarios. Essentially, such a mapping process has two
critical requirements: (i) sensing building structures (e.g., ob-
stacles, walls) along with estimating their relative positions
from the sensor’s location, and (ii) tracking location coordi-
nates of the sensing system to bind the sensed structures
to physical space. UBIQMAP employs Radio Tomographic
Imaging (RTI), a wireless sensing technique that estimates
RF attenuation over an area of interest. In the following,
we motivate RTI as a candidate indoor mapping approach,
particularly in non-line-of-sight (NLOS) scenarios.

Limitations of SLAM. Simultaneous Localization and Map-
ping or SLAM-based algorithms have been widely adopted
for various mapping tasks. However, they have their limita-
tions [5]. First, the sensing modalities typical of SLAM (lidar,
acoustic, mm-wave, visual/camera-based), although pre-
cise, are only suitable to sense structures in direct Line-of-
Sight (LOS) that enforce longer scanning trajectories and

(a) Original Map (b) SLAM based (LiDAR) Map (c) UBIQMAP (RTI based)

A
tt

e
n

u
a

ti
o

n
 C

o
e
ff
ic

ie
n
t

Doors

I

I

I

Fig. 1: (a) Layout of an indoor space with inaccessible areas
shaded, marked ‘I’ (b) SLAM based reconstruction of the area
using a mobile robot (c) UBIQMAP’s RTI based estimation of the
layout structure. The attenuation coefficient roughly depicts the
material properties of the structure - e.g., brick wall, wood etc.

hence longer duration for the mapping process. Second,
SLAM-based maps are solely restricted to spatial regions
explored by the sensory agent. Areas that are not physically
accessible are excluded from the map. Third, SLAM algo-
rithms require orchestrated and accurate (robot-like) move-
ment by the sensory agent. Such precise orchestration and
control is infeasible, especially when we leverage natural
human movements to achieve sensor mobility – for instance,
body-worn sensors by first responders [7], [8]. Some recent
bodies of work, for example, Topology SLAM or their neural
counterparts [9], [10], [11] do away with such restrictions.
However, they introduce compute heavy tasks that are
infeasible to realize on portable devices. Fourth, it is rather
impossible to infer the material properties of obstacles, for
instance, telling apart a concrete wall from a drywall. Such
information, if available, can be of premium for many ap-
plications, e.g., search and rescue. Fig. 1 captures the crucial
benefits of RTI over traditional SLAM. Not only that the
enclosed spaces are mapped, but also the RTI based map
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provides additional details, including the thickness of the
structures or their material properties (more on this later)

Mapping Beyond Line-of-Sight (LOS). Methods in Radio
Tomographic Imaging (RTI) [12], [13], [14], [15] benefit by
the use of radio frequencies (RF), typically in the sub-6 GHZ
spectrum, that can potentially penetrate through building
structures and ‘see’ beyond LOS. RTI algorithms essentially
estimate the wireless attenuation coefficient map (aka, atten-
uation image), i.e., the extent by which the RF signal power
degrades at every point within the region of interest. It is
evident that such an attenuation map strongly correlates
to the region’s occupancy map or structural layout. For
instance, concrete walls or other building structures have
appreciably higher attenuation coefficients as compared to
free space. RTI algorithms use a set of spatially distributed
transmitter-receiver pairs at known locations, where each
pair records the total wireless attenuation or propagation
loss from the transmitter to the receiver.

Given the attenuation image, using standard wireless
fading models [16], [17] it is relatively straightforward to es-
timate the total propagation loss between any two points on
the map (aka, forward problem), albeit approximately. How-
ever, RTI attempts to solve the inverse problem. Propagation
loss measurements from localized transceivers are used to
estimate the attenuation image and hence, the structural
layout. Note that such inverse problems are ill-posed in
nature (see [18], [19], more on this later). Their solutions,
i.e., the attenuation images vary drastically with slight vari-
ations in the input parameters, i.e., transceiver locations
and channel estimates. This follows that the accuracy of
the transceiver location and the wireless channel estimates
critically determine the performance of a RTI system [20], a
significant challenge in dynamic indoor environments.

We propose UBIQMAP, a portable wireless system that
demonstrates the feasibility of RTI for mapping indoor
structures in the wild. UBIQMAP embraces the versatility
of RF-based sensing to address the mapping problem in
its entirety. Since deploying static transceivers or calibrating
their precise locations is infeasible in our context, UBIQMAP
follows an infrastructure-free approach. In a nutshell, the
system works as follows. We consider a set of mobile Wi-Fi
transceivers (e.g., bodyworn radios) to perform distributed
sensing. As the nodes traverse, the Wi-Fi transceivers con-
tinuously estimate and record their inter-nodal distances
using the 802.11mc Fine Time Measurement [21] or FTM
protocol, along with the Received Signal Strengths (RSS).
The pair-wise range information is used to compute the
relative topology of the nodes [22], which in turn assists
in localizing the RSS measurements. Using such localized
RSS measurements, the UBIQMAP system reconstructs the
obstacle map. In the following, we outline some key pain
points that make it hard for such systems to be practically
deployable.

Deployment Challenges. Although there has been a lot of
analytical work [23], [15] and simulation studies [24] on
RTI systems, end-to-end system demonstrations or empir-
ical studies are limited. Among the ones that exist, either
use a static set of transceivers at fixed, precisely known
locations [12], [25], [26] or achieve transceiver mobility using
highly sophisticated robotic maneuvering [27]. Towards our

design for UBIQMAP, we identify the following challenges
that prohibit real world deployment of RTI solutions in
time-critical and resource-constrained scenarios.
Computational challenges: RTI algorithms attempt to solve
complex optimization problems where the computational
resources or the latency required can be prohibitively high.
For instance, the size of the optimization problem depends
on the size of the measurement set as well as the resolution
at which the map is reconstructed. Given that UBIQMAP
continually attempts to estimate and update the map in real-
time, an important challenge is to understand the optimal
resolution and how it trades off with the achieved accuracy
and computation in the face of measurement noise.
Location uncertainty of transceivers: Although the mobile
transceivers are continuously localized, it is well-known that
the location estimates tend to be error prone. Unlike RSS
noise, which is additive, such location error has a multiplica-
tive effect, impacting the reconstruction accuracy drastically
(more in Sec 3.1 and 4.3). Given the ill-posed nature of
the RTI problem, a significant challenge is to embrace such
location uncertainty into our algorithm without causing the
mapping process to fail drastically. We make the following
key contributions in this paper.

• UBIQMAP estimates an optimal resolution for the attenu-
ation image by trading off reconstruction quality versus
compute load, while avoiding diminishing returns. This
makes our system lightweight.
• We improve upon the robustness of the exiting RTI sys-

tems by embracing the location uncertainty of the RSS
measurements and incorporating it directly into the RTI
solution. UBIQMAP can achieve nearly similar reconstruc-
tion quality using noisy Wi-Fi based location estimates
as compared to its highly precise counterpart - a Ultra
Wideband (UWB) based system.
• UBIQMAP has been deployed and extensively tested in

real-world complex environments, including an 800 sq.
ft residential apartment and a 3000 sq. ft building foyer
area. Our system not only improved upon the state-of-
the-art baselines by 30–40% but was highly instrumental
in mapping environments with zero indoor access or even
highlighting material properties of the structures.

2 RELATED WORK

Indoor mapping is a long standing problem and has been
addressed in various degrees with a host of sensing modali-
ties under multiple constraints (e.g., real-time, uncontrolled
mobility, computation costs etc).

Visual, Acoustic or Inertial Sensing Based. Techniques
utilizing visual sensing such as [28], [29], [30] works only
within LOS ranges and depends heavily upon ambient
lighting conditions. Acoustic techniques [31], [32] localize
obstacles by using reflected sound waves, but are often
erroneous when the sound source is relatively far from
the target reflector and the area has a high degree of clut-
ter. For instance, [32] utilizes sophisticated deep learning
techniques requiring extensive training and numerous trials
to estimate a reasonable map. In a very recent work [33],
Conditional GAN (cGAN) is leveraged in to reconstruct
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indoor maps using audio signals. The work requires ex-
tensive training as well as precise prior knowledge of the
audio sensor’s location, which limits its practicality. Map-
ping using crowdsourced inertial sensors (IMU) has been
well explored [34], [35], however the limitations lie in the
inherent noise introduced by the sensors themselves along
with longer exploration/crowdsourcing time. In essence, in
such cases, mapping becomes a biproduct of the localization
process. State-of-the-art SLAM based techniques use one or
more of the above modalities but require highly orchestrated
and controlled movements, for instance using a robot [5],
[27], [36], often infeasible in dynamic environments.

Wireless Solutions. A hold of RF-based (primarily, WiFi and
other sub-6GHZ bands) systems [13], [37], [5], [38], [39] solu-
tions did attempt mapping beyond LOS. However, they in-
variably require elaborate infrastructure with large antenna
arrays, precisely calibrated setup, non real-time computa-
tion and extensive training if deep learning methods are in-
volved. In most cases, the solutions are custom implemented
using Software Defined Radios – e.g., phase synchronization
across radio front-ends, bandwidth stitching to improve the
resolution of the channel impulse response and so on. This
makes it hard to adopt such solutions in existing commercial
wireless chipsets. The other approach has been through
extensive fingerprinting. In [40], Wi-Fi fingerprints from
different devices are used to detect the adjacency of rooms
and the hallway. The work requires significant amount of
crowd-sourcing along with computational resources. In this
context, note that mmWave radars (60GHZ, 77GHZ) are not
suitable for penetrating building structures and hence do
not offer anything additional when compared to traditional
SLAM based techniques.

Radio Tomographic Imaging (RTI). RTI-based techniques
[12], [25], [24] have been a useful alternative approach, par-
ticularly for its ability in mapping beyond LOS. However,
existing literature primarily focuses on device-free (human)
localization and target tracking [41] using a set of pre-
calibrated, static and localized transceivers [26]. RTI is being
recently explored as a mapping modality [42], [27], [24], [36],
however almost all of the work requires a heavily calibrated
setup. In [27], [43] an integrated solution is proposed using
both LiDAR and RTI. The time-duration for data collection,
along with the precise estimation of robot position at every
instance, reduces the feasibility of real-world deployment.
In [24], [36], experiments are carried out only inside a
simulation environment that limits its extensibility to the
real world.

Existing Research Gaps in RTI. As we discuss later, RTI
attempts to solve an ill-posed inverse problem and the solution
is extremely sensitive to the inputs to the problem (wireless
measurements and sensor’s location). Exisitng RTI literature
primarily deals with noisy wireless measurements. Loca-
tion uncertainty, a factor known to have a multiplicative
impact [44] on the solution, has rarely been explored from
a systems or empirical perspective. Also, to make such
systems real-time and lightweight, it is vital to understand
the computational aspects [45] of the RTI problem. In [46]
compressed sensing is utilized to reconstruct the map by
reducing the number of sample links, however the actual
problem size remains same. Existing works addressing the

computation aspects, focus mostly on target localization
where a prior knowledge along with the node velocity is
utilized to predict the node location inside the map [45].
Although it may reduce the computation cost for node lo-
calization, the application in the context of indoor mapping
is negligible. In UBIQMAP, we identify such gaps and do
the needful to address them.

3 BACKGROUND AND CHALLENGES

3.1 Radio Tomographic Imaging (RTI) Primer

Wireless signals get attenuated as they traverse along a
medium and heavily so, as they pass through physical
objects [17]. The extent of such attenuation depends on
the length of path traversed by the signal and material
properties (e.g., permittivity) of the traversing medium it-
self. RTI techniques estimate the spatial attenuation map
or attenuation image, X ∈ RN , from a host of RF measure-
ments performed across various locations in and around the
Region of Interest (ROI), discretized into spatial blocks of
dimension δ × δ sq.m.
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Fig. 2: Three dipoles, D1, D2 and D3 are shown over the
Region of Interest, along with their corresponding PATHs. The
projection matrix A3×16 and the measurement matrix M3×1

are estimated from the dipoles. The task is to estimate the
attenuation matrix or image X .

Assume a total of N discrete spatial indices or locations
in X , where the attenuation coefficient at the nth location is
denoted by Xn. A measurement constitutes of estimating
the total attenuation within a wireless link. We refer to
such wireless links as dipoles. A dipole Di is completely
characterized by the transmitter location DTX

i , the receiver
location DRX

i and the measured attenuation loss Mi. Let
PATH(Di) be the set of locations traced by the Line-of-
Sight (LOS) or straight line path connecting DTX

i and DRX
i .

Essentially Mi can be (approximately) expressed as
∑

nXn,
such that, n ∈ PATH(Di). The approximation improves
with increasing the spatial resolution of the grid cells. We
express a system of measurements consisting of m dipoles,
D1, D2, · · · , Dm, in the linear form AX = M , where
X ∈ RN is the attenuation image, andM ∈ Rm×1 is the mea-
surement matrix corresponding tom dipoles.A ∈ {0, 1}m×N

denotes the binary projection matrix, where Aij = 1, if
j ∈ PATH(Di), otherwise Aij = 0.

Ill-posed Inverse Problem. Note that, given A and X , it is
relatively straightforward to estimate M , which we call the
forward problem (see fig. 2). However, our task is to estimate
X from A and M which is rather, an inverse problem. Given
the presence of measurement noise inM , we can estimateX
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by solving the following optimization problem in the least
squares sense,

X̂ls = argmin
X

||AX −M ||2 (1)

The solution to the above equation is equivalent to
applying the Moore-Penrose Pseudoinverse on M , i.e., X̂ =
(ATA)−1ATM . However, this requires A to be a full-rank
matrix which is not valid in such a setting. This renders the
problem ill-posed where the solution, X̂ , varies drastically
with slight changes in the input, M . To address such ill-
posedness a regularization term is appended to eqn.(1), as
follows.

X̂rls = argmin
X

||AX −M ||2 + β||X||2 (2)

This is referred to as the Tikhonov regularization method
(β > 0 is a hyperparameter or weight value) and is a
common tool for solving ill-posed inverse problems [47].
The generalized Tikhonov method uses a regularization
operator L making the latter term β||LX||2. In eqn.(2), L
is the identity matrix operator. Note that such regularized
inversion can still be conveniently expressed in the least
square form as

X̂ = ((ATA+ β LTL)−1AT )M (3)

Apart from Tikhonov regularization, techniques such as
Truncated Singular Value Decomposition (TSVD) [12] or Total
Variation (TV) [25] have been widely used in RTI literature.
TSVD produces relatively noisy images due to the inclusion
of high frequency components in the reconstructed image.
TV is known to produce images with improved sharpness
but suffers from an increased computational complexity
relative to TSVD or Tikhonov. As a linear projection on the
measurement data, Tikhonov is far more computationally
lightweight (cf. TV) and is preferred for RTI systems that
need frequent reconstruction updates. Further, we use the
Tikhonnov regularization with L as the identity matrix
operator as our performance baseline (TIKREG).

Attenuation Image Filtering. X̂ only represents the at-
tenuation image and needs to be appropriately filtered to
bytest approximate a binary occupancy map. The latter is re-
quired for various crucial applications including navigation
and routing. Depending on the constraints, e.g., compute
resource availability, time required and so on, such filtering
can entail simple thresholding [48] to advanced de-noising
techniques [49], [50].

The reconstruction quality, either the attenuation image
or the filtered image, is measured using the peak signal-to-
noise ratio (PSNR) metric [51], widely used in RTI literature.
PSNR is computed by comparing the original map image
and the filtered image. Specifically, it is expressed as the
ratio of the maximum image pixel intensity value to noise
in the logarithmic scale. Noise denotes the pixel wise mean
square error (MSE) of the original and filtered image. For
similar images, the MSE is relatively low making the PSNR
high. It is denoted by the following formula,

PSNR = 20 log10
max_intensity

MSE
(4)

3.2 Challenges
While the majority of the existing RTI literature either
focuses on theoretical analysis of reconstruction algorithms
or simulation studies, very little attention has been paid
to identifying the challenges that exist to adapt such tech-
niques to end-to-end mobile systems. In the following, we
highlight a couple of essential issues that seriously affect
the reconstruction accuracy; however, they are insufficiently
addressed in the research literature. Such issues are preva-
lent in any practical deployment of mobile systems targeted
towards mapping indoor environments in challenging sce-
narios.
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Fig. 3: Considering a baseline resolution of δ = 3m, the left
figure shows the increase in computation time with increasing
resolution (lower values of δ). The figure on the right shows the
corresponding PSNR values obtained.
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Fig. 4: Reconstructed figures for three different mean location
error using TIKREG along with the CDF of the obtained PSNR.

Computational challenges Solving such ill-posed inverse prob-
lems require significant computational resources [45] and
often incur high compute latency. Specifically, this reduces
to solving a high dimensional optimization problem. Hence,
a critical deployment challenge is to set up the dimension-
ality of the problem in a judicious way and modulo the
hardware resources available. From eqn. (3), it is evident
that the size of problem is governed by the dimension
of the matrix A ∈ {0, 1}K×N . The K rows in A denote
individual measurements while the N columns represent
the dimensionality of the solution or the resolution at which
the attenuation image, X ∈ RN is estimated. Arbitrarily in-
creasing the resolution makes the computation prohibitively
high without any appreciable increase in the reconstruction
quality (diminishing returns). For instance, in fig. 3, there
is no significant increase in PSNR beyond a resolution of
1 m×1 m, however the computation cost keeps increasing.
Second, it also hurts the overall reconstruction accuracy due
to the inherent noise in the channel measurements. Thereby,
a key strategy is to determine the spatial quantum, δ × δ at
which the ROI is discretized. It is also equally important
is to determine the set of measurements to use for the
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solution. Each measurement, depending on the geometry of
the dipole, captures information related to specific portions
of the attenuation image. Hence, the larger the number
independent dipoles (i.e., higher rank of A), the better the
reconstruction accuracy.
Location uncertainty of transceivers Most works in the RTI
literature that focus on solving the optimization problem
stated in eqn.(3), consider a noisy measurement matrix, M ,
with a projection matrix, A, that is noise free. This is often
the case where transceivers are statically deployed with
their location information calibrated beforehand. Even in a
couple of works that consider mobile transceivers [27], their
location information is accurately estimated using highly
orchestrated and precise robotic movements. As stated pre-
viously, none of these approaches promotes situations with
imprecise location updates leading to erroneous estimation
of the projection matrix. Unlike RSS noise, which is of
additive nature, such location error is multiplicative and dras-
tically impact the reconstruction accuracy. We demonstrate
in fig. 4 that such errors, common in any wireless system,
are critically coupled to the overall reconstruction accuracy.

4 SYSTEM DESIGN FOR UBIQMAP

4.1 UBIQMAP In a Nutshell

Mobility and dynamic deployment are the central crux of
UBIQMAP, making it unique concerning existing literature
on RTI-based systems. We assume a setting where multiple
mobile agents (e.g., first responders, robots) equipped with
portable radios scout the ROI. These wireless transceivers,
hereafter referred to as nodes, are necessarily a part of
the agent’s data communication system. We leverage these
mobile nodes as a distributed sensing framework for our
map estimation task. For UBIQMAP, we consider Wi-Fi
transceivers forming a mesh network. At its core, our system
involves three primary functional components. First, a node
topology estimation module that infers the relative locations
of individual nodes over time. Second is a reconstruction
module that implements the RTI algorithms for estimating
the attenuation image, and third is a filtering module that
estimates the structural map from the attenuation image.

4.2 Node Topology Estimation via Wireless Ranging

Unlike RTI systems that consider static nodes deployed
at precisely known locations, UBIQMAP continuously esti-
mates the relative topology among the mobile nodes. The
inter-nodal distance (dipole length) is estimated between a
pair of nodes within the communication range. UBIQMAP
employs the Wi-Fi RTT or Fine Time Measurement proto-
col [21], [52] for the distance estimates. However, upcoming
standards also support estimation of Angle of Arrival that
makes location tracking even more robust [53], [54], [55].
The range estimates from each node are collected in a
statically deployed master node that performs all the nec-
essary computations for the topology estimation (as well as
the eventual reconstruction). Additionally, the master node
serves as the reference origin for UBIQMAP’s coordinate
system.

Let di,j denote the estimated range between nodei and
nodej within a time interval ∆t. Range entries for different

node pairs pertaining to that interval are stored in the
Euclidean Distance Matrix (EDM), D2 where D2

i,j = di,j . ∆t
is a tunable time interval adapted based on the temporal
dynamics of the node topology. The topology is updated
at the end of every ∆t time slot, which we call epoch. We
adopt the Classical Multidimensional Scaling (CMDS) [22]
technique to estimate a 2D embedding of the node topology
onto the physical space. The master node is treated as the
origin of the embedded coordinate space.

Algorithm 1 Classical MDS based relative localization

Input: D2

Output: X
1: Compute G = 1

2HD2H where H = I - 1n1 1T

2: Find Eigen Value Decomposition of G = QΛQT

3: X = Q
√

Λ

In this context, note that it is not necessary to obtain the
inter-nodal ranges for every node pair for obtaining a correct
topology estimate; a small fraction of all possible ranges is
often sufficient to predict the rest (e.g., see OPTSPACE [56]).
Second, CMDS estimates are sensitive to range noise, pro-
ducing erroneous node topologies. We use a stress metric
internally computed by the CMDS algorithm that estimates
the goodness of fit between X and Xtrue [57]. We leverage this
metric as an estimator of the localization error (see fig. 5),
which is crucial for integrating the location uncertainty into
UBIQMAP’s RTI solution.

(a) Ground truth Topology (b) MDS Estimated Topology (c) Location Errors vs stress

A

B
෡𝑩

෡𝑨

Fig. 5: Estimated node topology from noisy range information.
We also show the distribution of location errors incurred in
individual nodes in the estimated topology for mean range
errors from 1 m through 4 m.

Ranging Modality. In this paper, we contribute
to the location uncertainty problem in RTI that
remains independent of the choice of localization
modality/technique. Our focus is primarily to demonstrate
how UBIQMAP embraces noisy location estimates common
in an uncalibrated and ad-hoc setting. In fig. 6, we present
the ranging error encountered by Wi-Fi FTM compared
to Ultra Wideband (UWB) technology. UWB is known
to be highly precise [58], [59] even in Non-Line-of-Sight
(NLoS) conditions, where Wi-Fi FTM can suffer up to 2–5 m
of ranging error. We purposefully choose Wi-Fi FTM to
demonstrate the robustness of UBIQMAP in the face of
moderate localization errors. We still use a pre-calibrated
deployment of UWB beacons to gather ground truth
location estimates. We remind the reader that our goal
in this paper is not using sophisticated location tracking
modalities but rather demonstrate how UBIQMAP is robust
against location errors.
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Fig. 6: Comparison of UWB and FTM ranges in LOS and
NLOS conditions. The median range error for UWB is nearly
negligible (≈ 30 cm) in both LOS and NLOS conditions w.r.t the
ground truth, which makes it suitable to benchmark the FTM
range error.

The movement of the nodes creates a diverse set of
dipoles that scans various portions of the ROI covering
both free space as well as areas with building structures.
An edge within the estimated node topology represents a
dipole if the corresponding node pair performs a channel
measurement (wireless propagation loss) in the same epoch.
The node topology is updated at the end of each epoch.
The relatively slower movement of the nodes (≈1 m/s)
compared to the range update rate (≈10 Hz), creates an
opportunity to filter noisy topology estimates, thereby im-
proving localization accuracy.

4.3 Efficient Reconstruction under Location Uncer-
tainty
A mission critical system such as UBIQMAP is intended
to work in near real-time, continuously updating the un-
derlying attenuation image, as the nodes move around
the ROI. Two important performance indicators are the
computational efficiency (e.g., latency) and accuracy of the
reconstruction process. UBIQMAP utilizes the GRIDFIND
algorithm to minimize the reconstruction latency by deter-
mining the optimal resolution at which the occupancy map
is estimated. Second, it improves upon the state-of-the-art
RTI methods to incorporate the uncertainty of the estimated
node topology discussed previously.
� GRIDFIND Algorithm. A higher imaging resolution
results in an improved reconstruction quality (e.g., higher
PSNR); however, it suffers from an increased compute load.
Fundamentally, the maximum resolution depends on the
wavelength of the RTI signal (λ), e.g.≈12 cm for Wi-Fi at the
2.4 GHz band. However, at this scale, the size of the result-
ing optimization problem (refer equation 3) is prohibitively
high to be solved on an embedded class computer. For
instance, it requires about 13K such 12 cm×12 cm ‘pixels’
to tile a 2000 sq.ft ROI.

The ROI is discretized at a spatial resolution of δ × δ,
where δ = Kλ, an integral multiple of the signal wave-
length. The GRIDFIND algorithm estimates the optimal
value of K , i.e., Kopt, that maximizes the utility of the
reconstruction process. Utility, in this context, is measured
as the improvement in reconstruction quality with respect
to the increase in computational cost. We demonstrate that
K <Kopt leads to diminishing returns, while for K >Kopt

the reconstruction quality deteriorates drastically.
Fig. 7 demonstrates the high-level intuition behind the

GRIDFIND (Algorithm 2). As evident in the setup K =

W
a

l

l
W

a
l

l

KHIGH

KLOW

Fig. 7: Demonstation of how the AIC metric can be used to
distinguish between distributions that are collected in pure LOS
or NLOS versus that a mixture of LOS and NLOS observations.

Khigh, measurements yielding from both LOS and NLOS
scenarios are mapped to the same pair of grid cells. Given
the already ill-posed nature of the problem, such incon-
sistencies severely degrade the quality of reconstruction.
Without any prior knowledge of the structural map, we ad-
dress this issue by identifying the simultaneous occurrence
of LOS and NLOS measurements within individual grid
cells for a given value of K . We represent the cell-specific
measurements using a mixture model with one (either LOS
or NLOS) or two (both LOS and NLOS) components. The
Akaike Information Criterion (AIC) is used as the model pre-
dictor, a metric that gets minimized for choosing the most
likely model parameter. We use the number of components
in the mixture model as the parameter, that is assumed to
be either one or two. GRIDFIND algorithm defines a metric,
∆AIC = AIC(2) − AIC(1). If LOS and NLOS scenarios co-
exist for a particular cell, i.e., the measurement pool has two
observable RSS distributions, then AIC(2)≤AIC(1). On
the other hand, if the measurements exclusively correspond
to either LOS or NLOS, then AIC(1)≤AIC(2). Observe
the change in ∆AIC (in fig. 8) as a function of the spatial
resolution, δ. Given the measurements, the GRIDFIND algo-
rithm searches for the maximum value of K , such that the
majority (or a given percentage) of the grid cells exhibit a
positive value of ∆AIC.
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Fig. 8: An illustration of change in positive ∆ AIC % with
respect to resolution and the corresponding increase in com-
putation time.

� Robust Tomographic Reconstruction. In fig. 4, we high-
light the sensitivity of the reconstruction process (eqn. 3) as
a function of the localization accuracy of the dipoles. Even
an average location error of 1–2 meters results in a PSNR
deterioration of 3-4 dB, which renders the reconstructed
map almost unusable.
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Algorithm 2 GRIDFIND - Estimates optimal grid resolution
Input : ROI, DIPOLES (LT , LR, RSSR), Kmax, Pmax

Output : Kopt

1: K ← Kmax

2: while K ≥ 1 do
3: Tile ROI into cells, CK

i , each of dimension Kλ
4: Map all DIPOLES(LT , LR, RSSR)← (CK

T , CK
R ) such

that, LT ⊆ CT and LR ⊆ CR

5: AICSET← {}
6: for all cell pairs (CK

T , C
K
R ) do

7: Compute ∆AIC on RSS(CK
R )

8: Add ∆AIC to AICSET

9: if percentage of +ve values in AICSET ≥ Pmax then
10: K ← Kopt

11: else
12: K ← K − 1
13: return Kopt

Recall that each row Ai ∈ {0, 1}1×N in the projection
matrix A ∈ {0, 1}m×N represents the path traced by an
observed (noisy) dipole. Let A and Ā be the observed and
true projection matrices, respectively. A can be expressed as
Ā + U , where U ∈ {−1, 0, 1}m×N is the uncertainty matrix
that represents the noise in the A. In such a case, the L2-
norm minimization objective in equation 1 can be re-written
as its robust counterpart as,

X̂ = argmin
X

E||AX −M ||2

= argmin
X

E||(Ā+ U)X −M ||2

= argmin
X

WTW + 2WE[U ]X +XT E[UTU ]X

where,W = (ĀX −M)

(5)

For U being zero mean and uncorrelated, i.e., E[U ] = 0 and
E[UTU ] = cI (for some constant c > 0), eqn. (5) reduces to
the familiar Tikhonov regularization form (see eqn. 2) with
a straightforward solution [44].

Fig. 9: (a) Projection (Ā) of a sample dipole with its noisy obser-
vation in a grid of size 20×20, (b) Matrix U ∈{−1, 0, 1}{30×400}
for 30 noisy observations, and a non-zero E(U)(c)

However, we argue that the above assumption does not
hold good in our system. In fig. 9, we showcase a single
dipole D̄ and a set of its noisy perturbations. Let Di be an
instance of that observation set, and j denote a location or
a specific column in A. Ui,j ∈ {−1, 0, 1} takes the value
0 at locations unaffected by the perturbation. Ui,j = 1, if
j ∈ PATH(Di) and j /∈ PATH(D̄), similarly Ui,j = −1, if j /∈
PATH(Di) and j ∈ PATH(D̄). It is evident that, E(Ui,j) ≥ 0
for j /∈ PATH(D̄) and E(Ui,j) ≤ 0 for j ∈ PATH(D̄) (also
demonstrated in fig. 9).

� Stochastic approximation. Assuming a non-zero E(U ),
we resort to a stochastic approximation of the dipole that
makes the solution computationally simple and effective
in improving the reconstruction accuracy. In the standard
RTI formulation, Ai,j = 1 iff j ∈ PATH(Di), zero otherwise.
Instead of such hard assignment, for every location L, we
assign a likelihood value P (Ai,L = 1 | PATH(Di)), for each
dipole Di. Intuitively, if j ∈PATH(Di), instead of assigning
the entire likelihood to a single location j, we distribute
the same among the locations in the neighbourhood of j. The
likelihood value signifies the contribution of the particular
location in the observed attenuation measurement of the
dipole in question. Ofcourse, the radius of such neighbour-
hood depends on the average localization error.

R

S

R1

S1

S2

R2

L
ik

e
lih

o
o
d
 V

a
lu

e

Mean Localization Error

Simulated Likelihood Distribution

R

S

R

S

Weierstrass Transform on dipole

Fig. 10: An illustration of different dipole configurations possi-
ble for a given mean location error along with their maximum
likelihood mass and stochastic approximation.

In fig. 10, we simulate an observed dipole RS along
with many probable instances of the corresponding original
dipole RS (e.g., R1S1, R2S2) assuming an average localiza-
tion error. The superimposed instances highlight how the
likelihood mass is distributed among its neighbourhood in-
stead of being contained strictly along RS. To approximate
the distributed likelihood mass, we use the Weierstrass trans-
form [60], [61] on the observed dipole, which is equivalent
to convolving the latter with a Gaussian filter kernel. We
use a two-dimensional Gaussian kernel with a standard
deviation equal to the mean location error. Recall that the
stress value from the CMDS algorithm is a fairly good
predictor of the localization error (see, fig. 5). UBIQMAP
applies such transformation to each observed dipole in A
to create the stochastically approximated version ASTOC. We
set up the reconstruction problem as (β and L being the
hyperparameter and the Tikhonov operator respectively),

X̂stoc = argmin
X

||ASTOCX −M ||2 + β||LX||2 (6)

� Choice of Tikhonov operator. It is well understood that
the Tikhonov operator (L) can modulate certain desirable
properties in the attenuation image, for instance, overall
smoothness, sharpness etc. Two commonly used operators
in RTI literature are the Identity matrix [12], [62] and the
Difference [25] operators. However, their performance is
quite limited, particularly in the face of location noise (see
fig. 11 for a comparison). A key observation in our con-
text is that building structures have continuous and sharp
boundaries with the surrounding free space, resulting in
prominent edges in the attenuation image. We employ the
Laplacian operator, which is expressed as the sum of second-
order partial derivatives of the intensities (attenuation co-
efficients) along the horizontal and vertical directions. Note
that, the Laplacian operator is extremely sensitive random
noise spikes, henceX needs to be smoothed first. A common
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practice (e.g., in image processing) is to use a composition of
the Laplacian and a Gaussian smoothing kernel that makes
the edge detector robust against noise. We use a Laplacian of
Gaussian kernel [63] of size 5×5.

True TIKREG Difference LoG

Manual OTSU Skeleton UBIQMAP

Fig. 11: Reconstructed attenuation maps for different regular-
ization operators along with the thresholded LoG attenuation
map for different threshold functions.

4.4 Attenuation Image to Obstacle Map

Although the attenuation image gives a perceptual notion
of the obstacle map, further refinement is critical for many
applications. Take, for instance, the task of creating navi-
gation routes within the map for robots or indoor drones.
A binary map is often useful for such applications that is
solely meant for distinguishing free space from obstacles.
A natural choice is using a specific attenuation value for
manual thresholding. However, the noise in the resulting
obstacle map is susceptible to the chosen threshold value.

We use a thresholding scheme called the OTSU’s
method [49], where the pixels are mapped to a bimodal
class while reducing the intraclass distance. However, OTSU
estimates a global threshold that disregards spatial cor-
relation [64]. For instance, building structures are more
likely to be contiguous and not speckles that are randomly
scattered around. We use a morphological transform called
skeletonization on the OTSU thresholded image that preserves
the topological patterns and estimates a single pixel-wide
medial axis of the structures. We enhance it further by
dividing the skeleton into a set of connected components
and growing each component to a specific width. The width
depends on OTSU thresholded width of the structure for a
particular component.

5 PROTOTYPE IMPLEMENTATION AND EVALUA-
TION

For evaluation, we build a portable system prototype with
four headmounted mobile nodes and a single, randomly
deployed static node. The system can be deployed quickly
without requiring any additional infrastructure support or
calibration.

5.1 Implementation Details

As shown in fig. 12 (left), each UBIQMAP node consists of
two Wi-Fi integrated low-power, single-core microcontroller
SOC units (ESP32-S2 [65]) mounted on two sides of the hel-
met. We use two transceivers primarily to avoid body block-
ing effects in the LOS path and to provide some redundancy
in measurements. Although such an arrangement proved
practical for our proof-of-concept device, a productized

version will have a more sophisticated antenna layout, po-
tentially integrated with the helmet. A fraction of the nodes
(≈50%), configured as transmit nodes continuously broad-
cast beacon packets at an approximate rate of 10 Hz. Such
nodes are also configured as FTM responders that respond to
FTM requests sent by the client nodes, which act as FTM
initiators. Thereby, such client nodes estimate their distances
to the responder nodes. ESP32-S2 SOC natively supports
the 802.11mc Wi-Fi RTT or FTM ranging protocol. The
clients record RSS measurements for individual transmit
nodes, along with their inter-nodal distance information.
Additionally, every client is also equipped with a Ultra-
wideband (UWB) ranging module (Qorvo MDEK1001 [66])
that estimates its distances to statically deployed and pre-
localized UWB anchors (tripods in fig. 12) at a sub-decimeter
level accuracy. The UWB measurements solely serve as a
means to estimate the groundtruth location information and are
not used for the RTI solution. For both Wi-Fi, apart from FTM
ranges, we use the onboard inertial sensors to improve
localization accuracy. We fuse the noisy range estimates
(fig. 13) along with the inertial sensor data using the popular
Extended Kalman Filter (EKF) heuristic [67].

While the above mentioned nodes are used towards
sensing and are typically mobile, UBIQMAP uses a central
node that is static (but randomly deployed) and slightly
more resourceful than the microcontroller units. Note that
the static node only marks the map coordinate’s origin, and
its random placement does not affect the overall quality
of the map reconstruction. We use a RaspberryPi-4 Model
B (with 4GB memory) as the central node that interfaces
with a ESP32-S2 unit for ranging with the mobile nodes.
All measurements (RSS and inter-nodal ranges) from the
sensing network are collated in the central node. It runs two
processes in real-time: (i) the CMDS algorithm to estimate
the dynamic node topology, and (ii) the UBIQMAP RTI re-
construction procedure with the new set of dipoles obtained
after each topology estimation. Depending on the ROI size
and GRIDFIND estimated resolution, we update the maps at
a rate of 0.5–2 Hz with a reasonable PSNR at a steady state.

Additionally, we deploy a 0X-DELTA [68] robot equipped
with a SICK LMS111-10100 [69] 2D LiDAR module (see
fig. 16) to generate a SLAM based reconstruction of the
region of interest. Both the robot and LiDAR are suitable
for outdoor usage such that it can be used to go around the
periphery of the building to map its contour (see fig. 17).
The robot is equipped with an NVIDIA JETSON NANO mod-
ule that provides ample computing power to run SLAM
algorithms. We use the open-sourced lidarslam_ros2
package provided by the ROS software platform [70] that
runs on our robot.

5.2 Deployment Scenarios

We deploy UBIQMAP in two real scenarios: (i) a large
building foyer area (≈3000 sq. ft) with a relatively simple
structural layout, and (ii) a residential apartment (indoor
area≈800sq.ft) with a considerably complex layout – see
fig. 12 for layout details. While the foyer area only has four
large pillars, each of width 2 m×2 m, the apartment has four
large rooms with brick walls of various shapes and sizes
and three inaccessible areas (shut doors). Additionally, note
the materials marked in fig. 12: a drywall (yellow block),
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Fig. 12: (left) UBIQMAP mobile node prototype. The remaining figures show the layout of the deployment scenarios and the
subsequently reconstructed attenuation/obstacle maps. In the apartment, three zones marked as NOACC are deliberately made
inaccessible with doors shut. Materials marked in the apartment: dry wall (yellow block), three closed wooden doors with glass
panes (white blocks) and a wall-finished wardrobe with metallic parts (green block).
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Fig. 13: Fluctuation in RSS measurements due to random fad-
ing in LOS (3–4dB) and NLOS (8–10dB) scenarios. The median
location error is ≈2 m in LOS and ≈ 3.5 m in NLOS conditions.

TIKREG
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Fig. 14: For an average location error of 2–3 m, note that how
the stochastic approximation of the dipoles in UBIQMAP help
achieve high quality reconstructions compared to the baseline
TIKREG bench marked on the same measurement set.

three closed wooden doors with glass panes (white blocks)
and a wall-finished wardrobe (green block) with metallic
parts. The non-accessible regions are marked NOACC (blue).
In both scenarios, we use four volunteers (along with the
static control node) who walk randomly within and around
the mentioned areas at an approximate speed of 1 m/sec.
For the building foyer area, we collect measurement traces
worth of ≈4 minutes resulting in about 8K dipoles. The
apartment being located on the ground floor, we collect
measurements both indoors as well as outdoors. Overall,
we collect ≈6 minutes worth of measurements resulting in a
little over 9K dipoles (we had many missing ranges in this
case). Note that in our real-time setup, a clearly interpretable
reconstruction is achieved way earlier than the total trace
collection time. Additional measurement traces are used for
systematic performance evaluation.

5.3 Testbed Results
We achieve reasonable reconstruction quality for both – the
more straightforward foyer area (18 dB+ in about 20 sec-
onds at resolution 5λ i.e., 0.6 m) as well as for the complex
apartment layout (9 dB in about 50 seconds at resolution 3λ

i.e., 0.36 m). Fig. 13 showcases the noise associated with the
obtained RSS and the estimated locations. Fig. 14 demon-
strates preliminary results to showcase how UBIQMAP out-
performs the baseline with similar measurement efforts.

PSNR ≈ 6.2 dB 

PSNR ≈ 4.6 dB 

PSNR ≈ 8.2 dB 

PSNR ≈ 8.5 dB Trajectory 2

Trajectory 1

I

I

I

I

I

I

Fig. 15: Comparison of SLAM-based map for a different pre-
defined trajectory with UBIQMAP generated map for random
trajectories. A slight change in the robot trajectory hugely
decreases the SLAM’s accuracy in contrast to the UBIQMAP,
which remains nearly unaffected by the trajectory choice.

UBIQMAP versus SLAM. We demonstrate the effectiveness
of UBIQMAP compared to SLAM in mapping enclosed
indoor spaces or areas that are sparingly accessible. First,
in fig. 15, we show how SLAM-based maps are extremely
sensitive to minor variations in the scanning trajectory,
unlike their RTI-based counterparts. This is particularly
true for shorter trajectories - observe a 2 dB degradation
in PSNR between trajectories 1 and 2. For UBIQMAP, the
reconstruction is way more robust, obviating the need for
sophisticated trajectory planning.

Second, unlike SLAM, a key feature of an RTI system lies
in its ability to map spaces beyond LOS. In fig. 16, we show
how the reconstruction quality for SLAM is tightly coupled
to the accessibility of the indoor space. UBIQMAP performs
much better overall, even where no or very little indoor
access is provided. Third, fig. 17 demonstrates an extreme
situation where we restrict ourselves to dipoles collected
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Fig. 16: (Left) 0X-DELTA robot equipped with 2D LiDAR.
(Right) Performance analysis of UBIQMAP with SLAM for di-
minishing accessible region.

only in the outdoor area, i.e., with zero-access indoors. The
four paths through which the volunteers moved during data
collections are marked with dotted lines. UBIQMAP recon-
structs the obstacle map reasonably well (PSNR 8.2 dB).
Overall, we achieve nearly 30% better reconstruction accu-
racy by UBIQMAP as compared to SLAM.

Not 

Accessed

(a) Outdoor Paths (b) UBIQMAP 

(attenuation image)

(c) UBIQMAP 

(obstacle map)

(d) SLAM

Fig. 17: Reconstructed attenuation and obstacle map by
UBIQMAP as compared to SLAM for zero access to the apart-
ment indoors.

Mapping beyond building structures. Besides adeptly
mapping structural entities of the building, UBIQMAP can
be leveraged to depict entities such as furniture, humans etc.
Such functionalities are essential in tactical scenarios where
detecting human presence in enclosed spaces is crucial. We
demonstrate two specific instances where (i) we place a
large-sized wooden shelf in the middle of one room and
(ii) a couple of human volunteers stand in another room
together (see fig. 18). Observe the corresponding attenu-
ation maps that clearly reflect their presence. Although
such entities are evident within the attenuation map, it
should be noted that such details cannot be easily filtered
out by simple techniques (e.g., OTSU’s method). For such
application specific filtering we often need non-trivial image
segmentation algorithms [71], [72] depending on the type of
entity we want to look out for. Our primary contribution is
to unveil the attenuation map, in a pervasive setting, that
can be fed to such algorithms (designing them is beyond the
scope of this paper).

Material identification. We leverage UBIQMAP’s attenu-
ation image to predict the material properties of struc-
tures present on the obstacle map. In fig. 19 we showcase
the relative attenuation coefficients estimated for various
parts of the building structure - an information that is
not available from SLAM-based mapping. We observe that
the material identification accuracy can be improved us-
ing a higher resolution and significantly more measure-
ments, which hampers real-time computation. Currently
UBIQMAP’s algorithms are fine tuned to estimate structural
maps and its material identification capabilities are limited.
Our current observations on inferencing material types are

Humans

Furniture

Human Attenuator

Furniture Attenuator

Fig. 18: UBIQMAP captures the presence of the furniture
(wooden shelf) along with the human beings within the atten-
uation map.

predominantly qualitative. We intend to carry out a rigorous
quantitative analysis as a future work.
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Fig. 19: Potential use of UBIQMAP to predict materials proper-
ties of structures in an attenuation image. Attenuation profiles
of various materials are typically pre-calibrated.

UWB versus FTM based reconstruction. By utilizing UWB
ranging for localization, we achieve a PSNR ≈ 8.5 dB with
only 25% exploration, unlike Wi-Fi ranging based local-
ization that requires at least 35–40% exploration to reach
a similar level of PSNR. With increase in exploration of
ROI the reconstruction accuracy of both UWB and Wi-Fi
becomes practically the same (see fig. 20). We demonstrate
how UBIQMAP can deal with noisy location data that has a
multiplicative effect on the reconstruction accuracy (unlike
RSS noise that has an additive effect).
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Fig. 20: UBIQMAP embraces Wi-Fi ranging, a relatively less
accurate modality for localization, to achieve similar levels
of reconstruction accuracy as compared to its highly accurate
counterpart - Ultra Wideband (UWB) based ranging.

6 SCALED-UP STUDIES

In the previous section, we evaluate the performance of
UBIQMAP in real world scenarios. To further our insights on
its performance, we perform scaled-up simulation studies in
controlled settings. Such simulations help us tune various
control knobs to understand the RTI performance better, for
instance - ROI size, layout complexity, number of dipoles,
the speed at which the mobile nodes move, localization error
and so on.
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Simulated floor plans. We simulate two floor areas of
size 1230 sq.ft and 2500 sq.ft referred as Map 1 and Map 2
respectively (see fig. 21). Our primary objective is to bolster
the results obtained in the apartment (previous section) with
additional layout maps and derive more insights.

6.1 Performance Evaluation and Insights
Grid resolution. We demonstrate the effect of choosing
an optimal grid resolution as opposed to the best possible
resolution. In fig. 21, we show that for a resolution of
δ = 0.8m, we obtain PSNRs equal to 9.29 dB and 8.61 dB
respectively for Map 1 and Map 2. Further decreasing δ
shoots up the computation cost without appreciable gains
in PSNR metric.
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Fig. 21: An illustration of change in PSNR with respect to
resolution. As can be seen after the optimal resolution there
is no significant change in the PSNR value.

Location noise and choice of parameter. A significant
challenge of in-the-wild deployment of an RTI system lies
in appropriate prediction and treatment of location noise,
which is known to have a multiplicative effect unlike RSS
noise. As discussed earlier, the stochastic approximation
using Weierstrass transform can effectively reduce its effect,
however choice of the parameter σ plays an important role.
Studies [73] show the impact of Weierstrass transform maxi-
mizes for the mean error and degrades for other choices. We
show (in fig. 22) how the PSNR is maximized for σ equal
to the mean location error. Other choices of σ lead to sub-
optimal improvement.
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Fig. 22: CDF of percentage PSNR improvement over TIKREG
for a mean location error of 2 m. The bar graphs show how the
overall PSNR is impacted by the choice of σ for a given location
error.
Number of nodes and average velocity. In the previous
section, we are limited to four mobile nodes with an approx-
imate node velocity of 1m/sec. However, the simulation
allows us to experiment with various number of nodes and
their corresponding velocities. More importantly, this allows
us to experiment with various trajectories that the nodes
follow while sensing. In fig. 23 we show the improvement
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Fig. 23: An illustration of increase in accuracy with respect to
increase in explored area. As can be seen, within 40 percent area
exploration UBIQMAP can produce a highly accurate image of
the original map.
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Fig. 24: UBIQMAP performance evaluation with different num-
ber of mobile nodes and their average velocity. We have shown
the minimum time required by UBIQMAP in different setups to
map an indoor environment with an PSNR above 8dB.

in the reconstruction quality as a function of the percentage
exploration of the ROI. It is remarkable that in both the cases
an exploration of ≈40% leads to a PSNR of 8 dB+. Compare
such results with SLAM-based exploration techniques that
need explicit exploration in all LOS reachable zone. We
also experiment with various node velocities along with the
number of nodes to understand the potential of UBIQMAP
in time-critical missions as shown in fig. 24.

� Additional Remarks and Limitations. UBIQMAP does
not have any direct way to detect heavy multipath fading
that can severely impact FTM ranging as well as RSS noise.
Environmental factors such as temperature fluctuations and
weather conditions [74] also impact the RSS and FTM val-
ues. Although we show UBIQMAP performance in ambient
conditions, its resilience in adverse climatic conditions must
be thoroughly evaluated. Existing literature explores the Wi-
Fi Channel State Information (CSI) to create inference mod-
els for predicting heavy multipath or give better insights
for range correction [75], [21]. We separately explore the
idea of utilizing CSI to improve the accuracy of UBIQMAP.
However, we find the inference models over-fit too easily
and cannot be applied across different ROI sites. Second, it
also increases the computation significantly, hence not jus-
tifiable in our current setup. Deep learning approaches [76]
show near accurate prediction of RSS for a given location
without being physically present. The future direction of
work could be to utilize such techniques for indoor mapping
in situations where the deployment of mobile devices is
restrictive or not feasible.
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7 CONCLUSION

In this paper, we propose UBIQMAP, an end-to-end pro-
totype that can reconstruct an indoor environment without
any dependency on pre-deployed infrastructure. We discuss
the effect of location noise on the reconstruction quality
and propose strategies to reduce the same. Second, we
also thoroughly analyze the computation cost involved with
such reconstruction. We implement a UBIQMAP prototype
and deploy it in two real environments along with a couple
of simulated ones. UBIQMAP outperforms the baseline RTI
algorithm by nearly 30% to 40% in terms of map recon-
struction quality. Additionally, we show the capabilities of
UBIQMAP to reconstruct totally inaccessible regions along
with differentiating between material properties of the ob-
stacles. UBIQMAP takes the state-of-the-art RTI systems a
step closer to real-world deployment, particularly in dy-
namic environments.
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