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Iterative hashing

Hash functions need to handle variable input lengths
* password hashing

* hash and sign

* commitments

Cannot design a different hash for every length

Construct a VIL hash function from an underlying FIL primitive

e.g., Merkle Damgard hashing [Mer89, Dam89], sponge [BDPV07]



Merkle-Damgard
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Collision resistance:
Given a random salt a, hard to find M # M’ such that MD,(a, M) = MDy,(a, M")



Complexity of finding collisions

* Model h as a random oracle

» Using T =~ VN queries, can find collisions

* This is necessary

* What about adversaries with large preprocessing?

* birthday-style attack no longer optimal

* Scenario studied by [Hellman8o, Fiat-Naorg9, Unruhoz,... |



Auxiliary-input random oracle model (AI-ROM) [Unruho7]
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Prior work

ST?
Theorem. [CDGS18] Advy(S,T) = 0 (T)

An observation: the attack finds collisions of length Q(T)!

THAT'S..TOO/LONG

Say, T ~ 2°% = petabytes sized collision!

O
2-block collision ‘1

L
Shorter collisions are provably harder to find \

2
Theorem. [ACDW20] AdV@S, T) <0 (% + T—)




Theorem (STB attack). [ACDW20] Advy g(S,T) = Q (S;B 7Jw\r)

The STB conjecture [ACDW20]

“the optimal attack for finding B-block collisions has
advantage at most O (STTB + N) o

Was unresolvedfor3 < B KT



This work:
Proof of the STB conjecture for
- B=0(1) Next

o S*B? € 5(T) See paper

Recently improved by Akshima, Guo, Liu [AGL22]




Main theorem

Theorem. [this work]

STB%(log S)E T2
Ava,B(S,T)so< (Ng ) +N>

For constant B,

_ 2
Advy 5(S,T) < 0 (% + %)

Proof via multi-instance framework [IK10, CGLQ20, ACDW20]




Multi-instance framework [CGLQ20, ACDW20]
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Multi-instance lemma. Let u = S + log N. Define ¢: = max Pr[A, wins]. Then
2
1

AdVN’B(S, T) < é&u

Will prove:
Forconstant B, u =S +logN

e < (0 (uTBZ(Ilvogu)B N 7;)>u - (5 (2 . T_2)>u

N N

From multi-instance lemma, it follows

~ 2
Advy(S,T) < 0 (T + =)
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Upper bounding multi-instance advantage

Technique: compression argument

r<—2R

x €X yeYy

x eEX

Enc Dec

v

Lemma [GTo0,DTT10]. Let € :== Pr[Dec(Enc(x,r),r) = x]. Then
X,r

1
log|y| = log|X| —log—

12
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Our strategy: Encode h, {a4, a,, ..., a, } using A, that always wins

Compression lemma = upper bound Pr[A4, wins]|

Simplifying assumption: Only queries of the form h(a;,*) when A, run on q;
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Encoding
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Decoding

bression lemma,

(0%, ay)

v

A

Collision for ever sjgf[t
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omit an answer

remember two indices

However, cannot assume only queries of the form h(a;,*) are made when A, run on q;
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Query graph
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Graph grows across all of 4;,’s runs

Note: A, may repeat queries across different runs

Assume wlog A, makes all h queries needed to compute collision

How do B-block collisions look like?
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Collision structure

The mouse structure

body
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tip
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Isolate one mouse structure per salt

No tail
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Types of queries

* New queries: queries made for the first time
* wlog no queries repeated in single A, run
* query not made in any previous A, run = new query

* Repeated queries

* repeated-mouse queries: query present in some earlier mouse structure
. queries: other queries

Assume: Before running 4, on a;, h(a;,*) not queried

= every mouse structure has a new query
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Classifying mouse structures

1) Colliding new queries

L

a;

2) Self loop body

3) New query touching repeated-mouse query
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Classifying mouse structures (2)

4. At least one repeated-mouse query

5. No repeated-mouse query
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Goal: for every mouse structure save at least

N N
= minJlog—,1 bit
0 mln{ o572’ OguTBz(logu)B} e

Total savings = u - § bits

Using the compression lemma,

N’ N T

T? 4uTBz(310gu)B} ( (uTBz(logu)B T2>>u
<|O N N

< max{
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Recall assumption: Before running 4, on a;, h(a;,*) not queried
O

Why is it reasonable? -

Because otherwise save on q;

Savings = log N — loguT = ¢

f

That suffices! omit a;

add query index of h(a;,*)
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Easy case examples

4 q2

Savings:
%og N} — kZlog T} >0

J— —

answerof g,  “local” indices of q4, g5

Colliding new queries

Savings:
logN —logT —loguB = 6

S

q4 13 answer of g, index of g4 index of g3

New query touching repeated-mouse query
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Hard case example

Strategy:
Omit answer of g5,
42 Remember:

h * index of ¢4
At least one repeated-mouse query . index of g,
\Q * path back from g, to g,

No large multi-collision if:
< logu incoming edges for all nodes

no large multi-collision = path encoding needs at most
\logB} +\B log(logu) }

A/Y Y\>

# of edges on path which edge to take on path back 24




Strategy:

Omit answer of g,,
Remember:

* indexof g,

* indexofq,

e path backfrom g, to g,

Savings > log N — (loguB + log T + log(logu)®? + logB) = 6

But, what if there are large muti-collisions? '_\‘

v Sl Key idea: Save from the large multi-collision!

\a)
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Saving from multi-collisions

\ Strategy:
\% Remember answer of first of m queries, indices of rest
m- multi-collision Savings:

(m—1)logN — log (f)
=

omitted answers set of query indices

Whenm > logu, @ ()
— 1) log N —1 ( )21 N —2logT > 6 e
(m ) log og o og og 4 |

}




Conclusion

» STB conjecture true for all constant B, when S*B? € 0(T)

* Follow up works
* STB conjecture proven for ST# < N [AGL22]

* similar question studied for sponge [FGK22]

Open problem:
Prove the STB conjecture or give better attacks for ST > N

Paper: https://eprint.iacr.org/2022/309
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