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Iterative hashing
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e.g., Merkle Damgård hashing [Mer89, Dam89]

Construct a VIL hash function from an underlying FIL primitive

Used in MD5, SHA-1, SHA-2

𝑎 ∈ 0,1 !

𝑏 ∈ 0,1 !

𝑐 ∈ 0,1 !

𝑀 = 𝑀", 𝑀#, … ,𝑀$
MD% IV,𝑀 = 𝑥

IV

𝑀" 𝑀#

ℎ

ℎ ℎ ℎ
𝑀$

𝑥

Hash functions need to handle variable input lengths
• password hashing
• hash and sign
• commitments

Cannot design a different hash for every length

…



SHA-3

• 2006 NIST competition after attacks on MD-5, SHA-0

• Winner: Keccak [BDPV07] became SHA-3

• New iterative hashing technique: sponge construction
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The sponge construction

permutation, instead of function



Sponge construction
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absorption squeezing

𝑀 = (𝑀2, 𝑀3… ,𝑀4)𝑆𝑝5 IV,𝑀
Permutation Π: 0,1 678 → 0,1 678

This talk𝑆𝑝5 IV,𝑀 = 𝑍𝑆𝑝5 IV,𝑀 = (𝑍2, 𝑍3, … )
𝑟 = bit-rate, 𝑐 = capacity

𝑟 bits

𝑍



Collision resistance
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Given random IV, hard to find 𝑀 ≠ 𝑀′ such that 𝑆𝑝5 IV,𝑀 = 𝑆𝑝5(IV,𝑀9)
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𝑀 = (𝑀2, … ,𝑀4) 𝑀′ = (𝑀29 , … ,𝑀4"
9 )
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Complexity of finding collisions

• Model Π as a random permutation

• Using 𝑇 ≈ min(2
#
$, 2

%
$) queries, can find collisions
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Complexity of finding collisions

• Model Π as a random permutation

• Using 𝑇 ≈ min(2
#
$, 2

%
$) queries, can find collisions

• Provably optimal! 

• indifferentiability from a RO with 𝑟 bit output for ≤ 2
!
" queries  [BDPA08]

• What about adversaries that use large pre-processing?
• Indifferentiabilty framework does not apply
• Scenario studied by [Hellman80, Fiat-Naor99, Unruh07, …]
• Captures non-uniform attacks



𝐴!

Auxiliary-input random permutation model (AI-RPM) [CDG18]
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𝐴"

“pre-processing” phase “online” phase

= (𝐴2, 𝐴3)

Π

Π

Π'"

𝑆 bits

Adv8,6 𝑆, 𝑇 = max
;,< adv =

Pr 𝐴 wins

𝐴
𝑇 queriesIV←

$
0,1 8

𝐴 wins if 𝑀9 ≠ 𝑀, 𝑆𝑝5 IV,𝑀 = 𝑆𝑝5(IV,𝑀9)

⋮

⋮

(𝑀,𝑀′)

Π: 0,1 678 → 0,1 678



Prior work
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Theorem. [CDG18]  Adv8,6 𝑆, 𝑇 = Θ ;<$

3% +
<$

3#

An observation: the attack finds collisions of length Ω(𝑇)!

Say,  𝑇 ≈ 2?@⇒ petabytes sized collision! 

Shorter collisions seem harder to find

Can we characterize hardness of finding 𝑩-block collisions for sponge?

Question recently studied recently for MD. 

Takeaway: easier as 𝐵 grows. See next talk for details
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This work:
Attacks and limitations for 𝑩-block sponge 

collisions



Our results, in a nutshell

• New attacks
• for 𝐵 = 1
• for 𝐵 ≥ 2

• New limitations on attacks 
• for 𝐵 = 1
• for 𝐵 = 2
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Bounds for attacks and 
limitations do not match. 
Many open problems!

ΠA2 queries lead to new 𝐵 = 1 attack, make harder to prove limitations! 



1. New attack for 𝑩 = 𝟏

Adv8,6,2 𝑆, 𝑇 ≥ Ω min
𝑆3𝑇
238

3
B
,
𝑆𝑇
28

3

Prev best known attack for 𝐵 = 1 has advantage Ω ;
3% +

<$

3#

New attack better for some regimes e.g.,  𝑆 = 2
&%
' , 𝑇 = 2

%
' for 𝑐 = 𝑟

Ω
𝑆
28
+
𝑇3

26
= Ω 2A

8
C , Ω

𝑆3𝑇
238

3
B
= Ω(1)

Our results: new attacks
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The “trivial” attack. For 
MD, provably optimal 

for 𝐵 = 1
1-block collision



Our results: new attacks (2)
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2. New attack for 𝑩 ≥ 𝟐

Adv8,6,4 𝑆, 𝑇 ≥ Ω
𝑆𝑇𝐵
28

+
𝑇3

28
+
𝑇3

26

Analogue of MD attack for 𝐵 ≥ 2



Our results: limitations
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1. Limitation for 𝑩 = 𝟏

Adv8,6,2 𝑆, 𝑇 ≤ 𝑂
𝑆𝑇
28
+
𝑇3

26
Proof using bit-fixing [Unruh07, CDGS18, CDG18]

intermediate model where 
• adversary does not have pre-processing
• instead, can fix ≈ 𝑆𝑇 points of Π

not believed to be tight 



Our results: limitations
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2. Limitation for 𝑩 = 𝟐

Adv8,6,3 𝑆, 𝑇 ≤ 𝑂
𝑆𝑇
28
+
𝑇3

28
+
𝑇3

26
+
𝑆3𝑇E

238

Proof via multi-instance framework [IK10, CGLQ20, ACDW20] + compression argument

Reduction to a game where
• adversary does not have pre-processing
• has to find collisions wrt 𝑆 random IVs

𝑜 <$

3#
+ ;<$

3%
⇒ separation from 𝐵 = Ω(𝑇)Our 𝐵 = 2 attack has advantage Ω ;<

3% +
<$

3# +
<$

3% , optimal when 𝑆𝑇B < 28
not believed to be tight 



Our results: the sponge state of affairs
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Best attack* Advantage upper bound

𝐵 = 1
Ω min

𝑆3𝑇
238

3
B
,
𝑆𝑇
28

3
+
𝑇3

26
𝑂

𝑆𝑇
28
+
𝑇3

26

𝐵 = 2
Ω

𝑆𝑇
28
+
𝑇3

26
+
𝑇3

28
𝑂

𝑆𝑇
28
+
𝑇3

26
+
𝑆3𝑇E

238

𝐵 > 2
Ω

𝑆𝑇𝐵
28

+
𝑇3

28
+
𝑇3

26
𝑂 ;<$

3%
+ <$

3#
[CDG18]

*Hiding factors poly in 𝑐, 𝑟

Next

gap

gap

gap

See paper



Attack for 𝐵 = 1

Theorem. [this work]

Adv8,6,2 𝑆, 𝑇 ≥ Ω min
𝑆3𝑇
238

3
B
,
𝑆𝑇
28

3

𝜀F ≔ min
𝑆3𝑇
238

2
B
,
𝑆𝑇
2G

advantage for Hellman’s attack for random function inversion

Theorem. [this work]

Adv8,6,2 𝑆, 𝑇 ≥ Ω min
𝑆3𝑇
238

3
B
,
𝑆𝑇
28

3
= Ω(𝜀F3)
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Goal: Find 𝑀,𝑀′ s.t. Π 𝑀, IV 1 = Π 𝑀′, IV 1

0&

IV

𝚷

⊕

𝑀

0&

IV

𝚷
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𝑀9

Π 𝑀, IV [2]

Π 𝑀, IV [1]

Attack for 𝐵 = 1
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= 𝟎𝒓

Solve a harder problem!

Goal: Find 𝑀,𝑀′ s.t. Π 𝑀, IV 1 = Π 𝑀′, IV 1 = 𝟎𝒓
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Attack for 𝐵 = 1
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= 06

𝑀

IV

𝚷'𝟏

𝑥
𝑥

IV

𝑓 𝑥 = ΠA2 06, 𝑥 [2]
𝑓: 0,1 8 → 0,1 8

𝑓

An alternate view

0&

IV

𝚷

⊕

𝑀

𝑓 does not 
depend on 
IV

Attack for 𝐵 = 1



Attack strategy
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Observe:
𝑓 𝑥 = IV ⇒ ΠA2 06, 𝑥 2 = IV
𝑀 = ΠA2 06, 𝑥 1
⇒ Π 𝑀, IV [1] = 06
Similarly, Π 𝑀′, IV [1] = 06

Strategy: 
Given IV find 𝑥 ≠ 𝑥′ ∈ 𝑓A2(IV)

𝑀 = ΠA2 06, 𝑥 [1]
𝑀9 = ΠA2 06, 𝑥9 [1]

Output 𝑀,𝑀′
𝑀

IV

𝚷'𝟏

𝑥
𝑥

IV

𝑓 𝑥 = ΠA2 06, 𝑥 [2]

𝑓

How to invert 𝑓
on random IV?



𝐴!

Hellman’s function inversion [Hellman80, FN99]
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Random function 𝑓: 0,1 8 → 0,1 8

𝐴"

= (𝐴2, 𝐴3)

𝑓

𝑓𝑆 bits

𝐴

𝑇 queries𝑦←
$
Image(𝑓)

𝜀F = Ω min
𝑆3𝑇
238

2
B
,
𝑆𝑇
28

⋮

𝑥 𝐴 wins if 𝑓 𝑥 = 𝑦



Technical challenges
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𝑓 𝑥 = ΠA2 06, 𝑥 [2]

1. 𝑓 is not a random function!

2. the challenge (random IV) may not be in the image of 𝑓!

3. need to find 𝟐 distinct pre-images for the challenge under 𝑓



24

Challenge 1: 𝑓 is not a random function!

Running Fiat-Naor’s extension for general functions too expensive!

Our solution
Tl;dr: 𝑓 ≈ random function, can adapt Hellman’s analysis!
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Challenge 2: the challenge (random IV) may not be in the image of 𝑓!

Can show Ω 1 fraction of co-domain has ≥ 2 pre-images. Does it suffice? 

No, Hellman’s attack might fail for this Ω 1 fraction!

Our solution
We show for a fixed 𝑦 ∈ 0,1 8, the attack succeeds w.p.

Ω min
𝑆3𝑇|𝑓A2(𝑦)|

238

2
B
,
𝑆𝑇|𝑓A2(𝑦)|

28
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Challenge 3: Need to find 𝟐 distinct pre-images for the challenge under 𝑓

Does running the algorithm twice work? Not immediately clear!

Our solution
We prove Hellman’s algorithm finds a uniform pre-image in 𝑓A2 𝑦 !

Does running the algorithm twice work? Not immediately clear!
It does!

Running Hellman twice makes the succ. prob 𝜀F3



Conclusions
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• Inverse queries are useful for attacks!
• 2-block collisions harder to find than arbitrary length collisions (like in MD)

Open problems

• Tight bounds for 𝐵 = 1, 2
• Attacks that exploit the inverse queries for 𝐵 ≥ 2
• Limitations for 𝐵 ≥ 3

https://eprint.iacr.org/2022/1009

https://eprint.iacr.org/2022/1009

