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Abstract—Visual Analytics Pipelines (VAPs) for real-time
surveillance are resource-intensive, consuming high energy and
bandwidth. We propose EcoVis, a novel approach that uses
mmWave sensing to identify regions of interest (ROIs) for
compressing surveillance video frames. This reduces the trans-
mission of static background, optimizing resource usage while
maintaining high fidelity of content relevant in traffic surveil-
lance. Unlike conventional methods that rely solely on video
frames to detect ROIs, our use of mmWave range-azimuth maps
achieves a comparable reduction in network bandwidth while
lowering energy consumption by approximately 40%. Moreover,
our approach enhances energy efficiency by nearly another 25%,
by dynamically controlling the sleep cycle of the camera. For
simpler tasks such as vehicle detection or counting, EcoVis
works with minimal reliance of the camera. Due to its lower
dimensionality compared to video, it allows on-device processing,
improving operational speed and network efficiency by roughly
20%. Finally, we introduce both uniform and non-uniform tiling
algorithms, utilizing RoIs derived from mmWave analysis. These
algorithms enable video encoding with tile-specific Quantization
Parameters (QPs), optimizing the overall compression process.

I. INTRODUCTION

With smart camera networks now pervasive, the demand
for real-time Video Analytics Pipelines (VAPs) has grown
significantly. For instance, city-wide traffic surveillance cam-
eras continuously stream high-definition video feeds to edge
computing infrastructure for real-time inference tasks. Such
tasks range from basic applications like vehicle or pedestrian
counting, or speed monitoring to more complex ones such as
automatic number plate recognition, detecting unsafe driving
behaviors and more. With the average number of camera
installations reaching several hundreds per square kilometer,
particularly in urban areas [1], the networking and compute
infrastructure needed to support these deployments becomes
extremely demanding. Even with state-of-the-art video codecs
such as H.265 [2], we observe and validate that the uplink
bandwidth requirement per camera typically exceeds 10 Mbps
(e.g., 3 MP – 5 MP resolution at 15–30 fps) [3] leading to
excessive broadcast traffic. In scenarios with relatively unsta-
ble 4G/5G uplinks, this traffic often contributes to a severe
resource crunch for ISPs striving to maintain Quality of Ser-
vice (QoS). Additionally, the VAPs hosted on the edge servers
face scalability challenges with continuous and complex neural
processing workloads on streaming video feeds.
Suboptimal Resource Usage. We identify several key chal-
lenges that hinder scaling of such camera networks without
encountering significant resource constraints. First, the net-
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Fig. 1: Traffic occupancy estimation using visual feeds and mmWave sensing
show comparable performance more than 75% of the time. The cumulative
periods of inactivity (≈30%, brown patches, bottom figure) in the 30-minute
timeline highlight opportunities to employ mmWave-triggered sleep cycles for
the camera. Moreover, for moderate traffic conditions mmWave based sensing
(violet patches, bottom figure) can be fused with camera to detect RoI in image
frame and enable energy efficient compression

work streaming continues regardless of the scene context or
any spatio-temporal redundancy present across the frames.
Although the latest video codec standards (e.g., H.265) support
intelligent compression mechanisms, such as spatial tiling
with tile-specific quantization, leveraging such features, for
instance, requires identifying regions of interest (ROIS) within
a frame. This process involves keeping the camera active
and using moderately heavy computation, e.g., deep neural
networks (DNNs), to predict ROIs across frames. Second, run-
ning complex DNN inference models (e.g., Visual Transform-
ers [4], [5] or Implicit Neural Representations [6]) involves
considerable compute and energy requirements. This limits
the feasibility of using battery-powered surveillance cameras,
which would otherwise offer the flexibility for on-demand
deployments, critical for various public safety scenarios.

In this paper, we leverage wireless sensing to address
the above challenges. Specifically, we design and implement
EcoVis that uses millimeter waves (mmWave) as an out-of-the-
band and lightweight sensing modality to infer potential ROIs,
particularly targeting road traffic surveillance applications. In
fig. 1, we present a 30-minute timeline of mid-day road
traffic captured simultaneously with a surveillance camera
along with a low-cost, low-power mmWave radar. A vehicular
traffic occupancy metric (∈ [0, 1]) is independently estimated
on both the camera and radar frames. Note that the radar-
based estimation is comparable to the camera-based estimation



for approximately estimating traffic occupancy. First, EcoVis
facilitates automatic scheduling of sleep cycles for the camera
sensor during periods of low activity. Fig. 1 (brown patches,
bottom) highlights such periods (≈30%), where the occupancy
metric is very low – indicating sparse or no traffic. Sec-
ond, based on the application requirements, EcoVis performs
intelligent fusion across the wireless and visual modalities,
significantly improving resource consumption. For tasks like
vehicle counting or traffic flow monitoring, mmWave-sensing
delivers appreciable accuracy (≈95%), without camera in-
volvement, even when the occupancy metric is high, as shown
in fig. 1 (violet patches, bottom). Furthermore, for applications
that require visual imagery (e.g., number plate recognition),
our approach is highly effective in identifying regions of
interest within the camera’s viewport and preserving these
areas while applying compression to the rest of the frame.

At the core of EcoVis is the mmWave radar’s range-azimuth
map, RAmap, that characterizes the approximate depth of ob-
jects/reflectors in the scene corresponding to its coverage area.
By filtering static clutter, we improve the map’s signal-to-noise
ratio (SNR) and identify relevant targets, such as vehicles.
These targets or Regions of Interest (ROIs) are then mapped
from the radar’s RAmap to the camera’s field of view, FOV
(see §III-B). While the spatial mapping between the RAmap

and FOV can be analytically modeled, we observe that factors
like lens aberrations, camera and radar’s 3D pose, weather
conditions, and radar-induced speckle noise complicate the
process of accurately parameterizing the transformation. This
limitation is coupled with the lower radar frame rate (≈ 5–
10 Hz) compared to the camera’s 30+ fps [7], [8]. Instead,
we tackle this challenge using a lightweight neural network,
a multilayer perceptron (MLPRoI), trained on deployment-
specific data. The training process completes in a few hundred
seconds on an edge device along with a amortized real-
time inference latency of ≈ 50 ms on a Raspberry Pi 4B, all
without requiring GPU support. After inferring ROIs over a
time window, EcoVis tiles each frame and compresses pixels
within each tile using a corresponding quantization parameter
(QP). EcoVis interfaces with the H.265 video encoder, passing
such tiling and quantization data, reducing network load and
computation. Such content-aware and lightweight compression
simplifies both local processing and edge inference. EcoVis
also excels in challenging conditions like heavy rain, fog,
low light, and other visual impairments where traditional
camera-based systems struggle, as the integration of mmWave
sensing enables reliable operation even in these adverse envi-
ronments [9]. Overall, we make the following contributions in
this paper:
• We propose a lightweight hybrid surveillance system that

integrates mmWave-based sensing with conventional cam-
era setups, significantly reducing computational overhead
compared to traditional vision-only approaches.
• We show that our approach reduces energy consumption

by ≈ 50% compared to vision-only systems, while also
reducing network bandwidth usage by ≈ 60% without com-

promising analytics accuracy, making it ideal for efficient,
sustainable surveillance in areas with limited infrastructure
or power.
• We design and implement a complete system prototype and

deploy it on a busy street in Chennai (Indian metro city)
to validate real-world performance. We also evaluate our
algorithm on a benchmark dataset, showing its robustness
across varied environments and traffic scenarios.

II. BACKGROUND AND RESEARCH GAPS

Unlike dynamic video content, surveillance footage typ-
ically features static backgrounds and predictable patterns,
making it an ideal candidate for advanced compression tech-
niques that can significantly reduce bandwidth usage and on-
device processing needs improving energy usage.

A. Related Works on Bandwidth Aware Video Compression

Video Compression. The state-of-the-art video encoders,
AVC (H.264) and HEVC (H.265), are widely used for efficient
video compression. Both standards support tiling, which di-
vides a frame into independent regions, and use a quantization
parameter (QP) to adjust compression levels within each tile.
This helps in striking a balance between file size and visual
quality, but lacks awareness of the regions of interest (RoIs)
within a frame. Neural compression techniques [10], [11] are
emerging to fill this gap, aided by hardware accelerators [12],
[13]. However, applying these methods to our problem would
demand extensive site-specific training. Moreover, the infer-
ence models are computationally heavy with high latencies,
making GPU support essential [14], [15].
ROI Identification. Without explicit ROI detection, quantiza-
tion is applied uniformly, missing opportunities for intelligent
compression that could further optimize video streams by
focusing on the most relevant areas of the frame. Most existing
ROI-based compression approaches depend on analyzing the
video frames directly. Methods such as motion estimation [16],
[17], background subtraction [18], [19], and deep learning-
based techniques [20], [21], [22] including attention based
mechanisms [23], [24] are widely used for ROI identification.
While these approaches are effective in optimizing compres-
sion, reducing communication bandwidth, they are neither fast
nor inherently energy-efficient. First, running computer vision
algorithms continuously is computationally intensive and often
too heavy to execute locally on the camera. Second, it requires
the camera sensors to remain powered at all times, leading to
unnecessary resource consumption. Along with software based
methods, there are specialized hardware that detect the RoIs
intrinsically like event cameras. Unlike traditional cameras
that capture full frames at fixed intervals, event cameras track
only pixels where brightness changes surpass a threshold,
indicating movement [25]. This method records only dynamic
regions, offering two key advantages: reduced data volume
and energy consumption, along with high frame rates with
microsecond precision. However, their high cost limits large-
scale deployment, especially in fields like surveillance.
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Fig. 2: Fig. 2a shows the video frame, mmWave range-azimuth map, WiFi CSI, and UWB CIR for the same scene. Fig. 2b, compares the energy increase from
idle conditions and the time taken for various algorithms on a RaspberryPi. The algorithms are used to detect RoI, using mmWave (EcoVis), the video itself
(background subtraction) and deep learning (YOLO). Fig. 2c shows YOLO’s performance across different compression levels. Fig. 2d, shows the percentage
increase in energy consumption with rising video resolution and frame rates compared to idle consumption on the RaspberryPi without a video sensor

RF-augmented Video Analytics and Surveillance. Much of
the existing research integrating RF-sensing with video has
focused on improving inference accuracy and detection tasks,
with relatively little emphasis on addressing video compres-
sion techniques. For instance, studies like [26], [27], [28]
have enhanced human activity recognition using RF and video
data, while others like [29] have explored gesture recognition.
Wireless sensing has also been used to verify the integrity
of surveillance videos, checking for tampering with WiFi [30]
and mmWaves [31]. Despite these advancements in improving
inference accuracy, less attention has been given to how RF-
sensing can contribute to video compression or be integrated
with encoder standards like HEVC. Recently, integrating RF-
based sensing with video surveillance has gained traction,
particularly for traffic monitoring in challenging conditions
such as low-light environments, non-line-of-sight scenarios,
or adverse weather [32], [33], [9]. This approach offers a
significant advantage in terms of reduced processing require-
ments compared to the computational demands of neural
networks used in computer vision tasks. RF-augmented visual
surveillance has opened up significant opportunities, with
recent commercial products [7], [8] actively exploring and
incorporating this technology into real-world applications.

B. Research Gap and Motivation

Choice of RF technology. While WiFi offers greater range
and better penetration through the environment, it suffers from
poor ranging resolution due to its moderately lower bandwidth.
In contrast, mmWave provides excellent range resolution, mak-
ing it a viable replacement for visual modalities in relatively
simple tasks. Fig. 2a illustrates the RF signatures of the
three modalities—WiFi, mmWave, and UWB—captured in our
outdoor testbed. Notably, mmWave radars produce a cleaner
and more intuitive representation of the scene compared to
UWB and WiFi. While UWB and WiFi are suitable for simple
tasks like vehicle or pedestrian counting, complex tasks (e.g.,
detecting vehicle type [32], ROI prediction) or integrating
them with visual data poses challenges due to their lower
bandwidths and range resolution.
Resource Footprint. Figs. 2b, 2c and 2d illustrate the
impact of executing common computer vision primitives on
an embedded device, comparable to typical IP camera hard-

ware. Notably, even running relatively simple algorithms such
as edge detection (EDGE [34]) or background subtraction
(BDS [35]) (or relatively involved tasks like object identifica-
tion using YoLoV8 [36]) result in significantly higher energy
consumption and computational latency (fig. 2b) – compared
to performing vehicle tracking using a mmWave radar. In
figs. 2c, we specifically demonstrate how YoLo’s inference
performance based on ROI filtered frames is close to that of
an UHD frame, with almost 50-60% lesser network footprint.
Additionally, in fig. 2d, we demonstrate the relative increment
in energy consumption while using different streaming reso-
lutions and frame rates.

The integration of RF sensing into visual surveillance appli-
cations is still in its early stages, with significant research gaps
remaining. Purely video-driven approaches require continuous
camera operation and rely heavily on neural compute loads
that are too demanding to run on embedded devices like
surveillance cameras with acceptable frame rates. While WiFi
or UWB-based solutions have shown potential for indoor
scenarios, they lack the range and resolution required for
robust outdoor surveillance. In contrast, mmWave technol-
ogy offers a promising alternative. This paper addresses the
challenge of developing energy-efficient and network-friendly
video compression at the edge, leveraging mmWave sensing
for high accuracy.

III. DESIGN OF THE EcoVis SYSTEM

We propose EcoVis, a lightweight system that intelligently
integrates mmWave sensing with visual data, seamlessly in-
terfacing with state-of-the-art H.265 video encoder. mmWave
sensing is leveraged either for performing simpler inference
tasks solely or for identifying potential Region(s) of Inter-
est (ROIs) within the camera’s field of view (FOV). EcoVis
calculates a tiling matrix based on the positions of the
ROIs, where each tile represents an independent partition of
the frame. The coverage of ROIs within each tile is then
mapped to a corresponding quantization parameter, allowing
for independent compression across the tiles of the frame.
The mmWave sensing driven ROI prediction is significantly
more energy-efficient compared to even basic computer vision
primitives (see figs. 2b and 8). To further optimize resource
usage and support high frame rates, EcoVis employs, SORT, a
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Fig. 3: Schematic diagram of the EcoVis system. The figure on the left presents a snapshot of our deployment prototype, featuring a Raspberry Pi 4B
interfaced with an IWR1843BOOST mmWave radar and a 12 MP camera equipped with a SONY IMX500 sensor. Two important modules of the system
are illustrated: (a) the ROI estimator and mapper, and, (b) the tiling and quantization module along with the H.265 encoder.We employ a Nvidia Jetson Orin
Nano as the edge device to host the visual analytics processes, with the EcoVis prototype connected to it via LTE.

popular tracking algorithm, to track and predict multiple ROIs
across frames. SORT uses a combination of the Kalman Filter
combined with the Hungarian algorithm [37] (commonly used
to solve Assignment problems) for the multi-ROI mapping. We
present a detailed schematic of EcoVis in fig. 3 along with our
prototype setup.

EcoVis consists of three functional components or phases.
First, there is a Bootstrapping and Calibration phase, which
initializes the various parameters associated with the internal
models and algorithms to ensure optimal performance under
specific conditions. The second component is a lightweight
ROI Estimator and Mapper that identifies and maps potential
ROIs within the frame, guiding the subsequent compression
process. Finally, the Communication-aware Video Encoding
phase adaptively tiles the frame and applies quantization
to each tile, both spatially and temporally. The tiling ma-
trix, along with the quantization information, is continuously
passed to the H.265 encoder that generates the compressed
video stream for network transmission.

A. Bootstrapping and Calibration

The mmWave radar captures range-azimuth maps (RAmap)
that register reflectors within its cross-sectional area. The ROI
estimator then processes and enhances these spectrograms
using signal processing algorithms, parameterized during the
initial bootstrap and calibration phases (details discussed later).
The ROI mapper utilizes a lightweight multilayer perceptron
(MLPRoI) to map the ROI detected within the RAmap to the
corresponding video frame. The MLPRoI is deployed on the
device and trained during the bootstrapping phase, where it
learns weights and hyperparameters specific to the deployment
site and the camera’s 3D pose.
Dynamic parameter updates. Apart from the initial bootstrap-
ping of the MLPRoI model and setting calibration parameters,
EcoVis autonomously updates them at specific time intervals,
eliminating the need for human intervention. For example, a
common issue with cameras is misalignment caused by strong
winds or birds perching on them, which can severely impact
calibration. While vision-based approaches often struggle to
retrain after such disruptions, MLPRoI is lightweight and can
be efficiently retrained to recover from such issues.

B. Energy Aware ROI Estimator and Mapper

Predicting ROIs on the video frame from the range-azimuth
(RAmap) maps of mmWave radar involves two main steps:
(a) identifying patches or ROI zones on the RAmap map that
correspond to targets of interest and, (b) mapping such zones
from RAmap to the video frame or the camera’s FOV.

� Identifying Targets in Range-Azimuth Map. The first
step in target detection involves removing static clutter and
random noise. EcoVis maintains a sliding time window buffer
with N successive instances of RAmap. Each such instance
is filtered by removing RAmap (the average map) that iso-
lates the dynamic foreground components. Next, a Gaussian
filter is applied to smoothen the foreground regions, which
enhances target detection by attenuating low-intensity values
and refining intensity edges. This further enhances the SNR
of the resulting RAmap. A critical parameter in this process
is the variance of the Gaussian filter’s kernel, which controls
the level of smoothing applied to the RAmap. The variance is
influenced by the mmWave radar’s configuration, specifically
the maximum range and range resolution settings. Since it
is independent of the scene, the filter variance can be pre-
determined and fixed during the calibration phase prior to
deployment.
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Fig. 4: The figure illustrates the steps involved in detecting targets of interest
for both range-azimuth maps (RAmap) and image frames, as discussed in
§III-B

Next, to enumerate and register targets of interest, we detect
independent blob-like structures in the RAmap (see fig. 4).
While the Laplacian of Gaussian algorithm is effective for
blob detection, its reliance on convolution operations intro-
duces latency, particularly on an embedded device. Instead, we



employ the faster Determinant of Hessian (DOH), which uses
box filters, providing sufficient accuracy for most blobs except
very small ones. This trade-off is acceptable for our traffic
surveillance use case. The DOH-based algorithm iteratively
applies Gaussian kernels with different variances to compute
the Hessian matrix, which is used to detect the blob centers
and their radii. Identified blobs are then filtered according to
overlap and intensity thresholds, producing a refined set of
blobs, BRA. Each blob, Bi

RA ∈ BRA is characterized by its
center coordinates (Xi

RA, Y
i
RA) and radius Ri

RA.
� Mapping Targets from RAmap to Camera FOV. As
illustrated in fig. 5 the mapping between the range-azimuth
coordinates of the RAmap and the width-height dimensions
of the camera’s FOV frame depends on both the FOV and
the orientation/relative placement of the radar with respect to
the camera. Additionally, the depth of the scene within the
FOV may exhibit either azimuthal symmetry or asymmetry,
which further influences this relationship. For asymmetric
FOVs (fig. 5, top two rows), both azimuth-width and range-
height exhibit positive correlations, though the rate of height
increase diminishes with range due to perspective effects.
In contrast, symmetric FOVs (fig. 5, bottom row) show
minimal variation in range and height, leading to clustering
around a central location. Although fig. 5 demonstrates a
straightforward mapping of ROIs from the RAmap to the
camera’s FOV, factors like weather, sensor pose, and speckle
noise introduce uncertainty. To address this, we use a simple
multilayer perceptron, MLPRoI. The MLPRoI maps each blob
in the RAmap, Bi

RA, to a corresponding blob on the camera
frame, Bj

IM . The input layer has two neurons for the center
coordinates of Bi

RA (i.e., (Xi
RA, Y

i
RA)), while the output layer

predicts the center coordinates and radius of Bj
IM with three

neurons. The blob radius, Ri
RA is unused due to little or no

correlation with the FOV image. We use two hidden layers
with eight neurons each to form the network. MLPRoI can
be trained fairly accurately and occupies only a few tens of
kilobytes of flash memory, making it lightweight and energy-
efficient. Its real-time suitability is demonstrated by a median
inference latency of approximately 100 ms on a Raspberry Pi
4B (including the ROI prediction), ensuring efficient opera-
tions in resource-constrained environments. Additionally, the
model is periodically retrained, typically every few hours, and
requires approximately 50 seconds on an NVIDIA Jetson Orin
Nano [38](edge device) to train MLPRoI reliably – around 200
seconds without GPU support.
C. Communication Aware Video Encoding

After the ROIs (Bj
IM ) are mapped to the camera’s FOV,

EcoVis partitions the video frame into tiles, allowing each tile
to be compressed independently using a quantization parame-
ter. To maintain high framerate processing with multiple ROIs,
EcoVis employs SORT, a widely-used multi-target tracking
algorithm, to predict intermediate ROI positions.
� Frame Tiling. EcoVis can choose between uniform tiling,
where all tiles in the video frame have the same dimensions,
or non-uniform tiling that adapts to the distribution of ROIs
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across the frame. For uniform tiling, the grid size is determined
by the radius of the smallest blob, with a tile dimension of
≈ 2r, where r is the radius of the smallest blob. Non-uniform
tiling aims to partition the frame such that each tile maximally
covers the points within a particular ROI blob. To achieve
this, representative points are first generated for each blob
by performing Gaussian sampling around the blob’s center
with variance proportional to the radius of the blob and their
intensity values normalized to the range [0,1]. At this point, we
define a metric ρT (aka, ROI coverage), which is calculated
as the ratio of sum of intensity values of the representative
points within a given tile T , to its area (hence, ρT ∈ [0, 1]).
Non-uniform tiling uses a quad-tree based approach [39]
to recursively partition the frame offering greater flexibility
(fig. 6) compared to its uniform counterpart. The frame is
initially divided into four tiles, and RoI coverage is calculated
for each. For a tile T , if the coverage ρT greater than ρhigh
or less than ρlow, T is not subdivided any further. ρlow and
ρhigh are application specific parameters (discussed in the
next paragraph). Tiles corresponding to ρlow ≤ ρT ≤ ρhigh
are recursively subdivided until either a maximum number of
iterations is reached or all tiles meet the coverage thresholds
(typically 2–4 iterations, see Algo. 1 for further details).

� Assigning Quantization Parameter. For each tile T , its
coverage, ρT is mapped to a quantization parameter (QP),
where higher values of ρT correspond to lower QP values,
resulting in better fidelity. Conversely, lower values of ρT lead
to higher QP values, facilitating greater compression at the
expense of fidelity. While most real-time surveillance video
streams target machine perception, reduced fidelity can in-
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crease the risk of inference errors. We define four application-
specific parameters: ρlow and ρhigh, representing the upper
and lower bound on ROI coverage respectively, and Qlow

and Qhigh that define the minimum and maximum QP values.
As illustrated in fig. 7 (right), first, lowering QP below Qlow

results in diminishing returns, whereas arbitrarily high values
of Qhigh will degrade the performance of the inference model.
Second, the choices for Qlow and Qhigh are dependent on
specific application requirements. Additionally, we introduce
Qnum, representing the number of unique QP values, which is
constrained by both the hardware capabilities and the real-time
processing requirements. As shown in fig. 13 (left), increasing
the number of unique QP values can lead to higher processing
demands. Tiles with a coverage ratio above ρhigh are assigned
Qlow, while those below ρlow receive Qhigh. In cases where
Qnum ≤ 3, the QP value for tiles with coverage between ρlow
and ρhigh is set to the average value, i.e., (Qlow + Qhigh)/2.
For scenarios where Qnum > 3 and ρlow ≤ ρT ≤ ρhigh,
the QP values are determined using vector quantization [40]
based on the distribution of the tile coverage ρT∀T . As shown
in Fig.7 (right), vector quantization allows for a non-uniform
partitioning of the distribution (denoted as ρvqni , solid red
lines), adapting to the frequency of the data rather than relying
on uniform divisions (denoted as ρunii , dashed black lines).

� Multi-RoI Tracking and ROI Prediction. The bounding
box, once generated for two consecutive frames, is tracked
in future frames. Such tracking relies on a Kalman filter
to predict the position, scale, velocity and trajectory of the
ROI targets across frames, smoothing out noisy detections.
This allows for efficient prediction of ROIs between frames
at a granular timescale without continuous re-detection. For
association among the detected objects and predicted positions,
the Hungarian algorithm is used. The algorithm minimizes the
cost metric defined by the Intersection over Union (IOU) of
bounding boxes, ensuring robust matching of detections to ob-
ject tracks, especially when objects overlap or move between
frames. The frequency of ROI generation can be user defined
and is set during calibration. This is modulated by factors
such as activity levels in the scene, environmental conditions
and hardware constraints on the device. The resulting energy
savings and their impact on the accuracy of ROI detection are
analyzed in detail in §V-D.

Algorithm 1 QUAD-TREE based Non-Uniform Tiling
Tiling (FRAME,BIM):

TILES, Q← {}
MASK ← GaussianSamp(FRAME,BIM)
NonUniTile(MASK, TILES, Q, 0)
return TILES, Q

NonUniTile (MASK, TILES, Q, i):
ρ← Sum(MASK)/Area(MASK)
if ρ > ρhigh then:

Q.append(Qlow)
TILES.append(MASK)

else if ρ < ρmin then:
Q.append(Qhigh)
TILES.append(MASK)

else if i == MAXITER then:
Q.append(AssignQP(ρ))
TILES.append(MASK)

else
h,w ← Height(MASK),Width(MASK)
NonUniTile(MASK[0 : h

2
, 0 : w

2
], TILES, Q, i+ 1)

NonUniTile(MASK[0 : h
2
, w

2
: w], TILES, Q, i+ 1)

NonUniTile(MASK[h
2
: h, 0 : w

2
], TILES, Q, i+ 1)

NonUniTile(MASK[h
2
: h, w

2
: w], TILES, Q, i+ 1)

end if

IV. TESTBED, DATASET AND BASELINES

We prototype the EcoVis system and deploy it end-to-end
under real road traffic conditions on a busy street in Chennai,
India. Additionally, to validate our results using established
datasets, we leverage the RADDet dataset [32], which contains
traffic surveillance videos paired with mmWave traces. We also
evaluate a suite of benchmark applications on both our system
and the RADDet dataset to further demonstrate the robustness
of our approach.

A. EcoVis Prototype and Testbed Setup

The testbed employs a portable setup consisting of a
Raspberry Pi 4B (RPI [41]) interfaced with a 12 MP SONY
IMX500 sensor camera [42] and a IWR1843BOOST mmWave
radar [43] from Texas Instruments. The setup is mounted on a
car parked at the roadside, providing a clear view of oncoming
traffic. Video frames are captured in UHD at 30 fps, while the
radar’s range-azimuth data is recorded at 5–8 fps.
Video Encoder. To integrate EcoVis’s algorithms, we utilize
Kvazaar [44], an open-source software-based implementation
of the H.265 video encoder that runs on the RPI. While slower
than hardware-based solutions, it is sufficient for validating
our algorithms. Although hardware accelerators for H.265
are widely available, they currently lack the flexibility for
runtime optimizations (as provided by Kvazaar), which EcoVis
requires. Specifically, the tiling and quantization module (see
fig. 3) continuously interacts with Kvazaar to dynamically
update the ROI. Kvazaar uses the QP values between 0 and
51, where 0 represents no quantization and 51 is the maximum
quantization. A typical value of 27 is used for QP, that
balances compression and size. The QP values used by EcoVis



are normalized between zero and one, and does not depend on
any specific software implementation.
Power Usage. The radar sensor consumes ≈1.4W when all
antennas (4 RX and 3 TX) are active. With EcoVis’s software
components running, the Raspberry Pi’s power consumption
ranges between 3.5W and 4W. The camera adds an additional
3W for capturing UHD video at 30 fps, as shown in fig. 2d.
The RPI is connected via cellular data, streaming the com-
pressed video to an edge device – an NVIDIA Jetson Orin
Nano [38], featuring a 1024-core GPU with 32 tensor cores.

B. Benchmark Datasets for Evaluation

We utilize two distinct datasets in this study – a publicly
available dataset, RADDet [32], and a custom dataset that we
collect using on our EcoVis testbed.
� RADDet Dataset. The RADDet dataset consists of 10K+
standard definition (SD, 640 × 480) frames of road traffic
imagery and their corresponding RAD (3D Range-Azimuth-
Doppler) map. From the RAD map we only consider the range
and azimuth data to get a 256 × 256 range-azimuth map or
RAmap. The dataset spans 14 different scenes at different roads,
times of the day and road conditions.
� EcoVis Dataset. Our dataset has around 50K+ UHD video
frames and their corresponding RAmaps. Similar to RADDet
the RAmaps are of size 256 × 256. We also capture data in
adverse condition like low light (night time), fog (mist) and
rain. The normal, low light, fog and raining conditions belong
to four different scenes totally spanning ≈ 40+ minutes.

C. Video Analytics Applications on Edge Device

To effectively benchmark EcoVis’s video compression, we
use a range of video analytics applications with increasing
complexity listed in the following. Tasks at higher levels
demand more computational resources and higher-resolution
images, particularly in regions of interest (ROIs). These ap-
plications are run on our Jetson Orin Nano Edge device.
� Detection (DCT) and Counting (CNT). The detection task
distinguishes between busy (with moving cars or pedestrians)
and empty frames, evaluated by accuracy, while the counting
task determines the exact number of objects per frame, with
performance measured by the error between predicted and
actual counts.
� Binary (BIN) and Multi-class (MUL) Classification.
The binary classification task differentiates objects as vehicle
or pedestrian, with performance measured by mean average
precision (mAP), accounting for both detection accuracy and
prediction confidence. The multi-class classification task ex-
pands such class categories to include cars, trucks, buses,
motorcycles, bicycles, and pedestrians, focusing on the chal-
lenge of distinguishing components of the road traffic, with
performance also evaluated using mAP.
� Automatic number plate recognition (ANPR). This task
involves detecting and classifying vehicles while recognizing
license plates, necessitating high fidelity in ROIs. Performance
is assessed by the ratio of correctly detected number plates
to the total number in the ground truth. We do not present

results for performing OCR on the number plate since, once
it is correctly identified as an ROI, the OCR software on the
edge can be fine-tuned to optimize performance.

It is important to emphasize that the ground truth for the
aforementioned algorithms is established by performing the
analysis on non-compressed video data. In the subsequent
results (§V), we demonstrate the degradation in performance
when videos undergo compression. This approach highlights
the relative impact of video compression on the accuracy and
effectiveness of video analytics. A additional advantage is that,
by using the non-compressed video as a baseline, we can
effectively manage and compare performance metrics across
different tasks that may not be directly comparable. Further,
it highlights the excess compute overhead introduced by the
compression process itself, providing a holistic view of its
trade-offs in practical deployments.

D. SOTA RoI Detection Techniques (Baselines)

Contemporary methods for identifying ROI zones in surveil-
lance video frames mainly rely on analyzing the video content
itself to detect motion. Since surveillance cameras are often
fixed, with a largely static background, regions with movement
become the focus.

Many state-of-the-art (SOTA) techniques [45], [46], [47],
[48], [22], known for their performance and energy efficiency,
enhance or combine four key video processing primitives for
ROI detection: BGS: background subtraction or frame differ-
encing [45], [47], ED: edge detection [45], [46], [47], and,
SAD: sum of absolute difference [46], [48]. In the following
sections, we compare our ROI detection algorithm, based on
mmWave RAmaps, with these four key primitives.

Although deep learning methods for ROI detection have
made significant strides [49], [50], [51], [52], they are not fast
enough to achieve real-time inference speeds and are often
too demanding in terms of memory and compute requirements
(e.g., GPU support) for deployment on modest edge devices.
Additionally, running such models directly on a local camera
is generally impractical due to their resource intensity.

V. EVALUATION RESULTS

We evaluate EcoVis in terms of energy, network bandwidth
and the end application performance. We provide provide de-
tailed empirical results and evidences that motivate algorithmic
decisions taken in our approach.

A. Compressing video using mmWave Range-Azimuth Map

� Implications on Energy and Network Bandwidth. The
primary objective of EcoVis is to minimize energy con-
sumption required for video compression and the encoding
processes, while simultaneously maximizing the reduction in
network bandwidth usage. As demonstrated empirically in
fig. 8, EcoVis achieves comparable reductions in network
bandwidth usage but with substantially lower energy con-
sumption when compared to existing SOTA methods: SAD,
ED and BGS. To ensure a fair comparison across the differ-
ent baselines we use the same values of Qhigh, Qlow and



Qnum, while the tiling depends on the ROI detected by the
different methods. EcoVis improves energy consumption by
30% – 40%. This reduction in energy consumption extends
the operational time, an encouraging step towards battery-
powered camera operations. For instance, while running on a
RPI powered by a 10,000 mAh battery, this can extend battery
life by almost two hours (a 20% increase). Furthermore, we
perform a comparative analysis between our testbed dataset
and RADDet, highlighting that the decrease in energy con-
sumption is more pronounced in our case. This is primarily
due to the use of higher resolution images (UHD), compared
to the SD resolution employed in RADDet. This also shows
that higher the resolution of camera the more beneficial it is
to use EcoVis, rather than existing methods.
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Fig. 8: The figure illustrates the percentage increase in energy consumption
during video compression and encoding, compared to the percentage reduction
in network bandwidth usage resulting from the compression. The energy
increase is measured relative to the system’s idle energy consumption, while
the bandwidth reduction is calculated relative to the bandwidth used when
transmitting uncompressed video. The left plot corresponds to the EcoVis
dataset, and the right plot corresponds to theRADDet dataset.
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Fig. 9: The edge application performance and network bandwidth usage
for non-compressed versus compressed video using EcoVis are showcased.
Depending on the application, Qlow and Qhigh values were varied during
the encoding process to achieve different levels of compression.

� Implications on Edge Application Performance. Fig. 9
highlights the effectiveness of ECOVIS in leveraging video
compression to optimize network traffic while preserving
analytics accuracy. For simpler tasks, such as vehicle or
pedestrian detection, ECOVIS achieves a substantial reduction
in network traffic – exceeding 75% – with negligible accuracy
loss, typically under 1%. While the benefits of compression
are less pronounced for more complex tasks, such as ANPR,
ECOVIS still demonstrates its utility by maintaining accuracy
degradation below 10% with a modest reduction in network
traffic ranging between 30% and 40%. These results under-
score the adaptability of ECOVIS to varying levels of task
complexity. It is important to note that the primary role of
mmWave radar in ECOVIS is to guide the compression process

by identifying the ROI, while the analytics are performed using
standard computer vision pipelines. The potential of using only
mmWave data for analytics, independent of video, is discussed
in §V-B.

Our dataset shows a slight performance improvement
(≈ 1%), but a more significant reduction in bandwidth (≈ 5–
10%) compared to RADDet. This is due to the higher image
resolution in our dataset, where compression benefits are more
pronounced with higher resolution inputs. Note that reduction
in network bandwidth also improves energy consumption.
� Effect of Environmental or Weather Conditions. Envi-
ronmental factors like low light (e.g., nighttime) and weather
conditions (rain, fog) impair visibility and degrade the perfor-
mance of visual-based techniques such as BGS, ED, and SAD.
While advanced image deblurring methods exist, they require
extensive scenario-specific training and are often too latency-
intensive for real-time use [53]. In contrast, mmWave sensing
is much less impacted by weather conditions. As demonstrated
in fig. 10, EcoVis proves advantageous for detecting ROI in
environments where video quality is compromised. While all
techniques experience similar performance degradation under
normal conditions, EcoVis significantly outperforms others in
adverse conditions, particularly in low-light scenarios (by over
5%). For rainfall and fog, there is a slight degradation in
mmWave range (both maximum distance and accuracy) and
azimuth accuracy due to scattering [9], but such differences
remain marginal (2% to 5%). Notably, most of the perfor-
mance decline in EcoVis under adverse conditions arises from
challenges in video analytics (e.g., multi-class detection and
classification) on degraded images, rather than inaccuracies in
ROI detection.
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Fig. 10: This figure compares the accuracy of multi-class classification when
videos are compressed using various techniques, across different environmen-
tal conditions. The percentage decrease in accuracy is measured relative to
the non-compressed videos, highlighting how different compression methods
impact performance under varying conditions

B. EcoVis-sans-Video for Simple Applications.

For simpler tasks like vehicle and pedestrian detection,
counting, and binary classification, mmWave range-azimuth
maps alone suffice. This eliminates the need to compress
video and transmit it to the edge for analysis. This approach
offers substantial savings in network bandwidth and reduces
inference latency (by an order of magnitude) by avoiding
network overhead. Although it may slightly increase energy
consumption, the amount of energy used is comparable or less
(e.g., using DL accelerators or TPUs [54]) to that required
for video compression and encoding. Fig.11 illustrates the
trade-off between performance and inference latency for three



simple tasks. While the decrease in accuracy compared to
compressed video is modest (less than 5%), the reduction in
inference latency is more pronounced, with improvements of
approximately 25%. For tasks like detection only the range
information (without azimuth data) is enough and gives a
similar performance with even more significant decrease in
inference latency (by about 60%).

C. Duty-Cycling Camera using Range-Azimuth Maps

A key advantage of EcoVis is to identify ROIs and the
ability to turn off camera sensors in absence of targets, leading
to substantial energy savings. As shown in fig. 12, the energy
savings are more pronounced for higher resolution cameras
that require more power to operate. Under low traffic condi-
tions — when there are extended periods with no significant
activity, the camera remains off for longer durations, further
increasing energy efficiency. For battery-powered systems, this
results in extended operational time. When combined with the
energy savings discussed in §V-A, we observe an approximate
4 to 5 hour increase in battery life (≈ 50% increment) under
average traffic conditions.
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Fig. 11: EcoVis-sans-Video. Effectiveness of using only range-azimuth maps
compared to compressed video for simple tasks. Left: reduction in accuracy,
Right: reduction in inference latency when compared to non-compressed
videos.
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Fig. 12: Aggregate reduction in energy consumption achieved by turning off
the camera using EcoVis across three traffic scenarios: light, medium, and
heavy. The results are shown for different video resolutions — 480p, 1080p,
and 4K. The percentage decrease in energy consumption is measured relative
to the baseline where the camera remains continuously active.

D. Discussion on Parameter Choices Made for EcoVis.

In this section, we provide the rationale behind several key
design choices for EcoVis, as discussed in §III.

� Tile Count and Unique QP Values. As shown in
fig. 13 (left), both increasing the number of tiles and the
number of unique Quantization Parameter (QP) values lead to
higher energy consumption during encoding. This is due to the
increased computational complexity of the encoding process.
Although the figure presents results for uniform tiling, similar
trends are observed with non-uniform tiling. These findings

highlights the importance of limiting both the tile count and
the number of unique QP values used in the system.
� Uniform vs. Non-Uniform Tiling. Although uniform tiling
typically results in a greater number of tiles compared to
non-uniform tiling, it is simpler to implement. Consequently,
despite the expected increase in energy consumption due to
the higher tile count, the simplicity of uniform tiling often
results in comparable or, in some cases, slightly lower energy
consumption than non-uniform tiling.
� SORT for Interpolating ROIs. We utilize SORT to
predict ROIs for the next frame based on the previous frame,
rather than generating the ROI with EcoVis for every frame,
reducing computational load and energy consumption. The
critical question is how frequently the ROI should be estimated
from the sensing data — specifically, at what time intervals
should SORT be applied. As illustrated in fig. 13 (right),
the energy savings exhibit diminishing returns, although the
initial reduction is substantial. Meanwhile, compression accu-
racy, measured by the Intersection over Union (IOU) between
SORT predicted and actual RoIs, decreases exponentially as
the interval increases, becoming significant at larger intervals.
Based on empirical evidence, we recommend an interval of
1–2 seconds between each ROI prediction.
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Fig. 13: Left: Increase in energy consumption as the number of tiles and
distinct Quantization Parameter (QP) values increase during encoding. Right:
Percentage reduction in energy consumption versus percentage decrease in
accuracy (measured by IOU) when using SORT, evaluated across different
time intervals for the next detection. The percentage decrease is relative to
the case where SORT is not applied.

VI. CONCLUSIONS

In this paper, we propose a lightweight hybrid surveil-
lance system EcoVis that integrates mmWave-based sens-
ing with conventional camera setups, significantly reducing
computational overhead compared to traditional vision-only
approaches. By utilizing mmWave range-azimuth maps to
identify RoIs in camera frames, our system optimizes video
compression, leading to a reduction in energy consumption by
approximately 50% and a 60% decrease in network bandwidth
usage, without compromising analytics accuracy. We validated
our system with a real-world deployment in an Indian metro
city and demonstrated its robustness across various traffic
scenarios, showcasing its suitability for efficient, sustainable
surveillance in areas with limited infrastructure or power. We
also showcase the resilience of EcoVis to adverse environment
conditions. Our approach further leverages mmWave’s out-of-
band sensing capability to control camera operation, turning
it off when there is no object around, further enhancing both
energy efficiency and network usage.



REFERENCES

[1] M. Aasif, A. Beohar, D. Kumar et al., “Status of
policing in india report 2023: Surveillance and the question
of privacy,” Common Cause, 2023. [Online]. Available:
https://www.commoncause.in/wotadmin/upload/REPORT 2023.pdf

[2] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of
the high efficiency video coding (hevc) standard,” IEEE Transactions
on circuits and systems for video technology, 2012.

[3] Reolink, IP Camera Bandwidth Calculation: Easy Formula and
Quick Tips to Reduce Bandwidth Usage. [Online]. Available:
https://reolink.com/blog/ip-camera-bandwidth-calculation/

[4] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[5] N. Carion, F. Massa, G. Synnaeve et al., “End-to-end object detection
with transformers,” in ECCV 2020. Springer.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik et al., “Nerf: Representing
scenes as neural radiance fields for view synthesis,” Communications of
the ACM, 2021.

[7] D. Engineering, D3-3P-DESIGNCORE-RADAR. [Online]. Available:
https://www.ti.com/tool/D3-3P-DESIGNCORE-RADAR

[8] Milesight, X5-Sensing Camera. [Online]. Available:
https://www.milesight.com/product/x-infinity/x5-sensing-camera

[9] S. Zang, M. Ding, D. Smith et al., “The impact of adverse weather
conditions on autonomous vehicles: How rain, snow, fog, and hail
affect the performance of a self-driving car,” IEEE Vehicular Technology
Magazine, 2019.

[10] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image
compression with compressive autoencoders,” in ICLR 2017.

[11] K. Gregor, F. Besse, D. Jimenez Rezende et al., “Towards conceptual
compression,” in Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2016.

[12] S. Ma, X. Zhang, C. Jia et al., “Image and video compression with
neural networks: A review,” IEEE Transactions on Circuits and Systems
for Video Technology, 2020.

[13] Ambrella, Ambrella H22. [On-
line]. Available: https://www.ambarella.com/wp-
content/uploads/Ambarella H22 Product Brief.pdf

[14] NVIDIA, NVIDIA Video Codec SDK. [Online]. Available:
https://developer.nvidia.com/video-codec-sdk

[15] ——, NVIDIA TensorRT. [Online]. Available:
https://developer.nvidia.com/tensorrt

[16] X. Guo, S. Li, and X. Cao, “Motion matters: A novel framework for
compressing surveillance videos,” in ACM MM 2013.

[17] A. D. Bagdanov, M. Bertini, A. Del Bimbo, and L. Seidenari, “Adaptive
video compression for video surveillance applications,” in IEEE ISM
2011.

[18] F. Yonga, C. Bobda, and A. Zarazadeh, “Improving video commu-
nication in distributed smart camera systems through roi-based video
analysis and compression,” in IEEE ICDSC 2012.

[19] H. Xue, Y. Zhang, and Y. Wei, “Fast roi-based hevc coding for surveil-
lance videos,” in 19th International Symposium on Wireless Personal
Multimedia Communications (WPMC), 2016.

[20] L. Zhao, S. Wang, S. Wang et al., “Enhanced surveillance video
compression with dual reference frames generation,” IEEE Transactions
on Circuits and Systems for Video Technology, 2022.

[21] R. R. Selvaraju, M. Cogswell, A. Das et al., “Grad-cam: Visual expla-
nations from deep networks via gradient-based localization,” in IEEE
ICCV 2017.

[22] J.-Y. Wu, V. Subasharan, T. Tran, and A. Misra, “Mrim: Enabling
mixed-resolution imaging for low-power pervasive vision tasks,” in IEEE
PerCom 2022.

[23] A. de Santana Correia and E. L. Colombini, “Attention, please! a survey
of neural attention models in deep learning,” Artificial Intelligence
Review, 2022.

[24] K. Xu, J. Ba, R. Kiros et al., “Show, attend and tell: Neural image
caption generation with visual attention,” in ICML 2015.

[25] G. Gallego, T. Delbrück, G. Orchard, and Bothers, “Event-based vi-
sion: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

[26] J. Chen, K. Yang, X. Zheng et al., “Wimix: A lightweight multimodal
human activity recognition system based on wifi and vision,” in IEEE
MASS 2023.

[27] C. Zhu, Z. Zhao, Z. Shan et al., “Robust target detection of intelligent
integrated optical camera and mmwave radar system,” Digital Signal
Processing, 2023.

[28] H. Chen, S. Munir, and S. Lin, “Rfcam: Uncertainty-aware fusion
of camera and wi-fi for real-time human identification with mobile
devices,” ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies, 2022.

[29] X. Liu, S. Tang, B. Zhang et al., “Wivi-gr: Wireless-visual joint
representation based accurate gesture recognition,” IEEE Internet of
Things Journal, 2023.

[30] Y. Huang, X. Li, W. Wang et al., “Forgery attack detection in surveil-
lance video streams using wi-fi channel state information,” IEEE Trans-
actions on Wireless Communications, 2021.

[31] M. Han, H. Yang, M. Jia et al., “Seeing the invisible: Recovering
surveillance video with cots mmwave radar,” IEEE Transactions on
Mobile Computing, 2024.

[32] A. Zhang, F. E. Nowruzi, and R. Laganiere, “Raddet: Range-azimuth-
doppler based radar object detection for dynamic road users,” in Con-
ference on Robots and Vision 2021.

[33] S. Yao, R. Guan, X. Huang et al., “Radar-camera fusion for object
detection and semantic segmentation in autonomous driving: A compre-
hensive review,” IEEE Transactions on Intelligent Vehicles, 2023.

[34] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on pattern analysis and machine intelligence, 1986.

[35] Z. Zivkovic, “Improved adaptive gaussian mixture model for background
subtraction,” in IEEE ICPR 2004.

[36] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE CVPR 2016.

[37] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[38] NVIDIA, NVIDIA Jetson Orin Nano Developer Kit.
[Online]. Available: https://developer.nvidia.com/embedded/learn/get-
started-jetson-orin-nano-devkit

[39] D. P. Mehta and S. Sahni, Handbook of data structures and applications.
Chapman and Hall/CRC, 2004.

[40] P. C. Cosman, K. L. Oehler, E. A. Riskin, and R. M. Gray, “Using vector
quantization for image processing,” Proceedings of the IEEE, 1993.

[41] Raspberry Pi, Raspberry Pi 4 Model B. [Online].
Available: https://www.raspberrypi.com/products/raspberry-pi-4-model-
b/specifications/

[42] ——, Raspberry Pi AI Camera with SONY IMX500 Sensor. [Online].
Available: https://www.raspberrypi.com/products/ai-camera/

[43] Texas Instruments, IWR1843BOOST: User’s Guide. [Online]. Available:
https://www.ti.com/lit/ug/spruim4b/spruim4b.pdf

[44] M. Viitanen, A. Koivula, A. Lemmetti et al., “Kvazaar: Open-source
hevc/h.265 encoder,” in ACM MM 2016.

[45] J. H. Ko, B. A. Mudassar, and S. Mukhopadhyay, “An energy-efficient
wireless video sensor node for moving object surveillance,” IEEE
Transactions on Multi-Scale Computing Systems, 2015.

[46] A. Aliouat, N. Kouadria, M. Maimour, and S. Harize, “Region-of-interest
based video coding strategy for low bitrate surveillance systems,” in
IEEE SSD 2022.

[47] A. Aliouat, N. Kouadria, M. Maimour et al., “Region-of-interest based
video coding strategy for rate/energy-constrained smart surveillance
systems using wmsns,” Ad Hoc Networks, 2023.

[48] J. H. Ko, T. Na, and S. Mukhopadhyay, “An energy-quality scalable
wireless image sensor node for object-based video surveillance,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2018.

[49] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in IEEE CVPR 2014.

[50] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

[51] J. Redmon, “You only look once: Unified, real-time object detection,”
in IEEE CVPR 2016.

[52] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in IEEE/CVF CVPR 2023.

[53] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas,
“Deblurgan: Blind motion deblurring using conditional adversarial net-
works,” in IEEE CVPR 2018.

[54] Coral, USB TPU Accelerator. [Online]. Available:
https://coral.ai/static/files/Coral-USB-Accelerator-datasheet.pdf


