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Often, security guarantees weak or non-existent
Reason: Fiat-Shamir transform

ZK-proofs gaining adoption in practice



Fiat-Shamir (FS) transform [FS86]
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Usually, only the soundness interactive protocol analyzed

Hope: IP sound + 𝐻 = random oracle ⇒ FS IP sound

Is that the case?

Common approach to build non-interactive succinct argument systems
• [BCCGP16, AHIV17, BBBPWM18, WTsTW18, MBKM19, BFS20, GWC20,  

Lee20, CHMMVW20, Setty20, SL20, LSTW20, BHRRS20, KST21, 
BHRRS21, …]



Soundness degradation
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snd err.(𝑡) = 𝜖 snd err.(𝑡) ≤ 𝑡123 ⋅ 𝜖
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Bulletproofs [BBBPWM18, BCCGP16]
• Implemented in Monero, Signal’s MobileCoin
• More than constant rounds, hence no meaningful security guarantee

Constant-round protocols
• E.g., Sonic [MBKM19], Plonk [GWC19], Marlin [CHMMVW20]
• For 256-bit curves, 𝑟 ≥ 4, secure only for 𝑡 ≤ 2!"

This is very bad

Overly pessimistic? Expect much better security!

snd err.(𝑡) ≤ 𝑡#$% ⋅ 𝜖



Security expectations Proof guarantees

General framework to prove security in the Algebraic Group Model (AGM) 
[FKL17] for 
• group-based proof/argument systems 
• using the Fiat-Shamir transform 

Our work

with or without pairings



General framework to prove security in the (AGM) [FKL17] for
• group-based proof/argument systems 
• using the Fiat-Shamir transform 
to prove security in the Algebraic Group Model (AGM) [FKL17]

[Groth16,FKL17] soundness analysis in ideal models (GGM/AGM)
No Fiat-Shamir

Tight bounds for Bulletproofs [BBBPWM18, 
BCCGP16], Sonic [MBKM19]

Expect to apply to number of other proof systems

first non-trivial soundness proof for the non-interactive protocol. 

Concurrent work: [BMMTV20] — non-tight bounds in the AGM for main 
component of Bulletproofs



Key ingredient = state-restoration soundness



Theorem. [BCS16]

sr snd err.
IP

𝑡 time

snd err.
FS[IP]
𝑡 time

≤ +
𝑡 + 1
Chal set

.

State-restoration (SR) soundness ⇒ FS soundness, tightly



𝒫∗(𝑥)

State-restoration (SR) soundness [BCS16]
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snd err. for FS[IP] ≤ 𝑡#$% ⋅ 𝜖

Bounding sr snd err. generically

𝑟-round IP
snd err. = 𝜖

sr snd err. ≤ 𝑡#$% ⋅ 𝜖

snd err. for FS[IP] ≤ 𝑡#$% ⋅ 𝜖

running time of FS[IP] prover

running time of FS[IP] prover

running time of SR prover[BCS16]

earlier



Can we prove better bounds for SR soundness?

For certain interactive proofs, YES! [CCHLRR18, CCHLRRW19, 
JKZ21, HLR21, …]
Round-by-round soundness ⇔ SR soundness [Holmgren19]

For arguments no non-trivial bounds for SR soundness known 



𝒫∗

Proving soundness of arguments

Proof via generalized forking lemma [BCCGP16, JT20, ACK21]

Witness extended emulation (wee) [Lindell03, GI08]

ℰ𝑉

𝜏 = (𝑥, 𝑎%, 𝑐%, … , 𝑎#, 𝑐#, 𝑎#$%) (𝜏′, 𝑤)

Goal: 𝜏' identically distributed as 𝜏 and Acc(𝜏′) ⇒ 𝑥,𝑤 ∈ 𝑅

𝑥𝑥 𝑥

𝒫∗

𝑥

⋮

guarantee only computational for arguments

𝑎!
𝑐!
𝑎"#!

PoK

soundness wee

IP = (𝑃, 𝑉) for NP relation 𝑅



For state-restoration provers

𝒫∗ 𝑉

𝑥 𝑥

ℰ
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Extraction strategy unclear ☹

𝜏 =

Double rewinding!

Goal: 𝜏' identically distributed 
as 𝜏 and Acc(𝜏') ⇒ 𝑥,𝑤 ∈ 𝑅



Idea: online extraction

Online extraction supported by
• Knowledge assumptions
• Ideal models (e.g., AGM, GGM, 

ROM, …)

😀

Extract witness from accepting 
transcript 𝜏, w/o rewinding
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This paper: SRS in the AGM
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Algebraic Group Model (AGM) [FKL17]
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Our target = Adaptive srs-wee in the AGM
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IP = (𝑃, 𝑉) for NP relation 𝑅
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Also in the paper: Non-adaptive srs-wee
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Goal: Given IP
1. define ℰ
2. ∀𝒫678

∗ running in time 𝑡, upper bound srs-wee-advIP 𝒫678
∗ , ℰ



Ingredient I 
∀ partial paths 𝑝 = 𝑎%, 𝑐%, … , 𝑎2 , define 
Bad 𝑝 ⊆ Chal Set s.t.

Bad 𝑝
Chal Set

≤ 𝜖

Our proof framework

Ingredient II
Define (efficient) 𝑒 s.t.

𝑒 𝑥 , acc. path ∈ {⊥} ∪ {𝑤 ∶ 𝑥, 𝑤 ∈ 𝑅}

bad path

Goals:
1. 𝑒 𝑥 , good acc. path ≠⊥
2. Minimize 𝜖
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good path



Master Theorem.
Suppose Bad, 𝑒 are defined for IP. ∃ℰ = ℰ(𝑒) s.t. ∀ 𝒫./0∗ running in time 𝑡

srs-wee-advIP 𝒫./0
∗ , ℰ ≤ 𝑡 ⋅ 𝜖 + 𝑝345.6/(𝑒, 𝒫./0

∗ )

Pr[𝑒 𝑥 , good acc. path = ⊥]

For arguments, prove 𝑝345.6/ 𝑒, 𝒫∗ ≤ probability of violating an assumption



Applications



Sonic AoK for arith. circuit satisfiability, 𝑛 =(#mult gates)

Bulletproofs AoK for arith. circuit satisfiability (BP-ACS), 𝑛 =(#mult gates)

Bulletproofs range proof (BP-RP)
AoK that 𝐶 = 𝑔7ℎ# ∈ 𝔾 is a commitment to 𝑥 ∈ 0, 28 − 1

Theorem.  ∃ℰ s.t.
srs-wee-advSonic 𝑡, ℰ ≤ 4𝑛-dlog-adv𝔾(𝑡) + 2 ⋅ dlog-adv𝔾(𝑡) + 𝑂

98
|𝔾|

.

Theorem. ∃ℰ s.t. srs-wee-advBP-RP 𝑡, ℰ ≤ dlog-adv𝔾 𝑡 + 𝑂 98
𝔾

.

Theorem. ∃ℰ s.t. srs-wee-advBP-ACS 𝑡, ℰ ≤ dlog-adv𝔾(𝑡) + 𝑂
98
|𝔾| .

Shown tight via 
matching attacks

Our results



Prior work: Concrete security analysis of Bulletproofs-ACS

[JT20]

Secure for 𝑡 ≤ 29:
𝔾 = 2;<=, 𝑛 = 2;>

Secure for 𝑡 ≤ 23;:

wee-adv  = 𝑂 ?#@$

𝔾
srs-wee-adv = 𝑂 ?#

𝔾 + ?@
𝔾

Here

GGM

Interactive protocol



Example - analyzing Bulletproofs [BBBPWM18,BCCGP16]



Main ingredient: Inner product argument

𝑃BCD 𝑉BCD

𝑥 = 𝑄, 𝑡̂ ∈ 𝔾×ℤ<
𝑤 = 𝒍, 𝒓 ∈ ℤ<8×ℤ<8 𝑥 = 𝑄, 𝑡̂

AoK: Accept iff prover knows 𝑤 = 𝒍, 𝒓 s.t.
1. 𝑄 = 𝑔%

=&⋯𝑔8
=*ℎ%

#&⋯ℎ8
#*

2. 𝑡̂ = 𝒍, 𝒓

𝑔%, … , 𝑔8, ℎ%, … , ℎ8 =
generators of 𝔾



𝑃 𝑉

𝑃BCD 𝑉BCD

𝑄, 𝑡̂ ; 𝒍, 𝒓 𝑄, 𝑡̂

Bulletproofs template for NP relation 𝑹

𝑥𝑥,𝑤
Step 1: reduce 
to inner-
product 
relation

Step 2: Inner 
product 
argument

𝑥, 𝑤 ∈ 𝑅 iff 𝑄 = 𝑔%
=&⋯𝑔8

=*ℎ%
#&⋯ℎ8

#* and 𝑡̂ = 𝒍, 𝒓 [whp] 



Important points in analyzing Bulletproofs
Point 1: Lack of composition in the AGM

Point 2: Different extraction strategies

𝑃 𝑉

𝑃$%& 𝑉$%&

Range proof
Extract from input representation

AoK for arith. circuit satisfiability
Extract from first message

𝑄, 𝑡̂ ; 𝒍, 𝒓 𝑄, 𝑡̂

𝑥𝑥, 𝑤

Different representations of group elements compared to IPA in isolation



Range proof: AoK that 𝐶 = 𝑔7ℎ# ∈ 𝔾 is a commitment to 𝑥 ∈ 0, 28 − 1

Instance= 𝐶, generators= 𝑔, ℎ

adaptive𝒫./0∗ outputs 𝐶 = (𝐶, 𝑥, 𝑟) s.t. 𝐶 = 𝑔7ℎ#

𝑒: return (𝑥, 𝑟)

No! Not guaranteed that 𝑥 ∈ 0, 28 − 1

𝒫./0
∗ produces good acc. path but

𝑥 ∉ [0, 28 − 1]
⇒ break DLOG

Are we 
done?

Technical core

Extracting from input representation: Bulletproofs range proof



Conclusions

Invitation to analyze SR soundness of interactive protocols

Open problems
• Prove SR soundness for more protocols
• SR soundness in the standard model
• Extend our framework to enable modular analysis in the AGM
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