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ABSTRACT
Edge-assisted wireless sensing is increasingly popular, where com-

plex neural network models perform inference tasks on wireless

channel state information (CSI) data streamed from IoT devices.

However large volumes of CSI data sent across the network for

inference can significantly impact network bandwidth and reduce

the Quality of Experience. This paper tackles the challenge of opti-

mizing network resource utilization in wireless sensing systems by

compressing and subsampling CSI streams. We evaluate methods

that quantize and selectively subsample CSI data before transmis-

sion to the edge server, which is then fed to the inference models.

Such approach reduces bandwidth and computational load, improv-

ing data transmission and processing efficiency. Experiments con-

ducted in two real testbeds (indoors as well as outdoors) show how

CSI compression preserves sensing information integrity while en-

hancing system performance in terms of latency, energy efficiency,

and throughput. By integrating quantization and subsampling with

edge computing, this work enhances wireless sensing systems, mak-

ing them more scalable and efficient in utilizing network resources.
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1 INTRODUCTION
Internet of Things (IoT) devices, majority of which are equipped

with wireless radios, offer a unique opportunity to leverage their

capabilities for Radio Frequency (RF)-based sensing. RF-based sens-

ing (a.k.a. wireless sensing) generally refers to a host of techniques
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that utilize the underlying wireless communication channel as a

sensing modality. For instance, the Channel State Information (CSI)

available at a Wi-Fi receiver includes amplitude and phase varia-

tions of the received signal, which are perturbed by the surrounding

physical environment and the movement of objects or reflectors

(e.g., human beings) within it. Analyzing such variations allows for

learning and recognizing patterns or signatures corresponding to

specific physical contexts across a wide array of application verti-

cals. Such sensing becomes even more effective when implemented

in a distributed manner across multiple IoT devices in a network,

deployed across various vantage points [10].

However, as with many other sensing modalities, sophisticated

sensing tasks require complex inference models that are challeng-

ing to execute on resource-constrained IoT devices. A common

practice is to offload the computation to the network edge. The

drawback of such approach is that IoT devices must continuously

stream sensory data (e.g., CSI samples) to the network edge while

sharing network resources with regular data traffic. This issue is ex-

acerbated in a distributed sensing scenario where multiple sensory

data streams coexist. As discussed in Sec. 4, we present a couple of

use cases where CSI samples from four Wi-Fi devices are streamed

simultaneously to an edge server. Each CSI sample comprises of

64-bit complex values for each of 64 OFDM subcarriers. With an

average sampling rate of 800Hz/device, the aggregate network traf-

fic approaches 20 Mbps. Existing literature employing alternative

hardware platforms, such as the Intel 5300 [1] or PicoScenes [3],

also reports similar substantial data usage. First, the network foot-

print taken up by RF sensory data can be substantial and affect the

overall QoS of the network. Second, such data has stringent latency

requirements in order for the inference models to work accurately.

Consequently, as more devices compete for network resources (both

data and sensory streams), overall system performance is affected.

Third, the continuous pre-processing and transmission of sensory

data is energy-intensive, especially for battery-powered IoT devices.

While the aforementioned points suggest potential bottlenecks

in IoT-based wireless sensing systems, our paper critically examines

these issues. We explore the following question: To what extent can
we improve the network utilization of distributed wireless sensing
systems without significantly compromising the inference accuracy
of the sensing tasks? Specifically, we investigate the optimal rate for

subsampling the CSI stream and determine the minimum precision

(bit-width) required for CSI samples while ensuring that the model

performs within acceptable limits.

In this paper, we explore sensory data compression in the light

of two sensing use cases: (a) Human Activity Recognition (HAR)

within an indoor space of area 1300 sq ft., spanning four activities:

walking, running, jumping and unoccupied room, and (b) Road traf-

fic surveillance, primarily counting the number of vehicles passing
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Figure 1: In the above figure, multiple IoT devices send CSI data to the edge server for sensing tasks. However, the same
network bandwidth is also shared among regular communication clients. While an increased number of sensors aids in better
sensing accuracy, it also impacts the available network bandwidth shared with the communication clients. In this work, we
present a comparison of various methods that improve network utility while transmitting CSI data to the edge. We compare
subsampling along with various compression methods to provide sufficient link capacity to communication clients while
achieving acceptable sensing accuracy. Our goal is to achieve an acceptable compression of CSI data for sensing, enabling both
sensing and communication tasks to coexist without poor QoE.

through an intersection. We train relevant deep learning models

to be run on an edge device for inference tasks – an LSTM-based

network for (a) and a CNN-based network for (b). The compression

of CSI samples take place on the device itself.

We implement four compression strategies: uniform quanti-

zation, K-Means clustering, Principal Component Analysis(PCA)

based approach and Encoder-Decoder based compression. Note,

although compression can save network resources, it can be costly

in terms of computational resources. For instance, popular deep

learning-based compression techniques, such as Encoder-Decoder

networks, are resource-intensive and require specific fine-tuning

to be effectively utilized on IoT devices. We make the following

contributions in this paper.

•We conduct a comparative analysis of four data compression

techniques on CSI data (as well as subsampling) and evaluate

their effects on network utilization as well as their impact on

wireless sensing performance (fig. 4 and fig. 5).

• Our observations indicate that non-uniform quantization is often

more effective for simple models compared to uniform quantiza-

tion, while PCA or encoder-decoder-based techniques, although

effective, are heavy on resource consumption (fig. 6).

• We present extensive results based on traces collected from real

testbed scenarios—one indoors and another outdoors.

2 WIRELESS SENSING
Wireless sensing has gained significant traction from the research

community due to its lightweight nature compared to camera-based

methods, its ability to utilize existing wireless network infrastruc-

ture, and its versatility in various contexts, including non-line-of-

sight scenarios – all without the need for additional hardware. In

this paper, we focus on Wi-Fi-based sensing using the Channel

State Information (CSI) metric. However, similar principles can be

applied to other modalities such as Bluetooth, Ultra-Wideband, or

millimeter waves.

2.1 Wi-Fi Channel State Information (CSI)
Channel State Information (CSI) is a complex-valued function that

encodes how a signal propagates from a transmitter to a receiver. In

aMIMO systemwith𝑁𝑡 transmit antennas and𝑁𝑟 receive antennas,

the Channel State Information (CSI) matrix H consists of elements

h𝑖 𝑗 , each a vector of length 𝐾 . Here, 𝐾 represents the number of

OFDM subcarriers. The matrix H matrix can be expressed as:

H =


h11 h12 · · · h1𝑁𝑡

h21 h22 · · · h2𝑁𝑡

.

.

.
.
.
.

. . .
.
.
.

h𝑁𝑟 1
h𝑁𝑟 2

· · · h𝑁𝑟𝑁𝑡


(1)

where each h𝑖 𝑗 is a vector of length 𝐾 :

h𝑖 𝑗 =


ℎ𝑖 𝑗 (1)
ℎ𝑖 𝑗 (2)
.
.
.

ℎ𝑖 𝑗 (𝐾)


(2)

Here, h𝑖 𝑗 is the complex CSI value for each of the 𝐾 subcarriers

between the 𝑗-th transmit antenna and the 𝑖-th receive antenna.

For our setup, which utilizes Wi-Fi over a 40 MHz bandwidth, 𝑘=64,

corresponding to sixty four OFDM subcarriers. Also, for our setup

both 𝑁𝑡 and 𝑁𝑟 equal to one, i.e., H = h11. However, not all of
the sixty four subcarriers are utilized for data transmission. Some

subcarriers are designated as null subcarriers while others are pilot

subcarriers, used for channel estimation and synchronization. A
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total of fifty two subcarriers carry the actual data payload which

are used as the sensory data.

2.2 Distributed Wireless Sensing
By leveraging the detailed signal properties captured in CSI, it is pos-

sible to monitor and analyze the environment for various activities

and events without relying on traditional sensors. In a distributed

setup, multiple wireless devices throughout the area of interest can

collaborate, providing comprehensive coverage and more accurate

sensing capabilities. This method allows for more robust detection

of movements, human occupancy, activity, all while maintaining

user privacy and reducing the need for intrusive hardware. Also

distributed sensing can improve the coverage area where a sens-

ing solution is deployed. In such a setup, all devices continuously

stream complex CSI values to the edge server. The edge server

incorporates appropriate fusion mechanism to aggregate the CSI

data and perform inference tasks.

2.3 A Case for Diminishing Returns
In the context of distributed wireless sensing, diminishing returns

refer to a point where increasing the precision (bit-width) of CSI

values or the sampling rate results in minimal or no significant

improvement in the accuracy of inferences. Beyond such point,

the sensing system consumes more resources – higher network

bandwidth, computational load, and energy usage, however that

does not correspond to substantial gains in performance. Instead,

such over-precision results in higher resource consumption, includ-

ing increased network bandwidth, computational load and energy

usage. Consequently, while the accuracy of the sensing tasks may

remain stable, the overall utility of the system decreases due to

the disproportionate rise in resource consumption relative to the

benefits gained. Such inefficiency highlights the need to balance

data precision, sampling rate, and resource use to keep the sensing

system effective and sustainable.

3 CSI COMPRESSION
Consider a distributed wireless sensing setup with𝑁 devices record-

ing and continuously streaming Wi-Fi Channel State Information

(CSI) data to an edge server for inference. Streaming each individ-

ual CSI vector is inefficient and incurs significant network packet

header overheads. The incoming CSI data is thus aggregated into

batches of𝑚 samples, each containing 𝐾 complex values. These

aggregated batches are suitable for compression algorithms, such

as quantization, to reduce data size and enhance transmission ef-

ficiency by leveraging unnecessary high precision, structure, and

historical information. For instance, in RPi, both real and imagi-

nary numbers are stored as int16, allowing for 66𝐾 possible values.

However, CSI data typically falls within a smaller range, making it

suitable for quantization. The compression techniques utilized in

the work are summarized as follows.

3.1 Uniform Quantization
A commonly used uniform quantization function is given by,

𝑄𝑢 (𝑟 ) = Round

(
𝑟 − 𝑍
𝑆

)
(3)

where 𝑄𝑢 is the uniform quantization operator, 𝑟 is the input

value, 𝑆 is the scaling factor and 𝑍 is the zero point. Typically, the

min-max range of the data, say [𝑎, 𝑏], is used to determine the

constant 𝑆 = 𝑏−𝑎
2
𝑛−1 and 𝑍 = (𝑎 + 𝑏)/2, where 𝑛 is the number of

bits required in terms of precision. However, this min-max range is

susceptible to outliers in the data. To address this, percentile ranges

(e.g., 5
𝑡ℎ

and 95
𝑡ℎ
) are used, with the 𝑖𝑡ℎ min-max value serving as

𝑎, 𝑏. On the edge server side, the data is dequantized (i.e., original

number of bits restored) as 𝑟 = 𝑆 · 𝑟 + 𝑍 . Note that the dequantized
data varies slightly from the original data because of rounding.

3.2 Non Uniform Quantization with K-Means
As shown in fig. 2, generally and in our case too, the obtained CSI

data exhibits sparsity and clustering around a few values. However,

these clusters are non-uniformly spaced, making uniform quantiza-

tion less effective. To utilize this structural characteristic of CSI data,

we propose non-uniform quantization. In this approach, cluster cen-

ters or means 𝑐1, 𝑐2, . . . , 𝑐𝑘 are selected through uniform random

selection and each CSI value is assigned to its nearest cluster cen-

ter, and cluster centers/means are updated after every iteration to

the mean of all datapoints in the cluster, using K-Means, which

minimizes the loss function:

min

𝑐1,𝑐2,...,𝑐𝑘

∑︁
𝑖



𝑥𝑖 − 𝑐𝑥𝑖 

2 (4)

Here, 𝑐𝑥𝑖 denotes the cluster mean closest to 𝑥𝑖 . Consequently,

each data value 𝑥𝑖 can be represented using only ⌈log
2
𝑘⌉ bits. This

method offers substantial improvement: for instance, with 𝑘 = 16,

each value can be encoded in just 4 bits, compared to 16 bits as

typically used in applications like Raspberry Pi.

In our experiment with 50CSI samples, each containing 128

values, K-Means typically converges within an average of 25 it-

erations (standard deviation 8). To optimize efficiency and avoid

recomputing means for every batch, we store the K-Means loss

𝐿 =
∑
𝑖



𝑥𝑖 − 𝑐𝑥𝑖 

2 from the previous batch. After each iteration,

if the new loss 𝐿′ falls within a threshold 𝛼 times 𝐿 we stop the

compression process (see algorithm 1). This approach with 𝛼 = 1.05,

reduces the average number of iterations to 3.5.

3.3 Principal Component Analysis (PCA)
Not only are the CSI values sparse and clustered on the real line

but they also show sparsity in the Euclidean space. This means that

a set of these CSI vectors can be represented in a much smaller

subspace using only a few components. However, quantization tech-

niques are not able to take advantage of this, as they truncate each

value individually and ignore the overall structure. To exploit this

internal structure of the data points, we use Principal Component

Analysis to compute the principal components of the CSI vectors,

and projections of these vectors onto the principal components are

only utilized for further sensing tasks at the edge device.

3.4 Encoder-Decoder based Compression
Using an encoder-decoder architecture can significantly enhance

data transmission efficiency. By employing an encoder at the trans-

mitting IoT devices, the high-dimensional CSI data is compressed

before being sent. This compression reduces the amount of data
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Algorithm 1: CSI Batch Compression: Non Uniform

Quantisation with K-Means

1 Input: 𝑅, 𝐿
2 /* Batch of CSI values, Loss threshold */

3 Output: 𝐴, 𝐶 = [𝑐1, 𝑐2, . . . , 𝑐𝑘 ], 𝐿new
4 /* Assignment of R to cluster centers, Cluster centers,

Updated loss threshold */

5 𝐶 ← initialise_random_cluster_centers

6 𝐴← nearest_cluster(𝑅,𝐶)
7 do
8 𝐴′ ← 𝐴

9 𝐶 ← compute_centroid(𝑅,𝐴′)
10 𝐴← nearest_cluster(𝑅,𝐶)
11 𝐿′ ← loss(𝑅,𝐴)
12 while (𝐴′ ≠ 𝐴) ∧ (𝐿′ ≥ 𝛼 · 𝐿)
13 if 𝐴′ = 𝐴
14 𝐿new ← 𝐿′

15 else
16 𝐿new ← 𝐿

17 return 𝐴,𝐶, 𝐿new
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Figure 2: Effect of Quantization. Majority of the values lie in
a certain interval. In such cases, uniform quantization will
lead to a decreased efficiency in representing the data points.

that needs to be transmitted, conserving bandwidth and reducing la-

tency. Once the compressed data reaches the edge server, a decoder

reconstructs the original high-dimensional CSI data. This approach

allows for various sensing tasks to be performed accurately at

the edge server while minimizing the transmission overhead. The

encoder-decoder framework thus facilitates effective CSI compres-

sion, enabling robust Wi-Fi sensing even in environments with

limited transmission capacities. Our autoencoder consists of two

convolutional layers followed by a maxpool layer. We use ReLU
activation function after each layer to introduce non-linearity.

4 TESTBED AND EVALUATION RESULTS
In this section, we discuss the details of our empirical studies for

evaluating the quantization schemes. In our setup, we use two types

of devices for collecting CSI data, representing two classes of IoT

devices: a relatively less provisioned ESP32-S2 device (ESP), and a

more computationally provisioned Raspberry-Pi 4 (RPi). To avoid
interference the RPis and the ESPs are tuned to separate channels

in the 2.4GHz band. We use a network of three devices of each
type to create the distributed sensing setup. The ESP provides CSI

samples as vectors of 16-bit complex IQ values with a 8-bit in-phase

and a 8-bit quadrature component. The RPi provides 32-bit samples

with 16-bit inphase and a 16-bit quadrature component. While ESP
provides native support for reading the CSI data directly from the

chip, for RPi no such native support exists. We use the Nexmon
toolkit [2] that enables CSI extraction using its modified wireless

driver geared towards specific chipsets (Broadcom bcm43455c0).
The ESP devices can stream CSI data at a maximum rate of 80–100

samples/second, while RPi achieves almost an order of magnitude

higher rate of 700-800 samples/second. In particular, we deploy two

testbeds – one indoors and one outdoors.

Indoor Setup (HAR): We monitor and recognize human activity

in a relatively large indoor area of 1300 sq.ft for approximately

thirty minutes. We simultaneously collect CSI streams from the

ESP and RPi devices. We infer four different scenarios - walking,

running and jumping of a human being along with detecting a

human unoccupied room. We train a deep neural network based

on Long Short Term Memory or LSTM with the CSI samples. We

use this trained model to benchmark the HAR performance after

applying various compression strategies on the test CSI data.

Outdoor Setup (TRS): In this setting, we monitor our campus road

traffic and count the number of vehicles passing an intersection. We

place two nexmon-enabled RPi receivers at a distance of 5 meters on

one side of the road, which record the CSI. Midway between them,

on the opposite side of the road, we place the wireless transmitter,

which also generates Wi-Fi traffic using the iperf3 tool. Note that

ESP devices are not used in this experiment due to excessive packet

loss, particularly when Non-Line-of-Sight blockages occurred due

to passing vehicles. In this setup, we collect approximately 45 min-

utes of data, including a video stream used for ground truth. During

this period, we observe a total of around 1,000 vehicles (including

cars, trucks, buses, two-wheelers, bicycles, etc.). We train a Deep

Convolutional Neural Network (DCNN) on two types of CSI data:

one indicating the presence of a vehicle and the other indicating

the absence of one.

While training the above models, no quantization was applied

to the data. It is also important to note that, in this work, we do not

consider compression of the model itself—such as weight quantiza-

tion or pruning—as discussed in [7]. We achieve an overall testing

accuracy of 83% for Human Activity Recognition (HAR) and an ac-

curacy of 91% for Traffic Recognition Scenarios (TRS). Next, we
investigate the effects of various compression schemes on both

network load and inference accuracy. Since the RPi traffic creates a

significantly higher network load compared to the ESP devices, we

restrict ourselves only to RPi traffic for evaluating improvement

in network utility. We use the ESP device to benchmark resource

(memory and energy) consumption of the compression schemes.
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Figure 3: Testbed setup for indoor and outdoor scenarios. The CSI data, along with the ground truth video footage, are recorded
locally and collated later to perform trace-driven analysis.
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4.1 Effect of Subsampling
In fig. 4, we illustrate the impact of CSI subsampling on the sensing

accuracy of the system as well as the reduction in network load.

A sampling ratio of 𝑥 indicates that one in every 𝑥 CSI samples is

sent to the edge for inference tasks. This approach significantly

improves network utilization by decreasing the network load, to

as much by ≈90%. However, the inference accuracy deteriorates

(15–20%) as more temporally sparse CSI samples are streamed to

the edge servers. The TRS case, which involves two classes, suffers

less in terms of accuracy compared to the HAR case. Subsampling is

a relatively straightforward approach to improving network utility.

However, more complex sensing tasks may not be able to sustain

higher sampling ratios while maintaining accuracy.

4.2 Impact of Data Compression
In fig. 5, we demonstrate the effect of data compression techniques,

as discussed previously in Section 3, for both HAR and TRS scenarios.
As we apply higher degrees of compression, the network load re-

duces; however, this also results in a dip in inference accuracy (from

an average of 85% to ≈65%). For TRS, the compression strategies

have similar performance, except for uniform quantization, which

suffered the most. Conversely, for HAR, given the complexity of the

models, quantization leads to a drastic drop in accuracy, with the

autoencoder-based technique being the least affected.
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Figure 5: The four CSI compression strategies that we explore
in this paper and their effect on network load and inference
accuracy.

4.3 Impact on Resource Consumption
Finally, in fig. 6, we illustrate the impact of the compression algo-

rithms on the device’s resource consumption. These results corre-

spond to benchmarks done on the ESP device. We use TensorFlow

Lite (tflite [4]) framework to generate and host the Encoder-
Decoder model on the ESP platform. Since the compression must

occur on the device side, it is essential to ensure that the compres-

sion process does not consume equal or more resources compared

to not compressing the CSI data.On the left, we present the on-

device SRAM that is free after running each of the compression

schemes. As we can observe, the PCA and Encoder-Decoder-based
schemes consume the highest amount of memory. In fact, Addi-

tionally, the Encoder-Decoder leaves very little room in the SRAM

(≈60KB) making it difficult to store further runtime data. Also,

Encoder-Decoder-based compression results in higher current draw,

which translates to increased power consumption compared to

the other schemes. Hence, for very complex models and stringent

accuracy requirements, Encoder-Decoder methods are preferred;

however, as we demonstrate, they are not resource-friendly.
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5 RELATEDWORKS
While a number of works [6, 8, 9, 13] compress the CSI for mas-

sive MIMO feedback, only a handful of works [5, 11] explore the

possibility of CSI compression for wireless sensing or CSI-based

sensing.

The authors in [11] propose EfficientFi, a framework designed

to compress CSI data, restore it for further use, and recognize ac-

tivities simultaneously. It employs a quantized feature learning

algorithm and a consensus learning framework, distributing tasks

between edge devices and cloud servers to optimize performance.

The authors evaluate EfficientFi’s performance in terms of com-

pression rate, data restoration quality, and recognition accuracy.

The authors in [5] introduce RSCNet, an architecture that combines

CSI compression and sensing, addressing the high dimensionality

and transmission overhead of CSI data. RSCNet is divided into edge
and cloud models, where the edge model compresses CSI windows

through an encoder, while the cloudmodel performs human activity

recognition (HAR) using a multi-layer perceptron (MLP) classifier.

The evaluation criteria include recognition accuracy for HAR and
Normalized Mean Square Error for compression performance. The

works [12, 14] investigate the potential of Wi-Fi based sensing at

low transmission rates. In both papers, the authors suggest using

Generative Adversarial Networks (GANs) to reconstruct high-rate

signal data from low-rate inputs, reducing the need for high packet

rates to achieve effective sensing. These works also offer an al-

ternative perspective on compressed sensing, demonstrating that

controlling the rate at which CSI is transmitted to the server can

still yield acceptable accuracy for sensing tasks. While majority of

the techniques employ deep learning for compression, we show that

they are quite resource intensive and are not required for simple

inference tasks. In this work, we look into these techniques, along

with relevant encoder-decoder compression.

CSI Compression for Massive-MIMO: Works [6, 8, 9, 13] propose CSI

compression for massive MIMO feedback for variety of networks

like 5G and 6G networks. The compression of CSI for massive

MIMO lies out of the scope of this work so we will not discuss it

here.

6 CONCLUSION
In this work, we explore Edge-assisted inferencing for wireless sens-

ing applications, where CSI data estimated at IoT devices (wireless

receivers) are transmitted to Edge devices. As the number of devices

(sharing the same wireless medium) scales, this data transmission

increasingly consumes network capacity, leading to congestion. We

investigate methods to enhance network efficiency by downsam-

pling or quantizing the CSI data and assess the impact on overall

inference accuracy. We present with four methods: Uniform Quan-

tization, K-Means Clustering, PCA and Encoder-Decoder based

compression for evaluating multiple parameters: accuracy, memory

consumption and power required. To our knowledge, this is the first

work evaluation non-deep-learning based compression methods

for CSI-based sensing. We observe that accuracy is most affected

by uniform quantization with drop of more than 40%, so is the ob-

servation for K-Means clustering, while the encoder-decoder based

compression achieves maximum accuracy even with low amount

of CSI-data.
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