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ABSTRACT
Neural Radiance Fields (NeRF) have emerged as a powerful tech-

nique for synthesizing novel views of complex 3D scenes from a

sparse set of images. The advances in NeRF has shown prominence

in the field of wireless networks as well. This paper explores the

application of NeRF in the domain of spectrum sensing, proposing a

novel approach that leverages the capabilities of RF based NeRF and

extend it to enhance the accuracy and efficiency of spectrum sens-

ing in wireless communication networks. Our proposed solution

SpecNeRF is evaluated through extensive experiments, demonstrat-

ing significant improvements in terms of scalability, robustness to

environmental changes, and adaptability to varying signal condi-

tions. SpecNeRF not only provides a viable solution for current

spectrum sensing challenges but also paves the way for innovative

applications in future wireless networks, including cognitive radio

and 6G technologies.
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1 INTRODUCTION
With the recent advances in wireless communication, there is a

growing demand for efficient deployment and management of net-

work resources to provide optimal user experience. The surge in

network demands is expected to increase even further with the

new generation of data hungry applications targeted towards high

throughput networks like 6G and beyond.
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Figure 1: An illustration of the change in REM along with the
pixel wise absolute error ECDF for a change in transmitter
location (≈ 12m). The median change in is ≈ 8dB for an area
of 75×75m.

A crucial tool for planning such deployments is the Radio Envi-

ronment Map (REM), which represents the spatial distribution of

signal parameters. For example, an REM can depict the signal-to-

noise ratio (SNR) or received signal strength (RSS) across a given

geographical area. REMs are effective in identifying zones with

strong coverage, weak coverage, and areas completely cut off from

signal access. Analyzing REMs is vital for triggering mechanisms

that dynamically adjust network capacity across the coverage area.

These mechanisms may include beamforming to enhance signal

strength in targeted zones, optimizing the directionality of transmit

power, or even relocating base stations to improve overall cover-

age. Therefore, having access to an accurate and up-to-date REM is

crucial for effective network deployment and optimization.

Efficiently estimating REMs remains a significant challenge.

Broadly, two approaches are employed: analytical propagation

models [5, 16, 17] and data-driven methods. Analytical models

are effective for long-range transmissions at relatively lower fre-

quency bands (e.g., VHF or lower UHF bands) but are susceptible

to errors [1, 2]. In contrast, data-driven methods, often combined

with analytical models, are preferred when the REM requires high

degree of detail and good accuracy. Cellular ISPs frequently con-

duct measurement campaigns, commonly referred to as wardriv-
ing [14], to validate their coverage areas. While such wardriving

significantly enhances REM accuracy, it is also an expensive and

resource-intensive process.

Scalability Challenges: While wardriving has inherent costs, the

challenge intensifies when network conditions change. For instance,

as illustrated in Fig. 1, relocating the transmitter by just 12m from
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its original position causes significant alterations in the REM, with

a median change of approximately 8 dB. Such shifts render the

pre-existing REM obsolete, necessitating new measurements to up-

date it accurately. Even minor adjustments, such as altering the

antenna’s azimuth, can lead to substantial changes in the REM that

are difficult to predict due to complex terrain characteristics. Fur-

thermore, when capacity requirements fluctuate across a coverage

area, modifications to the deployment infrastructure must be exe-

cuted with precision to meet these demands. In all these scenarios,

it is evident that wardriving-based solutions lack scalability—each

time the network undergoes or requires changes, it is impractical

to recollect measurements.

In this paper, we propose SpecNeRF (Spectrum Neural Radiance

Field), a framework designed to scale up REM estimation by mini-

mizing the reliance on wardriving. SpecNeRF estimates the obsta-

cles within the channel and predicts propagation loss for a given

transmitter configuration. Our approach leverages a state-of-the-

art computer vision technique for 3D reconstruction called Neural

Radiance Fields (NeRF), which achieves high-fidelity reconstruc-

tions from minimal 2D images [12, 13]. NeRF has recently been

adapted for the wireless domain to map signal strengths across

spatial zones [11, 24]. Unlike traditional methods that merely in-

terpolate observed samples, these techniques use location-tagged

signal measurements to estimate the wireless propagation environ-
ment (e.g., buildings, foliage, obstacles). The propagation environ-

ment is encoded as a neural network which can predict the REM

at any arbitrary resolution. For instance, when the transmitter lo-

cation changes, this neural network can be queried to infer signal

strength at any receiver location. SpecNeRF significantly scales up

REM estimation, making it feasible where traditional wardriving

would be prohibitively expensive or impractical, as it would require

re-estimating the entire REM from scratch. Our key contribution

in this paper is leveraging NeRF-based techniques to efficiently

maintain up-to-date REMs or spectrum occupancy maps with mini-

mal additional measurements, even when network configurations

change. SpecNeRF has the potential to help network operators

significantly reduce wardriving costs.

2 SCALING REM ESTIMATION
In the following, we provide some background on Radio Environ-

ment Maps as well as the challenges involved in estimating them.

2.1 Radio Environment Maps (REMs)
The REM of a region is predominately dependent on the location,

height, direction (azimuth) and transmit power of the antenna along

with the environmental factors especially, terrain that affect signal

propagation.

Classical Approaches. A naive approach for REM estimation is

to exhaustively collect samples through wardriving and interpolate

them over the region of interest. Some of the widely used inter-

polation techniques are - Inverse Distance Weighting (IDW) [9],

Radial basis Function (RBF) [8], Gaussian Process Regression or

Kriging [4]. More advance interpolation technique utilizes graph

structures [18, 20] to represent spatial locations, achieving sig-

nificantly smoother interpolation values. The method leverages

both local neighborhood relationships and global known values,
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Figure 2: The error incurred for REM estimation for a region
of dimension 75m×75m. Left: For displacement in transmit-
ter position, and Right: Cost incurred (interpolation time) to
recover the error.

ensuring a more accurate and refined interpolation outcome. Such

practice is often prohibitive due to budget constraints and lack of

scalability [2, 14]. Analytical approaches such as wireless propa-

gation loss models [5, 16] are often used in conjunction with such

wardriving data [1]. However, analytical models have limited ac-

curacy and may not be very reliable when capacity demands are

stringent.

Recent Learning-Based Approaches. Recent approaches involve
sophisticated deep learning based (DL) techniques to predict REMs

that utilizes trained models to estimate the REM from sparse or

noisy measurement (e.g., crowdsourced [2]) data. With the sampled

measurements and a given transmitter location, a neural network

model estimates the path-loss that the signal incurs while trans-

mission. This approach is further divided into - offline and online
phases based on the training mode. In offline mode, the training

process is conducted only once over an exhaustive dataset. While

in online mode, the model continuously trains to adapt within the

environment, resulting in a more detailed REM. Although the accu-

racy can be high in cases, the trained models are often not easily

generalize to other terrains.

2.2 Challenges on Network Configuration
Updates

Although the existing techniques are in practice since long, the

problem of REM estimation is still unresolved. There are various

factors that contributes to the problem. Among the various con-

tributing elements, we emphasize two of the major factors that

significantly impacts the problem –

First, the accuracy of both interpolation and DL is largely de-

pendent upon the collected data samples. Complex geographical

region limit the amount of collected data, resulting in significant

differences between the estimated REM using interpolation and the

original one. While ML models offers to reduce this discrepancy,

training such models is itself a challenging task. This reduces the

efficacy of REM estimation significantly, particularly in scenarios

that requires rapid transmitter deployment.

Second, the problem of scalability remains unresolved in both

the approaches. This problem becomes even more pronounced in

the context of 5G, where the location of small cells changes rapidly

based on the number of users. In fig. 2, we illustrate one such exam-

ple of the exploration cost associated with the IDW technique using

the same region as shown in fig. 1, where the transmitter location
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is gradually moved by a specific distance. The exploration cost in-

creases exponentially, highlighting significant scalability challenges

and a substantial rise in operational expenses. Additionally, other

existing techniques show only a marginal change in exploration

cost, further underscoring the persistent scalability challenges.

We therefore ask the question whether we can build a scalable

solution for REM estimation that reduces the exploration overhead

without compromising on the accuracy? In [24], the existing NeRF

technique is translated from the visual to RF domain. We propose

to extend it further to capture the RF propagation in outdoor en-

vironment for a given set of transmitter position. While existing

techniques learn the RSS changes over a region, SpecNeRF identi-

fies the underlying factors responsible for the RSS changes. This

enables SpecNeRF to estimate REM for any given transmitter lo-

cation, thereby enhancing its robustness in dynamically changing

environments. SpecNeRF target towards rapid ad-hoc REM esti-

mation of unknown regions. Compared to existing DL techniques,

SpecNeRF gives an additional advantage of reduce training samples

requirements, making it more adaptable and efficient in diverse sce-

narios. Furthermore, SpecNeRF is designed to operate efficiently

on relatively low-end device with a single GPU. This combina-

tion of reduce data requirements along with hardware efficiency

makes SpecNeRF as a highly practical and sustainable solution

for real-time applications in dynamic and resource-constrained

environments.

3 OVERVIEW OF SpecNeRF
3.1 In a nutshell
SpecNeRF is a real-time solution that is easy to deploy and run

on any GPU powered system. There are two major components of

SpecNeRF–
Optimized war driving: A path planning algorithm designed to

cover key components critical to understand the region within the

constraints of the exploration budget. The algorithm assigns a cost

to each key component based on its proximity to the deployed trans-

mitters and generates an optimal trajectory to cover all components

at minimal cost.

NeRF based REM estimation: A Multi-Layer Perceptron (MLP)

or more specifically a NeRF model that essentially reduces the

loss between the original and predicted signal strength. Unlike the

existing techniques, we train and run the MLP locally on a low end

device. This provides significant improvement in terms of latency,

hardware requirements and energy consumption.

3.2 Optimized war driving
One of the major challenge that we aim to optimize is to collect

data samples and learn the RF propagation inside the region effi-

ciently without exhaustive manual war driving. The design aims

to collect the maximum possible data samples from key compo-

nents responsible for RF propagation loss while minimizing the

exploration cost.

To understand the key components responsible for the RF prop-

agation, we take a satellite footage of the given region and run

the Segment Anything Model (SAM) [7] on it. The segmented

footage (shown in fig. 3) highlights the key locations that needs

to be visited to understand different RF propagation phenomenon

(a) Original Satellite Footage (b) Segmented Footage

Figure 3: (a) Original satellite footage (b) Segmented footage
generated using Segment Anything Model (SAM).

such as shadowing, diffraction, etc., more efficiently. We denote the

segments with 𝑆 = {𝑆1, 𝑆2, 𝑆3 ...𝑆𝐾 }, where K denotes the number

of obstacles.

Algorithm 1 SpecNeRF Trajectory Planner

1: Input: Segments→ {𝑆1, . . . , 𝑆𝑛} Centroids→{𝐺1, . . . ,𝐺𝑛}
2: Output: Optimal tour with minimal cost covering all segments

3: procedure OptimalTour(Segments, Centroids)

4: 𝑁 ← number of segments

5: Initialize 𝑑𝑝 [2𝑁 ] [𝑁 ] ← ∞
6: for 𝑖 ← 0 to 𝑁 − 1 do
7: 𝑑𝑝 [1 ≪ 𝑖] [𝑖] ← 𝐶 (𝑆𝑖 ) ⊲ Initialize starting costs

8: for𝑀 ← 1 to 2
𝑁 − 1 do

9: for 𝑖 ← 0 to 𝑁 − 1 do
10: if 𝑀&(1 ≪ 𝑖) then
11: for 𝑗 ← 0 to 𝑁 − 1 do
12: if 𝑖 ≠ 𝑗 and𝑀&(1 ≪ 𝑗) then
13: 𝑑𝑝 [𝑀] [𝑖] ← min(𝑑𝑝 [𝑀] [𝑖], 𝑑𝑝 [𝑀& ∼
(1 ≪ 𝑖)] [ 𝑗] + dist( 𝑗, 𝑖))

14: Optimal_Route←∞
15: for 𝑖 ← 0 to 𝑁 − 1 do
16: Optimal_Route ← min(Optimal_Route, 𝑑𝑝 [(1 ≪

𝑁 ) − 1] [𝑖])
17: return Optimal_Route

The task is to cover all segments in 𝑆 while keeping the traversal

cost at minimal. We frame the problem as a Traveling salesman

problem (TSP) and solve it using dynamic programming approach.

We calculate the reward or cost associated with each segment by

computing the cumulative distance between the centroid of the

segment from each respective transmitter location i.e.,

𝐶 (𝑆𝑖 ) =
𝑛∑︁
𝑗=1

dist(𝐺𝑆𝑖 ,𝑇𝑗 ) (1)

Where𝐺𝑆𝑖 and𝐶 (𝑆𝑖 ) denotes the centroid and cost associated with
the segment 𝑆𝑖 . In algorithm 1, we denote the subset of segments

using a binary mask M. A higher value of 𝑇𝑗 signifies an increased

reward, indicating segments that are likely to experience substan-

tial variations in signal strength. These variations are primarily

attributed due to the corresponding distance between the transmit-

ter and the segment. The algorithm evaluates the minimal cost of

adding a segment to the path by comparing the costs of reaching
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Figure 4: Schematic illustration of the SpecNeRF flow, detailing steps of data collection, training the neural network and the
final RSS prediction for a new/change transmitter location.

that segment from all previously visited segments. By iterating over

all possible segments combinations, the algorithm computes the

minimum cost to traverse all segments.

TSP problem is a well known NP Complete problem. Specifically,

the time complexity of solving TSP is O(n*2
𝑛
) while the space com-

plexity is O(n
2
), where n is the number of segments. However, in

practical applications where the number of segments rarely exceeds

a single order of magnitude, computational requirements remain

manageable.

3.3 NeRF based REM estimation
Neural Radiance Field (NeRF) is a novel deep learning based frame-

work used for scene reconstruction and view synthesis. Given a set

of images taken from different view angles, a NeRF model trains

a Multi Layer Perceptron (MLP) to reduce the loss between the

estimated and original radiance and density values of the image

pixels. Consequently by reducing the loss, the NeRF model is able

to predict the radiance and density values of image pixels from

different view angles i.e, perform view synthesis.

The advances in NeRF open a new direction to understand the RF

propagation inside an indoor environment. The study demonstrates

promising results for RSS estimation; however, its application is

currently limited to indoor environments. SpecNeRF takes inspira-

tion from the work [11, 24] and proposes to extend it a step further

for REM estimation. At its core, the RF based NeRF replaces the

visual input with the RF signal and estimates the signal strength at

any given location.

To formulate the problem in NeRF, consider the region divided

into 3D voxels represented by X=(𝑥,𝑦, 𝑧). The signal strength re-

ceived at any location depends on the transmitter location (𝑇𝑋 )

along with the transmission direction 𝜔 = (𝛼, 𝜃 ), where 𝛼 and 𝜃 de-

notes the azimuthal and elevation angles. Each voxel attenuates the

signal by a factor 𝛿 , determined by the specific material properties

of the voxel. Moreover, each voxel functions as a potential virtual

transmitter that transmits the attenuated signal further through

the medium. We therefore formulate the NeRF equation as –

𝐹Θ : (𝑇𝑋,𝑇𝑋 , 𝜔) −→ (𝛿𝑥 , 𝑆 (𝑇𝑋,𝜔 )) (2)

Here 𝑆 (𝑇𝑋,𝜔 ) denotes the attenuated signal transmitted from

a voxel at location 𝑇𝑋 and Θ are the learnable weights from the

neural network. The NeRF model takes in input two 3D location

coordinates (transmitter and receiver position) along with one 2D

direction coordinate (transmitter direction) for the training purpose.
The input is up-scaled to a higher dimension by an appropriate

encoding scheme. A detailed illustration of the involved steps is

shown in fig. 4. Essentially, we train two MLP models - Attenuation

and Radiance. The attenuation model estimates the material specific

attenuation 𝛿 of a voxel for any given transmitter location (𝑇𝑋 ),

while the radiance model estimates the signal retransmitted from

the given voxel. Given the constraint of training on a relatively

low-end device, we limit the voxel size to 50 cm. To achieve a higher

degree of estimation refinement, it is feasible to decrease the voxel

dimension further, albeit at the expense of increased training and

computational demands. For more descriptive understanding of

the RF based NeRF, we recommend the readers to refer the work

in [11, 24].

Unlike the existing RF-NeRF where the receivers are anchored to

predefined location with mobile transmitter, SpecNeRF considers
every voxel as a receiver. For each transmitter location, we capture

the signal strength for every possible location in the trajectory.

Like any other DL techniques, the performance of SpecNeRF im-

proves with more training samples. We use interpolation technique

(RBF) to estimate missing values in the neighborhood of sampled

location. Note, we use interpolation only as a medium for Data Aug-

mentation rather than the complete REM estimation. Despite the

significant increase in the number of potential receivers, the voxel

size, combined with the limited number of transmitters, ensures

that the training time does not exceed 20-30 minutes.

4 RESULTS
We deploy in SpecNeRF inside simulated environments generated

using Sionna-RT [6] platform and Open Street Maps [15]. The
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Figure 5: Comparative analysis of the original vs estimated REM generated by : IDW, RBF and SpecNeRF. Notably, to achieve
the targeted accuracy (below ≈ 3 dB), 60-70% of data samples are required by interpolation techniques for a new transmitter
location. Conversely, SpecNeRF leverages existing data to estimate the same efficiently.
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Figure 6: Comparative study of scalability and reconstruction
accuracy of SpecNeRF.

deployment is done in urban set-up where the obstacle material is

mostly concrete. We run all the computation on a device equipped

with a GPU of 8GB memory. To assess scalability, we compare

SpecNeRF under various setups ranging from urban to semi-urban

regions. The NeRF model is trained with a batch size of 128 samples.

A ablation study is shown for the same. For ray tracing, we limit

both the azimuth and polar angle resolution at 10
◦
i.e., total 36x9

rays are used for the ray tracing.

4.1 Scalability
Scalability is one of the major objective which we resolve using

SpecNeRF. We conduct a comparative study to demonstrate the

cost reduction achieved with SpecNeRF compared to other existing

techniques. Additionally, we illustrate the relative stability in the

variance of reconstructed REM by SpecNeRF as compared to other

techniques. Since the accuracy of DL driven reconstruction model

is governed by the training samples, we show the comparative

study with respect to the existing popular interpolation techniques,

namely IDW and RBF. As shown in fig. 5, the reconstructed REM

by SpecNeRF closely aligns to that of the IDW, RBF methods. This

alignment is particularly noteworthy given that these traditional

interpolation techniques utilize 60-70% of the data samples for a

new transmitter location. On the contrary, SpecNeRF leverages ex-

isting data to achieve comparable accuracy, thereby highlighting its

efficiency and precision in estimation. In fig. 6a, we show a similar
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Figure 7: Performance analysis of SpecNeRF: (a) Error compar-
ison between random and SpecNeRF generated trajectories.
(b) Impact of varying batch sizes on performance.
efficacy of SpecNeRF compared to the existing techniques in terms

of exploration cost (exploration time in seconds). Since there is no

additional exploration overhead for SpecNeRF, we use the REM
estimation time as the only cost for comparison. Also, in fig. 6b,

we show the relative stability of the reconstruction. Note that to

measure the error, we find the pixel-wise Root Mean Square Error

(RMSE) of the actual and reconstructed REM. Although existing

interpolation techniques exhibit marginally lower errors, their vari-

ance is noticeably higher compared to SpecNeRF. Consequently,
SpecNeRF emerges as a more robust and reliable tool for REM esti-

mation, especially in regions where the variability needs to be at

minimum.

4.2 Random vs SpecNeRF generated trajectory
The trajectory plays a key role in determining SpecNeRF overall

accuracy. As discussed earlier, SpecNeRF learns the RF propagation
inside the region itself for REM reconstruction. A random trajectory

fails to provide a comprehensive coverage of the region. Conse-

quently, a random trajectory results in suboptimal learning of the

region compared to a meticulously planned one. We present the

same in fig. 7a as an ECDF.

4.3 Ablation study of SpecNeRF Neural Network
To optimize the neural network’s performance, we conducted a

series of experiments to train SpecNeRF using different batch sizes.

A large batch size will decrease training loss at the cost of test
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accuracy and generalization. Whereas a small batch size will lead

to a poor convergence. Fig. 7b illustrates the incurred error during

training with varying batch sizes (N = 64, 128, 256) presented as an

ECDF. Although a batch size of N=64 shows a similar training loss

to that of N=128, it loses in terms of generalization. Hence, we use a

batch size of 128 to achieve optimal performance while preserving

the regularization. For regularization and reduce the chances of

over-fitting, we use a weight decay of 5 x 10
−5
.

5 RELATEDWORKS
REM estimation has been a long-standing challenge, primarily due

to scalability issues. Early approaches relied on simulation models

like log-path loss and ray tracing [19], but these models often fail to

capture region-specific properties essential for accurate spectrum

sensing. Existing REM estimation techniques can be broadly cate-

gorized into two subcategories:

Interpolation Approach : Common interpolation techniques

like Inverse Distance Weighting (IDW)[9], Radial Basis Function

(RBF)[8], and Kriging [4] estimate unknown values using weighted

samples fromneighboring locations.More advancedmethods utilize

graph-based structures [18, 20] to incorporate both local and global

information for improved accuracy. Matrix completion methods,

such as in [21], use low-rank approximations to estimate REM from

sparse data, albeit requiring extensive parameter tuning, which

limits their practicality in dynamic environments.

Machine/ Deep Learning (ML/DL) Approach : Interpolation

accuracy is often constrained by data sample availability. Recent

ML/DL techniques mitigate this by using data-driven models like

Convolutional Neural Networks (CNNs)[10], Graph Neural Net-

works (GNNs)[3], andGenerative Adversarial Networks (GANs)[23]

for more robust REM estimation. Auto-encoders[22] are also popu-

lar for their efficient data representation learning. However, these

approaches require large datasets and substantial computing power,

limiting real-world applications.

■ Discussion SpecNeRF is a scalable REM estimation solution

with promising results in simulation environments, however large-

scale real- world deployment is yet to be accomplished. Currently,

SpecNeRF requires ≈20 minutes for training that could be fur-

ther decreased (≈ 4 minutes) by incorporating techniques like

InstantNGP [13]. With the advancements in edge devices, there

is also a possibility to offload the training process to lower-end

devices. We anticipate exploring this as part of our future work.

6 CONCLUSION
In conclusion, SpecNeRF represents a significant advancement in

the field of Radio Frequency (RF) technology by leveraging the in-

novative principles of Neural Radiance Fields (NeRF). By extending

NeRF’s capabilities to outdoor setups, SpecNeRF offers a scalable
and efficient solution for Radio Environment Map (REM) estimation.

This approach not only enhances the accuracy and reliability of RF

mapping in diverse and complex outdoor environments but also

paves the way for more advanced applications in wireless commu-

nications, autonomous vehicles, and smart city infrastructure. The

integration of SpecNeRF into these domains holds the potential to

revolutionize how we understand and interact with RF environ-

ments, making it a pivotal contribution to the ongoing development

of next-generation RF technologies.
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