Hiding in Plain Sight: Memory-tight Proofs
via Randomness Programming

Ashrujit Ghoshal Riddhi Ghosal
University of Washington UCLA
Joseph Jaeger Stefano Tessaro

Georgia Tech University of Washington

Eurocrypt 2022

Concrete security theorems

1 Do
Adv(4) I

0
resources of A

Traditionally: resources of A =time t

More accurate: resources of A =time t, memory S

Security reductions

(T, £)-hard (T', €")-secure
classical
cryptographic H ‘ Z
reduction ~
wanted time tightness T = T’
advantage tightness ¢ =~ ¢’
(T, S, €)-hard (T',S’, &")-secure
memory-aware ‘
reductions H Z

New goal: memory tightness S = S
[ACFK17]

3

Memory-tightness matters
Example: II = Dlog in 4096-bit prime field

/ Plausible assumption
(T = 2160’[5 _ 27%’ £)-hard (T = 2160,[5 = 27% £)-secure
memory-tight

I1 — 2

memory-tight

m—) 2

x (T = 2160,[5 = 2160l ¢)-hard (T = 2160,L? = 27(’} £)-secure
not

Known to be false!

Memory-tight reductions are tricky & bizarre!

* Impossibility results [ACFK17,WMHT18,GT20,GJT20]
« Possibility results [ACFK17/Bhattacharya20}GJT20}DGJL21]

——

Generic impossibility bypassed by
specific schemes/settings

Impossibility bypassed by
tweaking schemes

Ability to give memory-tight reductions

[This work] — strongly coupled with definitional choices

This talk: new class of
techniques for memory-
tight reductions

Theorem:

Proof:

(T, S, €)-hard

[1

)

(T',S', &")-secure

2

RA

R

—

«
. u
(]
(]

S

A

Adversary A

el
e

N\

Solves I1

Breaks X

Memory tightness: mem(R*) ~ mem(4)

Need to be indistinguishable to A

Simulation often
requires state

Memory tightness: |statep| small!

Key observation

“For some reductions, each of R’s answers a to A requires holding

some state g, to be used only if a is sent back to R.” [This work]

Q
—|:U

How can we avoid storing the state 0,222

9

ide o,
within a
itself!

Not always possible, but
sometimes a has enough
redundancy!

10

This talk: three techniques

1. Efficient tagging —

o, € {0,1}, recoverable
intime O (1)

\ o, € {0,1}, recoverable

intime w(1)

Bounded-length o,
recoverable in time
0(1)

Digital signatures vs memory-tightness

SignO

A

SignO

One forgery attempt

/ / .

-(m”,07)

UFCMA & mUFCMA
[Cryptography 101 result]

Theorem. [ACFK17] Reduction UFCMA = mUFCMA
cannot be both memory- and advantage-tight!

Many forgery
attempts

vk
| o

]’ 7])
D
m ForgeO
/
) 0/1

3

Let’s see why ...

12

Let us recall the UFCMA = mUFCMA reduction

RA

) vk vk

R
m; m;
) O; STg\n’O o SlgnO
(m’, o —_
| ForgeO N
Output forgery (m*, a*) iff

1. o valid form”®
2. mFis “fresh”

Option Ii “ iﬂ\é ior m;’s — not memory-tight
\/A\/

Option II: Guess if fresh — not advantage-tight

13

We use efficient tagging to obtain the following:

generic

D S transform RD S

UFCMA secure digital
signature scheme

mUFCMA secure digital
signature scheme

14

RDS.Sign(sk, m)

$
r«{0,1}*
o < DS.Sign(sk, (m||r))

Generalizes PFDH [Corono1]

ldea: Reduction will

Return (o], r

RDS.Ver(vk, m, (GV

Return DS. Ver(vk, (mIIr) o)

add tag in r to identify
non-fresh query

Theorem. [This work]

UFCMA secure DS = mUFCMA secure RDS, memory/advantage-tightly

[DGJL21] (concurrent work) for certain DS,
strong UFCMA¥* secure DS = strong mUFCMA secure RDS, memory/advantage-

tightly

15

RDS.Sign(sk, m)
: r {01}
Key idea o < DSSign(sk, (mlr)
Return (o, 1)
vk
R <
m;||r; ‘
SignO of SignO
ForgeO
/ Idea 2: Use the hidden info in r”

Idea 1: hide the info that m; is not to determine whether to output
“fresh” in r; forgery

16

f:Mx[q] - {0,1}
1) Random

Concretely: efficient tagging 2) Tweakable

3) Injective

A vk vk
R p) R
m; . m||r; ‘
(01, 77) Signo0 [1; < f(my, 1) o; Sign0
(m*, (o*,77)) | FoTge0 >

Output forgery ((m*||r"), o™) iff
1. (o7, r")is valid signature for m*
2. f7Hm,) € [q]

Suppose (a7, 17"), is a valid signature for m” # (signing queries)

If (m*, ") queried to SignO
= 3i € [q],(m",r*) = (m;,1;)
= f~1(m"r*) =i€[q]

If (m*, r*) not queried to SignO
= Vi € [q],((m*,r*) = (m;,1;)
= f~t(m",r") & [q] w.h.p

SRA ~ SA

T

how large is this?

R Instantiating pseudorandom
object requires little memory,
e.g., tweakable injective PRF
from a blockcipher (CMCQ)
[HRO3]

/

@—/H invoking pseudorandomness

R

Pseudo
random
objec

18

This talk: three techniques

1. Efficient tagging —

o, € {0,1}, recoverable
intime O (1)

\ o, € {0,1}, recoverable

intime w(1)

Left-or-right CCA for PKE

mdCOA

Left Pk
DecO
K (@, g})
€1 « Coy
(Tan;Tn1q)‘
_Cq < Cog V

EncO

EncO

pk
C

\ S

g(”ﬁﬂo 'mllll))

¢« ap
4

gnloqf”11q)

k

DecO returns L if ¢; is queried

(erronously claimed memory-tight in [ACFK17])

1CCA = mCCA
not memory-tight

Let’s see why ...

Right

DecO

>
.

0/1

20

Let us recall the 1CCA = mCCA reduction

RA
) pk R $ Pk
) k<lq]
(mOir mli) EncO (m0k' mlk)
$ £
Ifi < k: ¢; < Enc(pk, my;)) C EncO
*] . $ h

) Ci If i > k: ¢ < Enc(pk, my;)

Ifi =k:c] < c*

——

DecO

DecO

3

A

A

eedtoreturn L if ¢ = ¢; for some i, m otherwise

Soluticﬁ ta whifl* ’s — not memory-tight .

\/

A
R pk R ; pk
) k<lq]
(moi, my;) EncO (Mo, M1k)
$ x
Ifi < k: c;|< Enc(pk, my;)) c EncO
" _ 18)
.G If i > kivcj|< Enc(pk, my;)
Ifi =k:c; « c*
c c
DecO m DecO
Idea 1: use randomness which is Idea 2: To figure out whether c is a challenge

determined by the message and i ciphertext, re-encrypt m using randomness
corresponding m and i for each i

22

Concretely: inefficient tagging

f =random function

A
R pk R pk

o
<

(my;, my;) EncO (Mo, M1x)
Ifi < k:c; < Enc(pk, my;; f(mg;, 0)) c* EncO

. Ifi > k:c; < Enc(pk, my;; f(mq;, D)) || [

' Ifi =kic] «c*

—

It 3i € [q]: c=Enc(pk, m; f(m,i))
M — L
m Elsem' «m

P l
<

A

v

m DecO

not time-tight Ji: ¢ = ¢; = ¢ = Enc(pk, m; f(m, 1)) ~/

o.w. w.h.p. ¢ # Enc(pk, m; f(m, 1)) J

23

Why is inefficient tagging enough?

It can be better to have memory-tightness over time-tightness for
many problems

Lattices, RSA/Factoring, finite field DLP, ...

What if | really also want time-
tightness, though?
Change the definition!

24

This talk: three techniques

1. Efficient tagging
2. Inefficient tagging
3. Message encoding

\

o, € {0,1}, recoverable
intime w(1)

Bounded length o,
recoverable in time
0(1)

Real-or-random CCA for PKE

MECAA
Real
m

/\ pk
DecO /

. | EncO(m) Enc0(m)
el $ $
«~ | c* < Enc(pk,m) ||| c* < C(pk, |m|)
: Return c* Return c*
Mq

DecO returns m;iffa;issayerieat] cattizs | dbaopypitooncow.
1$CCA > ms$SCCA

not memory-tight 26

1SCCA = msCCA reduction

A
R - pk R . Pk
k< [q]
m; P—
EncO Mk
$ k
. Ifi < k: ¢; < C(pk, |m;|) - Ened
C; $
> l If i > k: ¢; < Enc(pk, m;)
Ifi =k:c; «c”
C - g
D?C-O m DecO
If c = ¢} fori < k, w.h.p

m # m;

T 2
Solution: Renﬁ % fori < k — not memory-tight ;

|V

Key idea

A
R - pk R . Pk
k< [q]
m; P—
EncO Mk
$ k
. Ifi < k:| c; < C(pk, |m;]|) - Pned
C; $
> l If i > k: ¢ < Enc(pk,my;)
Ifi =k:c; «c”
C ¢ >
D?C-O m DecO

i N\

Idea 2: decode c - if the decoded answer Idea 1: encode m; into ¢; fori < k
is of the “right” form, return decoded
message, o.w. use DecO

Definitions matter!

Depending on which definition of IND-CCA we use. ...

the memory-tight reduction for single CCA = multi-CCA
* may be time-tight
* may not be time-tight

Lesson: Quality of memory-tight reduction
strongly related to definitional choices

29

Other results

* Memory-tight AE security for Encrypt-then-PRF
* Bypasses impossibility of [GJT20]

* Generalize memory-tight mUFCMA result for RDS
* Captures signature used in TLS 1.3

* Time, memory, advantage-tight direct reduction of mMUFCMA
security of RSA-PFDH to RSA

30

Conclusions

* Ability to give memory-tight reductions strongly couples with
definitional choices

* Impossibility results [ACFK17,WMHT18,GT20,GJT20] do not
preclude positive results for specific schemes

31

Open problems

* More new general techniques for memory-tightness beyond
[ACFK17,Bhattacharya20,GJT20,DJKL21] and this work

* Understanding the “right” definitional choices in the memory-
restricted setting

32

Paper: https://eprint.iacr.org/2021/1409

33

https://eprint.iacr.org/2021/1409

