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Iterative hashing

Hash functions need to handle variable input lengths
* password hashing
* hash and sign

* commitments
Cannot design a different hash for every length

Construct a VIL hash function from an underlying FIL primitive

e.g., Merkle Damgard hashing [Mer89, Dam89]

b € {0’1}11 7 M = (Ml,Mz, ...,MB)
h MDh(IV, M) =X
a €{0,1}"* — c €{0,1}"

Ml—b\Mz—b MBH

Used in MDs5, SHA-1, SHA-2



SHA-3

* 2006 NIST competition after attacks on MD-5, SHA-0

* Winner: Keccak [BDPV07] became SHA-3

* New iterative hashing technique: sponge construction
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Sponge construction

Permutation I1: {0,1}" "¢ — {0,1}"*¢ r = bit-rate, ¢ = capacity
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Collision resistance

Given random IV, hard to find M #= M’ such that Spp(IV, M) = Spp(IV,M")
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Complexity of finding collisions

* Model IT as a random permutation

r c

* Using T = min(2z, 22) queries, can find collisions
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Complexity of finding collisions

* Model IT as a random permutation

r c

* Using T = min(2z, 22) queries, can find collisions
* Provably optimal!

* indifferentiability from a RO with r bit output for < 2z queries [BDPA0S]

* What about adversaries that use large pre-processing?
* Indifferentiabilty framework does not apply
* Scenario studied by [Hellman8o, Fiat-Naorg9, Unruho7, ... ]
* Captures non-uniform attacks




Auxiliary-input random permutation model (AI-RPM) [CDG18]
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“pre-processing” phase “online” phase

Awinsif M" = M, Spn(IV,M) = Spp(IV,M") Adv,..,(S,T) = max Pr[4 wins]
’ (s,7) adv 4
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Prior work

2 2
Theorem. [CDG18] Adv,,(5,T) = @ (3= + )

2¢ 27

An observation: the attack finds collisions of length Q(T)!

THAT'S... TOO/LONG

Say, T ~ 2°% = petabytes sized collision!

Shorter collisions seem harder to find

Can we characterize hardness of finding B-block collisions for sponge?

Question recently studied recently for MD.

Takeaway: easier as B grows. See next talk for details
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This work:
Attacks and limitations for B-block sponge
collisions



Our results, in a nutshell

e New attacks

e forB=1
« forB =2 Bounds for attacks and
e New limitations on attacks limitations do not match.
e forB = 1 Many open problems!
e forB =2

17! queries lead to new B = 1 attack, make harder to prove limitations!
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Our results: new attacks

1. New attack for B=1 = = e = = i =

. The “trivial” attack. For
1-block collision i MD, provably optimal

2 o forB =1
)/s2m\3 /ST
Adv, (S, T) = Q| min Sac ,(?

N
Prev best known attack for B = 1 has advantage () (S ZT)

N
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N
N’
‘ v

4c Cc

New attack better for some regimese.g., S =25, T =2sforc =7
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N
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Our results: new attacks (2)

2. New attack for B > 2

AdVC,T,B (S, T) > () (

Analogue of MD attack for B = 2
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Our results: limitations

1. Limitationfor B = 1

ST \T?
AdVC,’r‘,l(Sl T) <0 +

Proof using(bit-fixing{Unruho7, CDGS18, CDG18]

4
not believed to be tight

intermediate model where
* adversary does not have pre-processing
* instead, canfix = ST points of 1
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Our results: limitations

2. Limitationfor B = 2

Adv,,,(S,T) <0

\ / not believed to be tight

Bé%ﬁ%memg@mwge ﬂg + 2+ 1), optimal when ST3 < 2°
¢ versa

y does not have pre-processing 2’
e has to find collisions wrt S random IVs
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Our results: the sponge state of affairs

Best attack® Advantage upper bound

— 2 2
e A O(SZ+T7~)
B =2 ST T? T2 gap ST T? S2T4
'Q 2C+2T+2C O 2C+2T+ 22C
B>?2 STB T? T2 gap ST? | T2
0 + CDG18
Q( T +26+2_"") (ZC 2r)[ ]

See paper *Hiding factors polyinc,r
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Attack forB =1

Theorem, [this work]

2
$2T\3 (ST\*

advantage for Hellman’s attack for random function inversion



Attack forB =1

Goal: Find M, M’ s.t. TI(M, IV)[1] = I(M’, 1IV)[1]

IV >

- (M, IV)[1]

- TI(M, V) [2]




Attack forB =1

Solve a harder problem!

Goal: Find M, M’ s.t. TI(M, IV)[1] = TI(M’, IV)[1] = 0"
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Attack for B =1 — o
An alternate view f:{0,1}¢ ¢
(x) =170, x)[2]
f does not
f depend on
M N [ ) IV
— N\ -
\ N
N\ 4 .-
n
b IV
v S S X > >([V




Attack strategy

Strategy:
Given IV find

M =107, x)[1]
M’ =T1"1(0", x")[1]
How to invert f

Output M, M’ on random IV?
Observe:

fx)=1Vv=110"x)[2] =1V

M= 11~1(0",x)[1] x

= (M, IV)[1] = 0"
Similarly, (M, 1IV)[1] = 0"

fx) =T71(07, x)[2]
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\ 4
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Hellman’s function inversion [Hellman8o0, FN99]

Random function f: {0,1}¢ — {0,1}¢

$
m = (41, 42) y « Image(f) T queries

4 |

S bits ]

A, A 4

f .

l
X Awinsif f(x) =y
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Technical challenges

f(x) =T71(07, x)[2]

1.

2.

3.

f is not a random function!
the challenge (random IV) may not be in the image of f!

need to find 2 distinct pre-images for the challenge under f
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Challenge 1: f is not a random function!

Running Fiat-Naor’s extension for general functions too expensive!

Our solution
Tldr: f = random function, can adapt Hellman’s analysis!
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Challenge 2: the challenge (random IV) may not be in the image of f!

Can show (1) fraction of co-domain has > 2 pre-images. Does it suffice?

No, Hellman’s attack might fail for this Q(1) fraction!

Our solution
We show for a fixed y € {0,1}¢, the attack succeeds w.p.

1
Q(min{ S2TIF 1 ()[\3 STIf‘l(y)ID
220 ? 2C
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Challenge 3: Need to find 2 distinct pre-images for the challenge under f

It does!

Does running the algorithm twice work? Netimmediately-clear!

Our solution
We prove Hellman’s algorithm finds a uniform pre-image in f ~1(y)!

Running Hellman twice makes the succ. prob &§
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Conclusions

* Inverse queries are useful for attacks!
» 2-block collisions harder to find than arbitrary length collisions (like in MD)

Open problems

* TightboundsforB =1,2
* Attacks that exploit the inverse queries for B > 2
* Limitations for B = 3

https://eprint.iacr.org/2022/1009
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