
Ashrujit Ghoshal

CRYPTO 2023

The Query Complexity of
Preprocessing Attacks

1

Stefano Tessaro
University of WashingtonCarnegie Mellon University

Preprocessing attacks [Hellman, ‘80]

2

𝑨𝟏 𝑨𝟐
𝑆-bit advice

offline online

Adversary	𝑨 = 𝑨𝟏, 𝑨𝟐
problem instance

solution

Time 𝑇#Time 𝑇$
Preprocessing
attack

“Classical” interpretation: Advice = Non-uniformity

[Koblitz-Menezes, ’13] [Bernstein-Lange, ‘13]

In this case: offline time 𝑇! does not matter, only advice size 𝑆

𝑨 Time 𝑇

Adversary	𝑨

3

Many works embrace this viewpoint and prove
lower/upper bounds on space-time trade-offs in
ideal models

[Hellman ‘80] [Yao ‘90] [Unruh '07][De-Trevisan-Tulsiani ‘10] [Dodis-Guo-Katz ‘17] [Coretti-Dodis-
Guo-Steinberger ‘18] [Coretti-Dodis-Guo ‘18] [Corrigan-Gibbs-Kogan ‘18] [Corrigan-Gibbs-Kogan ‘19]
[Akshima-Cash-Drucker-Wee ‘20] [Chung-Guo-Liu-Qian ‘20] [Chawin-Haitner-Mazor ‘20] [Guo-Li-Liu-
Zhang ‘21] [Gravin-Guo-Chiu-Lu ‘21] [Ghoshal-Komargodski ‘22] [Freitag-Ghoshal-Komargodski ‘22]
[Akshima-Guo-Liu ‘22] [Freitag-Ghoshal-Komargodski ‘23] [Golovnev-Guo-Peters-Stephens-
Davidowitz '23]

Prototypical
theorem

This talk: should we care about 𝑇!?

4

(And what can we say about it?)

For a pre-processing attack to be “practical”:
• Feasible 𝑇!
• Worth it to run the attack!

𝑇∗ ≔	runtime of best online-only attack to win

To have 𝑇# ≪ 𝑇∗ we need 𝑇! ≥ 𝑇∗ When
OK?

In some settings, we actually want to run the attack!

When is 𝑇! ≥ 𝑇∗ okay?

5

Setting 2: Advice can be recycled across multiple executions of the
attack

Example: Invert RO(pwd) with 𝑁 potential pwd’s
Online only: 𝑘 passwords in time 𝑘×𝑁 [memory-less]
Rainbow table: 𝑘 passwords in time 𝑁 + 𝑘× $

%

Setting 1: Online phase has short time-out and must be fast!

Example: [Adrian et al. ‘15] – breaking (weak) discrete logarithm
within TLS session

Bottom line

There are settings where explicit pre-processing attacks make sense
and understanding the necessary offline time complexity is
fundamental.

6

But: can we actually show anything interesting?
• E.g., rainbow tables are easily seen to be optimal (at least one of

online and offline phase should take time 𝑁)

Interesting example

7

2-block Merkle-Damgård (MD) collisions

ℎ: 0,1 #% → 0,1 % 𝑎

𝑀$ 𝑀#
ℎ ℎ

2−MD& 𝑎, 𝑀$, 𝑀#

Offline
• Advice: 𝑆 triples (𝑎', 𝑀', 𝑀'

() such that 𝑀' ≠ 𝑀'
(,	

ℎ 𝑎', 𝑀' = ℎ 𝑎', 𝑀'
(for distinct 𝑎$, … , 𝑎)

Online
• Given salt 𝑎, find 𝑀 such that ℎ 𝑎,𝑀 = 𝑎' for some	𝑖 ∈ [𝑆]
• Return 𝑀,𝑀' , (𝑀,𝑀'

()

𝑇$ ≈ 𝑆 ⋅ 2*.,%, 𝑇# ≈ 2%/𝑆 𝑇!×𝑇" ≈ 2!.$%

𝑀! 𝑀!"

𝑎!

𝑀# 𝑀#"

𝑎#

…
𝑀$ 𝑀$

"

𝑎$

…

𝑎

𝑀

Interesting example

8

ℎ: 0,1 #% → 0,1 % 𝑎

𝑀$ 𝑀#
ℎ ℎ

2−MD& 𝑎, 𝑀$, 𝑀#

𝑇!×𝑇" ≈ 2!.$%

To get 𝑇# < 2$/#, we need 𝑇! > 2$

e.g., only worth it for more than 2$/# collisions

Are there attacks with better trade-offs?

How do we reason about this?
This work!

2-block Merkle-Damgård (MD) collisions

This work – in a nutshell

Toolkit* to understand inherent relationship between offline and
online time in preprocessing attacks.

9
* Only prior work deals with DL with preprocessing [CorriganGibbs-Kogan ’18]

▷ Generic salting defeats preprocessing (qualitatively at least)

▷ Quantitative bounds for salted random oracles

▷ Quantitative bounds for two-block Merkle-Damgård (MD)

Auxiliary-input (ai) ideal models

10

⋮
𝑆 bits

⋮

𝑇 queriesproblem instance e.g., salt

𝑶 𝑶

unbounded

𝑨 = 𝑨𝟏, 𝑨𝟐

𝑨𝟏 𝑨𝟐

solution

𝑶 = RO, ideal cipher, GGM oracle, …

This work -- model

11

⋮
unbounded

⋮

𝑇# queriesproblem instance e.g., salt

𝑶 𝑶

𝑇$ queries

𝑨 = 𝑨𝟏, 𝑨𝟐

𝑨𝟏 𝑨𝟐

solution

𝑶 = RO, ideal cipher, GGM oracle, …

Notation: (𝑇$, 𝑇#)-adversary

Salting defeats preprocessing

12

Scheme Π/ where 𝑔: 0,1 ∗ → 0,1 % is random oracle

Replace 𝑔 with ℎ(𝑎, .) where ℎ: 0,1 1× 0,1 ∗ → 0,1 %

Theorem. ∀	(𝑇$, 𝑇#)-adversaries 𝐴

Adv2!(#,.)
345 𝐴 ≥ 0.9 ⇒ 	𝑇$ ≥ 21𝑇∗/4	 or	𝑇# ≥ 𝑇∗/4	

Salted hash function, public salt 𝑎 picked at random

Assume: ∀𝑇∗−query 𝐵: 	Adv2'
345(𝐵) ≤ 0.4

∼	Time to break
Π on every salt

∼	Time to break
Π online only!

Two issues:
• only deals with high-advantage regime
• in some cases, not all calls are salted!

Proof idea

13

∀𝐵 making 𝑇∗ queries: Adv"!
#$%(𝐵) ≤ 0.4

∀𝐵′ making 𝑇∗/2 queries in expectation: Adv"!
#$%(𝐵′) ≤ 0.9

(Markov inequality)

∀	(𝑇&, 𝑇')−adversaries 𝐴 w/ 𝑇& ≤ 2(𝑇∗/4 and 𝑇' ≤ 𝑇∗/4	: Adv""($,.)
#$% 𝐴 ≤ 0.9

Generic technique for
concrete bounds!

Generic technique

14

∀𝐵′ making)(
')
+ 𝑇' queries in expectation: Adv"!

#$%(𝐵′) ≤ 𝜖

∀	(𝑇&, 𝑇')−adversaries 𝐴: Adv""($,.)
#$% 𝐴 ≤ 𝜖

Use [Jaeger-Tessaro ‘20] to compute 𝜖!

Salted Random Oracles – Generic Technique

15

Given 𝑎←
$
0,1 1, 𝑦←

$
0,1 %, find 𝑀 such that ℎ 𝑎,𝑀 = 𝑦

Corollary. [Generic + JT20] ∀(𝑇$, 𝑇#)-adversaries 𝐴	

Adv&(M,.)
NO (𝐴) ≤

5𝑇$
21P%

+
5𝑇#
2%

Matching offline-only attack
Matching online-only attack

Example. Pre-image resistance of salted random oracle ℎ: 0,1 1× 0,1 ∗ → 0,1 %

Salted Random Oracles – Generic Technique

16

Given 𝑎←
$
0,1 1, find 𝑀 ≠ 𝑀′ such that ℎ 𝑎,𝑀 = ℎ(𝑎,𝑀()

Corollary. [Generic + JT20] ∀(𝑇$, 𝑇#)-adversaries 𝐴	

Adv&(M,.)5O (𝐴) ≤
𝑇$

21P
%
#
+

𝑇#
2%/#

Matching offline-only attack 👍
No matching online-only attack (but close) 🤔

Example. Collision resistance of salted random oracle ℎ: 0,1 1× 0,1 ∗ → 0,1 %

Salted Random Oracles – Direct Proof

17

Given 𝑎←
$
0,1 1, find 𝑀 ≠ 𝑀′ such that ℎ 𝑎,𝑀 = ℎ(𝑎,𝑀()

Theorem. [This work] ∀(𝑇$, 𝑇#)-adversaries 𝐴	

Adv&(M,.)
5O (𝐴) ≤

𝑇$

21P
%
#
+
𝑇##

2%

Example. Collision resistance of salted random oracle ℎ: 0,1 1× 0,1 ∗ → 0,1 %

Bottom line: Generic approach does not always give best possible
bounds (but gives close enough bounds)

Proof via compression argument [we will come back to this …]

Two-block MD

Two block MD construction does not salt each call to ℎ
→ prior techniques do not apply & more challenging proofs

18

𝑎

𝑀$ 𝑀#
ℎ ℎ

2−MD& 𝑎, 𝑀$, 𝑀#

ℎ: 0,1 #% → 0,1 %

Two-block MD – Pre-image resistance

19

Theorem. ∀ 𝑇$, 𝑇# -adversaries 𝐴

Adv#QRS(
NO 𝐴 ≤

𝑇#
2%
+
𝑇$𝑇#
2#%

+
𝑇$#

2T%

Online-only
attack, requires
𝑇# = 2%

Offline-only attack,
requires 𝑇$ = 2$.,%

Trade-off. E.g.,
𝑇$ = 2$.#,% and
𝑇# = 2*.U,%

Two-block MD – Collision Resistance

20

Theorem. ∀ 𝑇$, 𝑇# -adversaries 𝐴

Adv#QRS(
5O 𝐴 ≤

𝑇##

2%
+
𝑇$𝑇#
2$.,%

+
𝑇$

2$.#,%
+

𝑇$#

2U%/T

Online-only
attack (tight)

Offline-only
attacks, likely not
tight!Trade-off. (tight)

What is the main challenge behind these proofs?!

21

Main challenge = Offline-only attacks!

22

E.g., for collision resistance of salted random oracle

𝑋 ≔	# salts 𝑎'	 for which the adversary can find the following structures

𝑎$ 𝑎#

⋯

𝑎V

Need to upper bound 𝐸[𝑋] Unclear how when queries adaptive

We prove Pr 𝑋 ≥ max WX)

#
*
+
, 𝑛 is very small, which suffices

Technique: compression argument

23

Compression lemma Lemma [DTT10]. Let 𝜀 ≔
	Pr
Y,Z
[Dec Enc 𝑥, 𝑟 , 𝑟 = 𝑥]. Then

log 𝒴 ≥ log 𝒳 − log
1
𝜀Enc Dec𝑥 ∈ 𝒳 𝑦 ∈ 𝒴 𝑥 ∈ 𝒳

𝑟←
$
ℛ

Our strategy: Encode ℎ using 𝐴$

Decoding would succeed as long as 𝐴$& finds collisions for 𝑘 different salts

Encoding example

𝐴$&’s query transcript:
1. 𝑎$, 𝑀$, 𝑦$ 	
2. 𝑎#, 𝑀# , 𝑦#
3. 𝑎#, 𝑀T , 𝑦#
4. 𝑎T, 𝑀[, 𝑦T
5. 𝑎[, 𝑀, , 𝑦,
6. 𝑎[, 𝑀U , 𝑦,
7. 𝑎#, 𝑀\ , 𝑦#
8. 𝑎T, 𝑀\ , 𝑦T

Encoding:
𝑆 = {2,3,4,5,6,8} (set indices of colliding queries for salts)
𝐿 = (𝑦$, 𝑦#, 𝑦T, 𝑦,, 𝑦#,	rest of evaluations of ℎ)

𝑀# 𝑀T

𝑎#

𝑀\

𝑎$

𝑦$ 𝑦#

𝑀$

𝑀[𝑀\

𝑎T

𝑦T

𝑀, 𝑀U

𝑎[

𝑦,

Note: only collision pair
considered for 𝑎#

25

How does decoding work?

Encoding:
𝑆 = {2,3,4,5,6,8} (set indices of colliding queries for salts)
𝐿 = (𝑦$, 𝑦#, 𝑦T, 𝑦,, 𝑦#, rest of evaluations of ℎ)

Run 𝐴$

1. 𝑎$, 𝑀$

/

2. 𝑎#, 𝑀#

/

→ 𝑦$
→ 𝑦#

3. 𝑎#, 𝑀T → 𝑦#
2 ∈ 𝑆, but no query 𝑗 on 𝑎# earlier such that 𝑗 ∈ 𝑆
3 ∈ 𝑆 and query 2 was on 𝑎# and 2 ∈ 𝑆 ⇒ collision

From compression lemma, it follows

log
𝑇$
𝑘

≥ 𝑘𝑛 − log
1
𝜖

⇒ 𝜖 ≤ $
#* for 𝑘 ≥ max WX)

#
*
+
, 𝑛

⋮
𝜖 ≔ Pr

&
[𝐴$&	oinds	cols	for	𝑘	different	salts]

2-block-MD analysis: more challenging

26

𝑋 = # salts for which collision queried in offline phase
ℎ 𝑎,𝑀! = 𝑧!, ℎ 𝑎,𝑀% = 𝑧%, ℎ 𝑧!, 𝑀!" , = 𝑦, ℎ 𝑧%, 𝑀%

" = 𝑦

Very challenging to understand for 𝑇$ ≫ 2%

We give a (loose) analysis using rather sophisticated compression arguments

Reason: Salts 𝑎, 𝑎′ can share the ℎ(𝑧$, 𝑀$)	 and ℎ 𝑧#, 𝑀#
(queries!

Need to be very careful to avoid double counting

𝑀$
𝑎

𝑦

𝑀#

𝑀$(𝑀#
(

𝑧$ 𝑧#

𝑎′ 𝑎

Conclusions and open problems

• Salting generically defeats preprocessing (qualitatively) wrt to time
complexity

• Quantitatively precise bounds need ad-hoc analysis

• Open problem: Close the gap for MD collisions? Extend beyond two
blocks? Consider both advice size and pre-processing complexity?

27
Thank you!ePrint: 2023/856

https://eprint.iacr.org/2023/856

