
Implementation Attacks on Block
Ciphers: New Approaches and

Countermeasures

Thesis submitted to the

Indian Institute of Technology Kharagpur

for award of the degree of

Bachelor of Technology
by

Ashrujit Ghoshal
(14CS10060)

under the guidance of

Dr. Debdeep Mukhopadhyay

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

May 2018

To Maa and Baba

Statement of Originality

I certify that

1. The work contained in this report has been done by me under the guidance

of my supervisor.

2. The work has not been submitted to any other Institute for any degree or

diploma.

3. I have conformed to the norms and guidelines given in the Ethical Code of

Conduct of the Institute.

4. Whenever I have used materials (data, theoretical analysis, figures, and

text) from other sources, I have given due credit to them by citing them in

the text of the thesis and giving their details in the references. Further, I

have taken permission from the copyright owners of the sources, whenever

necessary.

Ashrujit Ghoshal Date:

Department of Computer Science and Engineering

IIT Kharagpur

Certificate

This is to certify that the project report entitled ”Implementation Attacks

on Block Ciphers: New Approaches and Countermeasures” submitted

by Ashrujit Ghoshal (Roll No. 14CS10060) to Department of Computer Sci-

ence and Engineering, IIT Kharagpur towards partial fulfilment of requirements

for the award of degree of Bachelor of Technology in Computer Science and En-

gineering is a record of bona fide work carried out by him under my supervision

and guidance.

Dr. Debdeep Mukhopadhyay Date:

Associate Professor

Department of Computer Science and Engineering

IIT Kharagpur

Acknowledgements

This work encapsulates my nascent steps as a researcher. These steps have been made
possible through help, encouragement and guidance of several people. First of all, I
would like to express my heartfelt gratitude to my advisor Prof. Debdeep Mukhopad-
hyay for his motivation, guidance and tremendous belief in me. His rich ideas form the
basis of the work done in this thesis. His infectious enthusiasm for solving open-ended
problems has inculcated in me the passion of pursuing research as a career. His advice
on how to strike a balance of research work with undergraduate coursework has proven
invaluable for me.
I would like to thank Prof. Mridul Nandi for giving me an opportunity to explore the
field of cryptography during an internship at ISI Kolkata in 2016. That experience led
me to choose cryptography as the topic for my thesis. I am hugely indebted to Prof.
Vincent Rijmen for providing me the opportunity to work under him at Computer Se-
curity and Industrial Cryptography(COSIC) group at KU Leuven, Belgium. A major
part of the thesis deals with Threshold Implementations, first introduced in a paper
co-authored by Vincent. I learnt all about Threshold Implementations while working
at COSIC and this thesis would not have been possible without that knowledge.
I am extremely grateful to Sikhar Da for his patience and diligence in answering my
questions. The long discussions and debates with him showed me the way forward when-
ever I got stuck on a problem. I am also thankful to him for sharing his experiences
as an undergraduate researcher of this same institute. I would like to thank Thomas
De Cnudde for helping me out with the experiments at COSIC and taking time out of
his busy schedule to help me write the draft of my first research paper. I also learnt a
great deal in how to present technical papers from Thomas. I am grateful to my other
co-authors: Rajat Da, Nilanjan Da, Dr. Vishal Saraswat, Dr. Santosh Ghosh and Dr.
Stjepan Picek. I would express my gratitude to Dr. Tomer Ashur for making sure I felt
part of the family at COSIC. I am extremely thankful to my friends and wingmates for
their support during my stay at this institute. My friends Sayan and Meghna deserve a
special mention for providing me with constant motivation and help even during lows.
Most importantly, none of this would have been possible without the love, support and
sacrifices of my parents- Maa and Baba. Words are not enough to express my gratitude
towards them for always believing in me and making sure that I had their unwavering
support even when I faltered. I dedicate this thesis to them.
Last but not the least, I thank my institute IIT Kharagpur for providing me several
opportunities and making my B.Tech life enjoyable and fulfilling.

Ashrujit Ghoshal

Abstract

In today’s world implementation attacks like active fault attacks and side-

channel power analysis attacks are potent attacks on standard cryptosystems.

These attacks can be carried out in spite of mathematically provable security

of cryptosystems if they are naively implemented. Devising new implementa-

tion attacks is important from a security point of view since countermeasures

can be designed only after the attacks are known. This thesis introduces a new

category of active fault attacks called Template based fault injection analysis

attacks which uses pre-built templates to retrieve the secret key. These attacks

involve a profiling phase followed by a matching phase. Countermeasures against

very common and easy to carry out implementation attacks are necessary to be

deployed in hardware implementations of encryption algorithms. First order dif-

ferential power analysis is one such common side-channel analysis attack. This

thesis focuses on threshold implementation (TI) design of block ciphers, an ef-

fective countermeasure against differential power attacks. We focus on reducing

the randomness used in TI designs and present the first threshold implemen-

tation designs of the Boyar Peralta AES S-Box which uses significantly lesser

randomness than existing TI designs of the AES S-Box. Designing TI involves

an increase in area, hence lightweight TI designs are of special interest. This

thesis presents the first TI design of the block cipher KHUDRA and devises a

general strategy of designing 4× 4 S-Boxes with optimal cryptographic proper-

ties which have low area and power footprints. We use cellular automata and

use a time-area trade-off for these designs. Finally, we present a S-Box whose

TI design has area smaller than TI designs of S-Boxes of existing lightweight

block cipher implementations. All claims and propositions in the thesis have

been substantiated by simulation studies and real life experiments.

Contents

1 Introduction 1

1.1 Motivation and Objectives of the Work . 2

1.2 Major contributions of this Thesis . 4

1.3 Thesis Organization and Overview . 6

2 Template-based Fault Injection Analysis of Block Ciphers 7

2.1 Introduction . 7

2.1.1 Fault Models for Fault Injection Analysis 8

2.1.2 Template Attacks: Maximizing the Power of SCA 9

2.1.3 Our Contribution: Templates for Fault Injection Analysis 10

2.1.4 Comparison with Existing FIA Techniques 10

2.2 Template-Based FIA: Detailed Approach . 11

2.2.1 Template Building Phase . 12

2.2.2 Template Matching Phase . 14

2.2.3 The Statistical measure M . 14

2.3 Case Study: Template-Based FIA on AES-128 16

2.3.1 The Fault Injection Setup . 17

2.3.2 Templates for Single Byte Faults . 17

2.3.3 Templates for Multi-Byte Faults . 18

2.3.4 Variation with Key Byte Values . 20

2.3.5 Template matching for Key-Recovery 21

2.4 Conclusion . 21

3 Threshold Implementation of KHUDRA 23

3.1 Preliminaries . 23

3.1.1 Description of the KHUDRA Block Cipher 23

3.1.2 Threshold Implementations . 23

3.2 3-shared Threshold Implementation of Khudra 26

3.2.1 Test Vector Leakage Assessment (TVLA): T -Test Methodology . . . 28

i

CONTENTS ii

3.2.2 Area comparison with other lightweight protected and unprotected

block ciphers . 29

3.3 Conclusion . 29

4 Several Masked Implementations of the Boyar Peralta AES S-Box 30

4.1 Introduction . 30

4.1.1 Contributions. 32

4.1.2 Organization. 32

4.2 Preliminaries . 33

4.2.1 Notation . 33

4.2.2 The Boyar-Peralta Implementation of the AES S-Box 33

4.2.3 Threshold Implementations . 35

4.3 Several SCA Secure Implementations of the Boyar-Peralta AES S-Box . . . 36

4.3.1 Threshold implementation with 4 shares and no randomness 42

4.3.2 Threshold implementation with 3 shares and 68 bits randomness . . 42

4.3.3 Threshold implementation with 3 shares and 34 bits randomness . . 43

4.3.4 Threshold Implementation using 3 shares and using sharing with

sin = 5 and sout = 5 for a GF(24) inverter 43

4.3.5 Threshold Implementation using 3 shares and using sharing with

sin = 4 and sout = 4 for a GF(24) inverter 44

4.4 Side-Channel Analysis Evaluation . 44

4.5 Implementation Cost . 47

4.6 Conclusion . 48

5 Lightweight and Side-channel Secure 4×4 S-Boxes from Cellular Automata

Rules 50

5.1 Introduction . 50

5.1.1 Overview of Our Contributions and Techniques 52

5.1.2 Organization . 53

5.2 Preliminaries . 54

5.2.1 Cryptographic Optimality and Representation of S-Boxes 54

5.2.2 Threshold Implementation: Countermeasure to SCA 55

5.2.3 Cellular Automata . 55

5.2.4 Area Overhead and Power Consumption Results 56

5.3 Lightweight S-Boxes from Cellular Automata Rules 57

5.3.1 Choosing the CA Rule . 57

5.3.1.1 De Bruijn Graph Representation. 58

CONTENTS iii

5.3.1.2 Generating Optimal 4× 4 S-Boxes from De Bruijn Graphs. 58

5.3.2 Classification of Cryptographically Optimal CA-based 4× 4 S-Boxes 58

5.3.3 Threshold Implementations of CA-based S-Boxes 59

5.4 Composite TI: Optimizing TI Circuits for Low Area and Power 62

5.4.1 Decomposition for CA-based S-Box Class (1, 2, 2) 63

5.4.2 Decomposition for CA-based S-Box Class (1, 3, 1) 64

5.4.3 Hardware Results for Composite TI of CA-based S-Boxes 65

5.4.4 Side-channel Leakage Resistance Evaluation using TVLA 66

5.5 Area and Power Efficient Threshold Implementations for SPN Block Ciphers 66

5.5.1 Lightweight TI circuits for Linear Diffusion Layers 67

5.5.2 Putting it all Together . 68

5.6 Conclusions and Discussions . 69

6 Conclusion and Future Work 71

6.1 Summary of Results . 71

6.2 Directions for Future Research . 73

Bibliography 75

List of Figures

2.1 Template-based Fault Injection Analysis: An Overview 9

2.2 Experimental Set-Up . 16

2.3 Templates for Single Byte Faults: Distribution of Faulty Ciphertext Byte for

Different Fault Injection Intensities . 18

2.4 Templates for Multi-Byte Faults: Distribution of Multiple Faulty Ciphertext

Byte Values . 19

2.5 Frequency Distributions for Faulty Ciphertext Byte : Same Intermediate

State Byte but Different Key Byte Values 20

2.6 Correlation between template and Observed Ciphertext Distribution: Cor-

rect Key Hypothesis v/s Wrong Key Hypothesis 22

3.1 KHUDRA Block cipher operation . 25

3.2 Decomposed S-box with three shares . 27

3.3 KHUDRA Serial Implementation . 28

4.1 Division of the nonlinear layer into stages. 37

4.2 Division of the nonlinear layer into stages when centered around the inversion

in GF(24). 41

4.3 Structure of circuit for sequential evaluation of the S-Boxes 45

4.4 First Order leakage detection test for the S-Box with 4 shares. 46

4.5 First Order leakage detection test for the S-Box with 3 shares, 68 bits of

randomness . 46

4.6 First Order leakage detection test for the S-Box with 3 shares,34 bits of

randomness . 46

4.7 First Order leakage detection test for the S-Box with 3 shares and using

sharing with sin = 5 and sout = 5 for a GF(24) inverter 46

4.8 First Order leakage detection test for the S-Box with 3 shares and using

sharing with sin = 4 and sout = 4 for a GF(24) inverter 47

iv

LIST OF FIGURES v

5.1 Architecture for TI circuits corresponding to CA-based S-Boxes 62

5.2 Architecture for TI circuits corresponding to CA-based S-Boxes 63

5.3 TVLA of Composite-TI circuit for CA-Based S-Box representing class (1, 3, 3) 66

List of Tables

2.1 Glitch Frequencies for Different Fault Models 17

3.1 Hardware Overhead Comparison With and Without Threshold Implementa-

tion in Terms of Gate Equivalents . 29

4.1 Area, Randomness and Clock Cycles required per S-box Implementation. . 47

4.2 Area, Randomness and Clock Cycles required per S-box for related Imple-

mentations. 48

5.1 Grouping S-Boxes into classes by ANF properties 59

5.2 Cryptographic properties of the considered S-boxes 59

5.3 TI of CA-based S-Box representatives: area and power consumption (ASIC

Technology: 180nm) . 61

5.4 Hardware overhead of CA-based S-Box representatives(ASIC Technology:

180nm) . 65

5.5 TI circuits for diffusion layer choices (ASIC Technology: 180nm) 67

5.6 Lightweight TI for SPN block cipher: area and power (ASIC Technology:

180nm) . 69

vi

Chapter 1

Introduction

Recent times have seen an exponential increase in financial and other transactions over the

internet which necessarily need to be carried out in an encrypted manner. Devices respon-

sible for carrying out the encryptions span a wide spectrum ranging from smartcards to

high-end servers. Due to the varied range of devices on which these computationally inten-

sive encryption algorithms are executed, there is ample scope for an adversary to exploit

flaws in the implementation of these algorithms on these devices. Mathematically provable

security of the underlying cryptosystem is not a sufficient condition to prevent an adver-

sary with access to the encryption hardware from compromising security. For example,

commonly used symmetric key algorithm like AES and public key algorithm like RSA are

provably secure mathematically. However, if naively implemented, the purpose of these

schemes are defeated.

The structure of inputs and outputs are mathematically analysed to find potential weak-

nesses in classical cryptanalytic attacks. Such a weakness can be exploited to recover plain-

texts with a certain number of ciphertexts or in the best case reconstruct the entire secret

key. Implementation attacks differ fundamentally from classical cryptanalytic attacks since

they do not solely target the abstract cryptographic algorithm. With the increase in the

number and variety of devices that perform cryptographic operations, implementation at-

tacks have gained popularity. Side-channel analysis attacks and active fault attacks are

two of the most common implementation based attacks. Side-channel analysis of ciphers

attempts to exploit the correlation between physical measurements such as power dissipa-

tion obtained at various time instances, and the internal state of the processing device at

those time instances, which is a function of the secret key. Active fault analysis, on the

other hand, involves the injection of faults into cryptographic systems and analysis under

different fault models to retrieve the secret key. In this thesis, we present a new category

of active fault attacks. We also present new countermeasures against side-channel power

analysis attacks.

1

Section 1.1 Motivation and Objectives of the Work 2

This thesis also specifically designs countermeasures against side-channel power anal-

ysis attacks for lightweight block ciphers. Exploration of lightweight designs has become

a topic of great interest since NIST (National Institute of Standards and Technology) has

announced to create a portfolio of lightweight algorithms through an open process. The re-

port emphasizes that with emerging applications like automotive systems, sensor networks,

healthcare, distributed control systems, the Internet of Things (IoT), cyber-physical sys-

tems, and the smart grid, a detailed evaluation of the so-called light-weight ciphers helps to

recommend algorithms in the context of profiles, which describe physical, performance, and

security characteristics. This thesis provides countermeasures for some existing lightweight

designs. We also provide design strategies for lightweight designs whose countermeasures

have less resource requirements in terms of power and area.

1.1 Motivation and Objectives of the Work

The study of implementation attacks can be broadly divided into two aspects:

1. Devising new strategies for implementation based attacks: This involves ex-

ploiting existing side-channels or injecting faults in implementations in order to recover

the secret key of a cipher with complexity better than the brute force attack.

2. Designing countermeasures against known implementation attacks: In or-

der to thwart implementation attacks, countermeasures are designed under suitable

assumptions. These countermeasures must provide some form of guarantee against

implementation attacks like formal proofs of security.

Devising new implementation attacks is important from a security point of view since coun-

termeasures can be designed only after the attacks are known. Ever since the seminal

work of Boneh et al. demonstrated a successful a fault attack on the RSA cryptosystem

in [BDL97], there has been a development of a wide array of new fault analysis attacks in the

cryptographic community. Several types of fault attacks have been proposed in the recent

literature like DFA which exploit the relation between faulty and fault-free ciphertext pairs

requiring pairs of correct and faulty ciphertexts [PQ03, TMA11, Muk09], DFIA which ex-

ploits the bias in fault distribution and requires only faulty ciphertexts [FJLT13, GYTS14],

Safe error attacks (SEA) [RM07] which do not require any faulty ciphertexts and exploit

the behavior of the cipher under fault attacks, etc.

Template attacks (TA) have been a popular form of side-channel analysis in the crypto-

graphic literature, the use of templates in the context of fault attacks has not been widely

Section 1.1 Motivation and Objectives of the Work 3

explored. TA models precisely the noise pattern of the target device and extracts the max-

imum possible information from any available leakage sample. This makes TA a threat

to implementations otherwise secure based on the assumption that an adversary has ac-

cess to only a limited number of side-channel samples. In this thesis, we intend to explore

whether the concept of templates can be extended to fault attacks. We aim to design a

generalized Fault Injection Analysis (FIA) strategy that removes the dependency of existing

techniques on specific fault models. Our approach would learn the behavior of the device-

under-test (DUT) under an unrestricted set of fault injection parameters, irrespective of the

fault nature instead of analyzing the behavior of the target implementation under a given

set of faults. Such an attack strategy would allow a larger exploitable fault space.

Preventing easily exploitable implementation attacks is of prime importance since a wide

array of devices ranging from smartcards to IoT devices run encryption algorithms. Dif-

ferential Power Attacks (DPA) are extremely potent for hardware implementations as they

require a few power traces to recover the secret key in naively implemented algorithms. First

order DPA is very easy to carry out due to its low complexity and hence very common in

practice. The efficacy of DPA makes mandatory to thwart first-order DPA in the hardware

implementation of any cryptographic algorithm. The countermeasures against DPA try to

remove the correlation between intermediate state value of the algorithms and the power

traces. Several techniques have been proposed over the years as countermeasures against

DPA. Leakage resilience [DP08] is one such countermeasure which limits the number of iter-

ations of an algorithm using the same key. This approach drastically affects the performance

of the system and hence is not practical for real-world implementations. A general approach

focuses on decreasing the information gathered from traces. Some ad-hoc techniques like

increasing noise, introducing dummy operations thus decreasing SNR are used to decrease

information gathered from traces. These countermeasures become insecure with increasing

attack time [DRS+12]. Some special constant power implementation like WDDL [TV04]

can also be used to decrease information gathered from traces at huge overhead costs. One

of the most efficient approaches to thwart DPA involves breaking the correlation between

the power traces and the intermediate values of the computations. This method achieves

security by randomizing intermediate values using secret sharing and carrying out compu-

tation on the shared values. This technique is referred to as masking [CJRR99, GP99].

Threshold Implementation (TI) is one such masking scheme that provides provable se-

curity even in the presence of glitches. It is one of the most used masing schemes due to

its security guarantees and practical and minimal underlying assumptions. However, one

disadvantage of TI is that it is resource hungry. Additional clock cycles, area, and random-

ness are required to design TI of cryptographic algorithms. Non-linear functions especially

Section 1.2 Major contributions of this Thesis 4

tend to blow up in terms of area and randomness in TI designs. It is extremely important

to reduce clock cycles, area and randomness as much as possible in TI designs of non-linear

function. In this thesis, we aim to design the TI of AES S-Box. AES is one of the most

commonly used block ciphers and the S-Box is the only non-linear function in AES. We tar-

get a particular implementation of the AES S-Box, the Boyar-Peralta S-Box [BP12] which

has no previous TI designs. We aim to minimize the randomness and the number of clock

cycles required while keeping the area of the S-Box small.

TI of lightweight S-Boxes is of increasing interest in the age of IoT and ubiquitous

computing. The advent of the era of Internet-of-Things (IoT) has given rise to a number

of smart devices with the ability to communicate with each other across heterogeneous

network interfaces. The main constituents of any IoT framework are the numerous end

nodes/devices, that are often constrained in terms of their memory capacity, processing

speed, and power consumption rates. At the same time, these nodes commonly process sen-

sitive data that needs to cryptographically protected against possible leakages to malicious

adversaries. Traditional encryption mechanisms in the public and private-key settings are

mostly resource-hungry, which makes them unsuitable for deployment in IoT devices. This

has motivated the development of a large number of symmetric-key block ciphers that are

lightweight, in the sense that they are area-efficient and/or low power consuming. When

deployed in hardware the lightweight designs must be protected against first order DPA

at the very least. Designing DPA resistant countermeasures of lightweight block ciphers is

especially challenging since countermeasures like TI are resource hungry. KHUDRA [KM14]

is one such lightweight block cipher. KHUDRA had no previous TI design. In this thesis we

aim to design the first TI of the block cipher KHUDRA ensuring its resource requirements

to the existing DPA resistant lightweight ciphers like PRESENT.

As mentioned earlier, the main disadvantage TI suffers from is that the non linear

functions require large area and randomness. In this thesis we aim to introduce a design

paradigm of lightweight 4× 4 S-Boxes which are amenable to small area TI designs. More-

over these S-Boxes need to have optimal cryptographic properties. We specifically target

the area and power requirements of resultant S-Boxes and aim to produce a TI of an optimal

4×4 S-Box with one of the smallest area and power requirements. We use cellular automata

rules to design a trade-off between area and clock cycles. Use of cellular automata helps us

to reuse parts of the circuit leading to low area and low power designs.

1.2 Major contributions of this Thesis

This section summarizes the major contributions of the thesis.

Section 1.2 Major contributions of this Thesis 5

1. Development of template-based fault injection analysis of block ciphers:

This thesis presents a generic algorithm comprising of a template building and a

template matching phase, which are easily instantiable for any target block cipher.

The templates are built on pairs of internal state segment and key segment values

at different fault intensities. This attack allows exploitation of low-granularity faults

such as multi-byte faults, that do not require high precision fault injection equipment.

The attack does not require the exact knowledge of the underlying fault model. In

order to substantiate the effectiveness of our methodology, a case-study targeting a

hardware implementation of AES-128 on a Spartan-6 FPGA is presented in this thesis.

2. Design of the first Threshold Implementation of KHUDRA: This thesis

presents the design of the first threshold implementation of the block cipher KHU-

DRA. KHUDRA is a lightweight block cipher and hence it is necessary that its thresh-

old implementation had resource requirements comparable to other lightweight block

ciphers. Our design requires lesser area than protected implementations of other

well-known block ciphers like PRESENT, SIMON, SPECK etc.

3. Design of several masked implementations of the Boyar Peralta AES S-Box:

In this thesis, we present the first threshold implementations of the Boyar-Peralta

AES S-Box. We carry out a full design space exploration, investigating various trade-

offs between area, randomness and the number of clock cycles. The set of secure

implementations we present gives the hardware designer more options for tailoring

their implementations according to their specifications. Our implementations com-

pare favourably with the existing implementations of the AES S-Box. The smallest

implementation we design reduces the randomness by 63% and the number of clock

cycles by 50% compared to the smallest known masked Canright’s AES -Box.

4. First Threshold Implementation design of the AES S-Box with zero ran-

domness: We present a 4-shared TI design of the Boyar Peralta AES S-Box that

requires no randomness at all. This is the first TI design of an AES S-Box with

no randomness. The design uses a novel 4-to-4 sharing of the 2-input AND gate to

remove randomness.

5. Formulation of design strategy of Lightweight and Side-channel Secure

S-Boxes using Cellular Automata: In this thesis, we explore the possibility of

designing cryptographically optimal 4× 4 S-Boxes from CA rules, while also ensuring

that such S-Boxes give rise to side-channel secure TI circuits with low area footprint

and power consumption. We show how cellular automata can be used in order to

Section 1.3 Thesis Organization and Overview 6

design nonlinear functions with inherently lightweight implementations. We iterate

over a single instance of the CA rule, while cyclically shifting the input bits, to obtain

one output bit of an S-Box at a time. We demonstrate that a significant proportion

of the resulting S-Boxes achieve cryptographically optimal properties, and give rise

to distinct classes based on their implementation overheads and amenability to TI

implementations.

6. Design of area and power efficient Threshold Implementation of an optimal

4× 4 S-Boxes: Our implementation results on ASIC (180nm technology) show that

the most lightweight TI circuit among all CA-based S-boxes has a 49.42% smaller area-

footprint and consumes 52.3% less power as compared to the best-known TI of the

PRESENT S-Box. The same TI circuit also consumes 35.36% smaller area-footprint

and consumes 44.46% less power as compared to a highly optimized TI of the GIFT

S-Box.

1.3 Thesis Organization and Overview

This thesis provides a new technique for fault attacks and designs countermeasures against

differential power attacks, the most common form of side-channel analysis attacks. Chapter

2 provides the methodology of the new category of fault attacks called Template based

fault injection analysis attacks on block ciphers. We use the concepts of templates similar

to template attacks using power traces. Our attacks do not require exact knowledge of the

underlying fault model. In order to validate the feasibility of our attack, we present real-life

experimental results. In chapter 3, we introduce the theory behind threshold implementa-

tions. We then present the first threshold implementation of the block cipher KHUDRA.

In chapter 4, we design several threshold implementations of the Boyar Peralta AES S-Box.

The chapter provides justification for the design choices we make to come up with the set

of secure implementations. In chapter 5, we design cryptographically optimal 4×4 S-Boxes

using cellular automata with the objective that the TI designs of these S-Boxes be power

and area efficient. We provide a general design strategy and divide S-Boxes into distinct

classes based on implementation overheads. We provide a detailed case study of S-Boxes

from two of the classes with the smallest area and provide detailed comparision with im-

plementations of existing threshold implementations of lightweight block ciphers. Finally,

in chapter 6, we summarize the contributions of the thesis and suggest directions of future

works.

Chapter 2

Template-based Fault Injection
Analysis of Block Ciphers

While template attacks have been a popular form of side-channel analysis in the crypto-

graphic literature, the use of templates in the context of fault attacks has not yet been

explored to the best of our knowledge. In this chapter, we present the first template-based

fault injection analysis of FPGA-based block cipher implementations. Our approach in-

volves two phases. The first phase is a profiling phase where we build templates of the fault

behavior of a cryptographic device for different secret key segments under different fault

injection intensities. This is followed by a matching phase where we match the observed

fault behavior of an identical but black-box device with the pre-built templates to retrieve

the secret key. We present a generic treatment of our template-based fault attack approach

for SPN block ciphers, and illustrate the same with case studies on a Xilinx Spartan-6

FPGA-based implementation of AES-128.

2.1 Introduction

The advent of implementation-level attacks has challenged the security of a number of

mathematically robust cryptosystems, including symmetric-key cryptographic primitives

such as block ciphers and stream ciphers, as well as public-key encryption schemes. Im-

plementation attacks come in two major flavors - side-channel analysis (SCA) and fault

injection analysis (FIA). SCA techniques typically monitor the leakage of a cryptographic

implementation from various channels, such as timing/power/EM radiations, and attempt

to infer the secret-key from these leakages [KJJ99, MOP08]. FIA techniques, on the

other hand, actively perturb the correct execution of a cryptographic implementation via

voltage/clock glitches [SGD08, BBBP13, ADN+10], EM pulses [DDRT12] or precise laser

beams [CCF+08, CML+11]. With the growing number of physically accessible embedded

devices processing sensitive data in today’s world, implementation level attacks assume

7

Section 2.1 Introduction 8

significance. In particular, a thorough exploration of the best possible attacks on any cryp-

tographic implementation is the need of the hour.

2.1.1 Fault Models for Fault Injection Analysis

Nearly all FIA techniques in the existing literature assume a given fault model (such as ran-

dom faults [DDRT12] and/or stuck-at-faults [RM07]) in a given location of the cipher state.

Some of these techniques, such as differential fault analysis (DFA) [PQ03, TMA11, Muk09]

and differential fault intensity analysis (DFIA) [FJLT13, GYTS14] are found to be more ef-

ficient in the presence of highly localized faults, such as single bit flips, or faults restricted to

a given byte of the cipher state. While DFA attacks are possible using multiple byte faults,

e.g. diagonal faults [SMC09], the fault pattern impacts the complexity of key-recovery.

In particular, with respect to AES-128, faults restricted to a single diagonal allow more

efficient key-recovery as compared to faults spread across multiple diagonals. Similarly,

DFIA typically exploits the bias of fault distribution at various fault intensities, under the

assumption that the fault is restricted to a single byte/nibble of the cipher state [GYTS14].

Other techniques such as fault sensitivity analysis (FSA) [LSG+10, MMG14] require the

knowledge of the critical fault intensity at which the onset of faulty behavior is observed.

This critical value is then correlated with the secret-key dependent cipher state value.

Finally, FIA techniques such as safe-error analysis (SEA) [BS03] and differential behav-

ioral analysis (DBA) [RM07] require highly restrictive fault models such as stuck-at faults,

where a specific target bit of the cipher state is set to either 0 or 1. In recent literature,

microcontroller-based implementation of cryptographic algorithms have been subjected to

instruction-skip attacks [CT05, HMER], where the adversary uses precise injection tech-

niques to transform the opcode for specific instructions into that for NOP (no-operation).

Similarity between FIA and SCA. The above discussion clearly reveals that existing

FIA techniques are inherently dependent on the ability of an adversary to replicate a specific

fault model on an actual target device. Fault precision and fault localization contribute to

the efficiency of the attack, while the occurrence of random faults outside the target model

generate noisy ciphertexts, thereby degrading the attack efficiency. Observe that this is con-

ceptually similar to the effect of noise on the efficiency of traditional SCA techniques such

as simple power analysis (SPA) and differential power analysis (DPA). In particular, the

success rate for these techniques is directly proportional to the signal-to-noise ratio (SNR)

of an implementation.

Our Motivation. In this work, we aim to devise a generalized FIA strategy that overcomes

the dependency of existing techniques on specific fault models. Rather than analyzing the

behavior of the target implementation under a given set of faults, our approach would learn

Section 2.1 Introduction 9

Figure 2.1: Template-based Fault Injection Analysis: An Overview

the behavior of the device-under-test (DUT) under an unrestricted set of fault injection

parameters, irrespective of the fault nature. Such an attack strategy would allow a larger

exploitable fault space, making it more powerful than all reported FIA techniques. As dis-

cussed next, an equivalent of the same approach in the context of SCA is well-studied in

the literature.

2.1.2 Template Attacks: Maximizing the Power of SCA

Template attacks (TA) were proposed in [CRR02] as the strongest form of SCA in an

information-theoretic setting. Unlike other popular SCA techniques such as DPA, TA does

not view the noise inherent to any cryptographic implementation as a hindrance to the

success rate of the attack. Rather, it models precisely the noise pattern of the target

device, and extracts the maximum possible information from any available leakage sample.

This makes TA a threat to implementations otherwise secure based on the assumption that

an adversary has access to only a limited number of side-channel samples. On the flip side,

TA assumes that the adversary has full programming capability on a cryptographic device

identical to the target black-box device.

Section 2.1 Introduction 10

2.1.3 Our Contribution: Templates for Fault Injection Analysis

The existing literature on TA is limited principally to SCA, exploiting passive leakages from

a target cryptographic device for key recovery. In this work, we aim to extend the scope of

TA to active FIA attacks. Figure 2.1 summarizes our template-based FIA technique. Our

approach is broadly divided into two main phases:

• The first phase of the attack is a profiling phase, where the adversary is assumed

to have programming access to a device identical to the black-box target device.

The adversary uses this phase to characterize the fault behavior of the device under

varying fault injection intensities. We refer to such characterizations as the fault

template for the device. We choose the statistical distribution of faulty ciphertext

values under different fault injection intensities as the basis of our characterization.

The templates are typically built on small-segments of the overall secret-key, which

makes a divide-and-conquer key recovery strategy practically achievable. Note that

the matching phase does not require the correct ciphertext value corresponding to a

given encryption operation.

• The second phase of the attack is the matching phase, where the adversary obtains the

fault behavior of the target black-box device (with an embedded non-programmable

secret-key K) under a set of fault injection intensities, and matches them with the

templates obtained in the profiling phase to try and recover K. The idea is to use

a maximum likelihood estimator-like distinguisher to identify the key hypothesis for

which the template exhibits the maximum similarity with the experimentally obtained

fault behavior of the target device.

2.1.4 Comparison with Existing FIA Techniques

In this section, we briefly recall existing FIA techniques, and explain their differences with

our proposed template-based FIA approach. As already mentioned, our technique has two

phases, and assumes that the adversary has programmable access to a device identical to

the device under test. At the same time, it allows modeling the behavior of the device

independent of specific fault models, as is done in most state-of-the-art FIA techniques. We

explicitly enumerate these differences below.

Differential Fault Analysis (DFA): In DFA [DLV03, PQ03, Kim10, TMA11], the ad-

versary injects a fault under a specific fault model in target location of the cipher state,

and analyzes the fault propagation characteristics using the knowledge of the fault-free and

faulty ciphertexts. Our template-based FIA does not trace the propagation of the fault;

Section 2.2 Template-Based FIA: Detailed Approach 11

rather it simply creates a template of the faulty ciphertext distribution under different fault

injection intensities. This makes our approach independent of any specific fault model.

Differential Fault Intensity Analysis (DFIA): DFIA [GYTS14, PCNM15] exploits the

underlying bias of any practically achieved fault distribution on the target device, once again

under a chosen fault model. It is similar in principle to DPA in the sense that it chooses the

most likely secret-key value based upon a statistical analysis of the faulty intermediate state

of the block cipher, derived from the faulty ciphertext values only. Our template-based FIA

can be viewed as a generalization of DFIA with less stringent fault model requirements.

Similar to DFIA, our approach also does not require the correct ciphertext values. How-

ever, our approach does not statistically analyze the faulty intermediate state based upon

several key hypotheses. Rather, it pre-constructs separate templates of the faulty cipher-

text distribution for each possible key value, and matches them with the experimentally

obtained faulty ciphertext distribution from the black-box target device. Rather than fo-

cusing on specific fault models, the templates are built for varying fault injection intensities.

Fault Sensitivity Analysis (FSA): FSA [LSG+10, MMG14] exploits the knowledge of

the critical fault intensity under which a device under test starts exhibiting faulty output

behavior. The critical intensity is typically data-dependent, which allows secret-key recov-

ery. FSA does not use the values of either the correct or the faulty ciphertexts. However,

it requires a precise modeling of the onset of faults on the target device. Our methodology,

on the other hand, uses the faulty ciphertext values, and is free of such precise critical fault

intensity modeling requirements.

Safe Error Analysis (SEA): In SEA [BS03, RM07], the adversary injects a fault into

a precise location of the cipher state, and observes the corresponding effect on the cipher

behavior. A popular fault model used in such attacks is the stuck-at fault model. The

adversary injects a fault to set/reset a bit of the cipher state, and infers from the nature

of the output if the corresponding bit was flipped as a result of the fault injection. Quite

clearly, this fault model is highly restrictive. Our approach, on the other hand, allows

random fault injections under varying fault intensities, which makes easier to reproduce in

practice on real-world target devices.

2.2 Template-Based FIA: Detailed Approach

In this section, we present the details of our proposed template-based FIA. Given a target

device containing a block cipher implementation, let F be the space of all possible fault

Section 2.2 Template-Based FIA: Detailed Approach 12

intensities under which an adversary can inject a fault on this device. Now, assume that a

random fault is injected in a given-segment Sk of the cipher state under a fault intensity

Fj ∈ F . Also assume that this state segment has value Pi′ ∈ P, and subsequently combines

with a key segment Ki ∈ K, where P and K are the space of all possible intermediate state

values and key segment values respectively, resulting in a faulty ciphertext segment Ci,i′,j,k.

The granularity of fault intensity values depends on the injection equipment used - precise

injection techniques such as laser pulses are expected to offer higher granularity levels than

simpler injection techniques such as clock/voltage glitches. Note that we do not restrict

the nature of the faults resulting from such injections to any specific model, such as single

bit/single byte/stuck-at faults. With these assumptions in place, we now describe the two

phases - the template building phase and the template matching phase - of our approach.

2.2.1 Template Building Phase

In this phase, the adversary has programmable access to a device identical to the device

under test. By programmable access, we mean the following:

• The adversary can feed a plaintext P and master secret-key K of his choice to the

device.

• Upon fault injection under a fault intensity Fj ∈ F , the adversary can detect the

target location Sk in the cipher state where the fault is induced

• The adversary has the knowledge of the corresponding key segment Ki ∈ K and the

intermediate state segment Pi′ ∈ P. The key segment combines with the faulty state

segment to produce the faulty ciphertext segment Ci,i′,j,k.

Let C1
i,i′,j,k, · · · , CNi,i′,j,k be the faulty ciphertext outputs upon N independent fault injections

in the target location Sk under fault injection intensity Fj , corresponding to the intermediate

state segment Pi′ and key segment Ki. We refer to the tuple Ti,i′,j,k =
(
C1
i,i′,j,k, · · · , CNi,i′,j,k

)
as a fault template instance. This template instance is prepared and stored for possible tu-

ples (Ki, Pi′ , Fj , Sk) ∈ K×P ×F ×S, where S is the set of all fault locations in the cipher

state that need to be covered for full key-recovery. The set of all such template instances

constitutes the fault template for the target device. Algorithm 1 summarizes the main steps

of the template building phase as described above.

Note: The number of fault injections N required per fault intensity during the template

building phase may be determined empirically, based upon the desired success rate of key re-

covery in the subsequent template matching phase. Quite evidently, increasing N improves

the success rate of key recovery.

Section 2.2 Template-Based FIA: Detailed Approach 13

Algorithm 1 Template Building Phase

Require: Programmable target device
Require: Target block cipher description
Ensure: Fault template T for the target device
1: Fix the set S of fault locations to be covered for successful key recovery depending on

the block cipher description
2: Fix the space F of fault injection intensities depending on the device characteristics
3: Fix the number of fault injections N for each fault intensity
4: T ← φ
5: for each fault location Sk ∈ S do
6: for each corresponding intermediate state segment and key segment (Pi′ ,Ki) ∈
P ×K do

7: for each fault injection intensity Fj ∈ F do
8: for each l ∈ [1, N] do
9: Run an encryption of Pi′ such that the target key segment has value Ki

10: Inject a fault under intensity Fj in the target location Sk
11: Let C li,i′,j,k be the faulty ciphertext segment
12: end for
13: Ti,i′,j,k ←

(
C1
i,i′,j,k, · · · , CNi,i′,j,k

)
14: T ← T ∪ Ti,i′,j,k
15: end for
16: end for
17: end for
18: return T

Section 2.2 Template-Based FIA: Detailed Approach 14

2.2.2 Template Matching Phase

In this phase, the adversary has black-box access to the target device. Under the purview

of black-box access, we assume the following:

• The adversary can feed a plaintext P of his choice to the device and run the encryption

algorithm multiple times on this plaintext.

• Upon fault injection under a fault intensity Fj ∈ F , the adversary can induce the

target location Sk in the cipher state where the fault is induced, by observing the

corresponding faulty ciphertext C ′j,k.

• The adversary has no idea about the intermediate state segment Pi′ where the fault

is injected, or the key segment Ki that subsequently combines with the faulty state

segment to produce the ciphertext.

The adversary again performs N independent fault injections under each fault injection

intensity Fj in a target location Sk, and obtains the corresponding faulty ciphertexts

C ′1j,k, · · · , C ′
N
j,k. All fault injections are performed during encryption operations using the

same plaintext P as in the template building phase. These faulty ciphertexts are then given

as input to a distinguisher D. The distinguisher ranks the key-hypotheses K1, · · · ,Kn ∈ K,

where the rank of Ki is estimated based upon the closeness of the experimentally obtained

ciphertext distribution with the template instance Ti,i′,j,k, for all possible intermediate state

segments Pi′ . The closeness is estimated using a statistical measure M. The distinguisher

finally outputs the key hypothesis Ki that is ranked consistently highly across all rank-lists

corresponding to different fault injection intensities. Algorithm 2 summarizes our proposed

template matching phase.

2.2.3 The Statistical measure M

An important aspect of the template matching phase is choosing the statistical measure M

to measure the closeness of the experimentally observed faulty ciphertext segment distribu-

tion, with that corresponding to each template instance. We propose using a correlation-

based matching approach for this purpose. The first step in this approach is to build a

frequency-distribution table of each possible ciphertext segment value in each of the two

distributions. Let the possible ciphertext segment values be in the range [0, 2x−1] (for ex-

ample, [0, 255] for a byte, or [0, 15] in case of a nibble). Also, let f(y) and f ′(y) denote

the frequency with which a given ciphertext segment value y ∈ [0, 2x−1] occurs in the tem-

plate and the experimentally obtained distribution, respectively. Since there are exactly N

sample points in each distribution, we have
∑

y∈[0,2x−1] f(y) =
∑

y∈[0,2x−1] f
′(y) = N .

Section 2.2 Template-Based FIA: Detailed Approach 15

Algorithm 2 Template Matching Phase

Require: Fault template T corresponding to plaintext P
Ensure: The secret-key
1: for each fault location Sk ∈ S do
2: for each fault injection intensity Fj ∈ F do
3: for each l ∈ [1, N] do
4: Inject a fault under intensity Fj in location Sk
5: Let C ′lj,k be the faulty ciphertext segment
6: end for
7: Ej,k ←

(
C ′1j,k, · · · , C ′

N
j,k

)
8: end for
9: end for

10: for each fault location Sk ∈ S do
11: for each fault injection intensity Fj ∈ F do
12: for each possible key hypothesis Ki ∈ K and intermediate state segment Pi′ ∈ P

do
13: ρi,i′,j,k ←M

(
Ej,k, Ti,i′,j,k

)
14: end for
15: end for
16: Store the pair (Ki, Pi′) pair such that

∑
Fj∈F ρi,i′j,k is maximum for the given fault

location Sk.
17: end for
18: return the stored key hypothesis corresponding to each unique key segment location.

The next step is to compute the Pearson’s correlation coefficient between the two dis-

tributions as:

ρ =

∑
y∈[0,2x−1]

(
f(y)− N

2x

)
·
(
f ′(y)− N

2x

)
√ ∑
y∈[0,2x−1]

(
f(y)− N

2x

)2√ ∑
y∈[0,2x−1]

(
f ′(y)− N

2x

)2
The Pearson’s correlation coefficient is used as the measure M . The choice of statistic is

based on the rationale that, for the correct key segment hypothesis, the template would

have a similar frequency distribution of ciphertext segment values as the experimentally

obtained set of faulty ciphertexts, while for a wrong key segment hypothesis, the distribution

of ciphertext segment values in the template and the experimentally obtained ciphertexts

would be uncorrelated.

An advantage of the aforementioned statistical approach is that it can be extended to

relaxed fault models such as multi-byte faults, that are typically not exploited in tradi-

tional FIA techniques. In general, if a given fault injection affects multiple locations in the

block cipher state, the correlation analysis is simply repeated separately for each fault lo-

cation. This is similar to the divide-and-conquer approach used in SCA-based key-recovery

techniques.

Section 2.3 Case Study: Template-Based FIA on AES-128 16

(a) Template Building Phase

(b) Template Matching Phase

Figure 2.2: Experimental Set-Up

2.3 Case Study: Template-Based FIA on AES-128

In this section, we present a concrete case study of the proposed template-based FIA strategy

on AES-128. As is well-known, AES has a plaintext and key size of 128 bits each, and a

total of 10 rounds. Each round except the last one comprises of a non-linear S-Box layer

(16 S-Boxes in parallel), a linear byte-wise ShiftRow operation, and a linear MixColumn

operation, followed by XOR-ing with the round key. The last round does not have a

MixColumn operation. This in turn implies that if a fault were injected in one or more

bytes of the cipher state after the 9th round MixColumn operation, the faulty state byte

(or bytes) combines with only a specific byte (or bytes) of the 10th round key. For example,

Section 2.3 Case Study: Template-Based FIA on AES-128 17

Table 2.1: Glitch Frequencies for Different Fault Models

Glitch Frequency (MHz) Faulty Bytes Bit Flips per Byte

125.3-125.5 1 1

125.6-125.7 1 2

125.8-126.0 1 3

126.1-126.2 2-3 1-3

> 126.2 > 3 > 5

if a fault were injected in the first byte of the cipher state, the faulty byte would pass

through the S-Box and ShiftRow operation, and combine with the first byte of the 10th

round key to produce the first byte of the faulty ciphertext. The exact relation between the

fault injection location and the corresponding key segment depends solely on the ShiftRow

operation, and is hence deterministic. This matches precisely the assumptions made in our

attack description in the previous section. Consequently, this case study assumes that all

faults are injected in the cipher state between the 9th round MixColumn operation and the

10th round S-Box operations. The aim of the fault attack is to recover byte-wise the whole

10th round key of AES-128, which in turn deterministically reveals the entire secret-key.

2.3.1 The Fault Injection Setup

The fault injection setup (described in Figure 2.2) uses a Spartan 6 FPGA mounted on a

Sakura-G evaluation board, a PC and an external arbitrary function generator (Tektronix

AFG3252). The FPGA has a Device Under Test (DUT) block, which is an implementation

of the block cipher AES-128. Faults are injected using clock glitches. The device operates

normally under the external clock signal clkext. The glitch signal, referred to as clkfast,

is derived from the clkext via a Xilinx Digital Clock Manager (DCM) module. The fault

injection intensity in our experiments is essentially the glitch frequency, and is varied using

a combination of the DCM configuration, and the external function generator settings. In

the template building phase, the intermediate cipher state Pi′ and the intermediate round

key Ki are monitored using a ChipScope Pro analyzer, while in the template matching

phase, the DUT is a black box with no input handles or internal monitoring capabilities.

Table 2.1 summarizes the glitch frequency ranges at which these fault models were observed

on the target device.

2.3.2 Templates for Single Byte Faults

In this section, we present examples of fault templates obtained from the device under test,

for glitch frequencies that result in single byte fault injections in the AES-128 module. Since

only a single byte is affected between the 9th round MixColumn operation and the 10th round

Section 2.3 Case Study: Template-Based FIA on AES-128 18

(a) Single bit faults: 125.3-125.5 MHz (b) Two-bit faults: 125.5-125.7 MHz (c) Three-bit faults: 125.7-126.0 MHz

(d) 4-bit faults

Figure 2.3: Templates for Single Byte Faults: Distribution of Faulty Ciphertext Byte for
Different Fault Injection Intensities

S-Box operations, we are interested in the distribution of the corresponding faulty byte in

the ciphertext. Figure 2.3 presents fault templates containing ciphertext byte distributions

for three categories of faults - single bit faults, two-bit faults, and three-bit faults. The

templates correspond to the same pair of intermediate state byte and last round key byte

for an AES-128 encryption. Quite evidently, the ciphertext distribution for each template

reflects the granularity of the corresponding fault model. In particular, for a single bit fault,

most of the faulty ciphertext bytes assume one of 8 possible values, while for three-bit faults,

the ciphertext bytes assume more than 50 different values across all fault injections. In all

cases, however, the distribution of ciphertext values is non-uniform, which provides good

scope for characterizing the fault behavior of the device in the template building phase.

2.3.3 Templates for Multi-Byte Faults

In this section, we present examples of fault templates constructed for glitch frequencies

that result in multi-byte fault injections. Figure 2.4 shows the distribution of different bytes

injected with different faults. It is interesting to observe that at the onset of multi-byte

faults, the distribution of faulty ciphertext bytes is not uniformly random; indeed, it is

Section 2.3 Case Study: Template-Based FIA on AES-128 19

(a) 1-bit, 2-bit fault in 2 bytes: 126.1
MHz

(b) 2-bit, 3-bit fault in 2 bytes

(c) 1-bit, 2-bit, 3-bit fault across 3 bytes:
126.2 MHz

(d) 1-bit, 2-bit, 4-bit fault in 3 bytes

Figure 2.4: Templates for Multi-Byte Faults: Distribution of Multiple Faulty Ciphertext
Byte Values

Section 2.3 Case Study: Template-Based FIA on AES-128 20

(a) Target Key Byte = 0x00 (b) Target Key Byte = 0x01

(c) Target Key Byte = 0x02 (d) Target Key Byte = 0x03

Figure 2.5: Frequency Distributions for Faulty Ciphertext Byte : Same Intermediate State
Byte but Different Key Byte Values

possible to characterize the fault behavior of the device in terms of templates under such

fault models. Given the absence of MixColumn operation in the last round of AES, each

faulty intermediate state byte combines independently with a random last round key byte.

This allows a divide-and-conquer template matching approach, where the statistical analysis

may be applied to each faulty ciphertext byte independently. This is a particularly useful

mode of attack, since it can be launched even without precise fault injection techniques that

allow targeting a single byte of the cipher state.

2.3.4 Variation with Key Byte Values

The success of our template matching procedure with respect to AES-128 relies on the

hypothesis that for different key byte values, the ciphertext distribution corresponding to

the same fault location is different. Otherwise, the key recovery would be ambiguous. We

validated this hypothesis by examining the ciphertext distribution upon injecting a single

bit fault in the first byte of the cipher state, corresponding to different key byte values. We

illustrate this with a small example in Figure 2.5. Figures 2.5a, 2.5b, 2.5c and 2.5d represent

the frequency distributions for faulty ciphertext byte corresponding to the same intermediate

Section 2.4 Conclusion 21

byte value of 0x00, and key byte values 0x00, 0x01, 0x02 and 0x03, respectively. Quite

evidently, the three frequency distributions are unique and mutually non-overlapping. The

same trend is observed across all 256 possible key byte values; exhaustive results for the

same could not be provided due to space constraints.

2.3.5 Template matching for Key-Recovery

In this section, we present results for recovering a single key-byte for AES-128 under various

fault granularities. As demonstrated in Figure 2.6, the correlation for the correct key

hypothesis exceeds the average correlation over all wrong key hypotheses, across the three

fault models - single bit faults, two-bit faults and three-bit faults. As is expected, precise

single-bits faults within a given byte enable distinguishing the correct key hypothesis using

very few number of fault injections (50-100); for less granular faults such as three-bit faults,

more number of fault injections (200-500) are necessary. Finally, the same results also hold

for multi-byte fault models, where each affected byte encounters a certain number of bit-

flips. Since the key-recovery is performed byte-wise, the adversary can use the same fault

instances to recover multiple key bytes in parallel.

2.4 Conclusion

We presented the first template based fault injection analysis of block ciphers. We presented

a generic algorithm comprising of a template building and a template matching phase, that

can be easily instantiated for any target block cipher. The templates are built on pairs

of internal state segment and key segment values at different fault intensities, while the

number of fault instances per template depends on the statistical methodology used in the

matching phase. In this work, we advocated the use of the Pearson correlation coefficient in

the matching phase; exploring alternative techniques in this regard is an interesting future

work. In order to substantiate the effectiveness of our methodology, we presented a case-

study targeting a hardware implementation of AES-128 on a Spartan-6 FPGA. Interestingly,

our attack allowed exploiting even low-granularity faults such as multi-byte faults, that do

not require high precision fault injection equipment. It may be emphasized that the attack is

devoid of the exact knowledge of the underlying fault model. Such fault models also allowed

parallel recovery of multiple key-bytes, thus providing a trade-off between the number of

fault injections, and the number of recovered key-bytes. An interesting extension of this

work would be apply template-based analysis against implementations with fault attack

countermeasures such as spatial/temporal/information redundancy.

Section 2.4 Conclusion 22

0 500 1,000 1,500 2,000

0.3

0.4

0.5

0.6

0.7

Number of Faulty Injections

C
o
rr

e
la

ti
o
n

V
a
lu

e

Correct Key
Wrong Key

(a) Single Bit Faults

0 500 1,000 1,500 2,000

0.4

0.5

0.6

Number of Faulty Injections

C
o
rr

e
la

ti
o
n

V
a
lu

e

Correct Key
Wrong Key

(b) Two-Bit Faults

0 500 1,000 1,500 2,000

0.3

0.35

0.4

0.45

0.5

Number of Faulty Injections

C
o
rr

e
la

ti
o
n

V
a
lu

e

Correct Key
Wrong Key

(c) Three-Bit Faults

Figure 2.6: Correlation between template and Observed Ciphertext Distribution: Correct
Key Hypothesis v/s Wrong Key Hypothesis

Chapter 3

Threshold Implementation of
KHUDRA

The block cipher KHUDRA [KM14] was designed keeping in mind the requirement of de-

signing block ciphers which are also lightweight on FPGAs that are often preferred where

reconfigurability and low development cost is a mandate. It has been shown that some

algorithm choices like PRESENT are more apt for ASIC libraries with specialized library

cells, while on FPGAs their compactness diminishes [KM14].

3.1 Preliminaries

3.1.1 Description of the KHUDRA Block Cipher

The encryption algorithm of KHUDRA operates on 64-bits plaintext block, along with 80-

bits key length to produce 64-bits ciphertext. The structure of KHUDRA belongs to the

category of Feistel ciphers (generalized type-2 [HR10]) and consist of 18 rounds. The Feistel

structure of KHUDRA has two parts: a permutation based on Feistel and F-function, where

the F-function, in turn, contains substitution-permutation-substitution layer. The block

cipher use S-Box layer of PRESENT as it has “High Algebraic Degree” and “Low Differential

and Linear Probability” [BKL+07a]. The number of rounds inside the F-function is 6.

The key scheduling algorithm and encryption algorithm are shown in Algorithm 4 and

Algorithm 3 respectively. The block diagram of the encryption process is given in Figure 3.1.

3.1.2 Threshold Implementations

The threshold implementations (TI) masking technique was proposed by Nikova et al. [NRR06]

as a countermeasure against Differential Power Analysis (DPA) attacks. It is secure even

in non-ideal circuits where glitches have shown to result in leakage in more conventional

masking schemes [MPO05]. The original proposal, which only dealt with first-order DPA

23

Section 3.1 Preliminaries 24

Algorithm 3 KHUDRA Encryption Algorithm

Require: Plaintext[64],Key[80]
Ensure: Ciphertext[64]

R← 0
while R 6= 17 do
branch3[0 : 15]← Plaintext[48− 63]
branch1[0 : 15]← Plaintext[16− 31]
internalRound← 0

while internalRound 6= 5 do
internalbranch3[0 : 3]← Plaintext[60− 63]
internalbranch1[0 : 3]← Plaintext[52− 55]
Plaintext[60− 63]← SBoxlayer(Plaintext[60− 63])⊕ Plaintext[56− 59]
Plaintext[52− 55]← SBoxlayer(Plaintext[52− 55])⊕ Plaintext[48− 51]
Plaintext[56− 59]← internalbranch1[0 : 3]
Plaintext[48− 51]← internalbranch3[0 : 3]
internalbranch3[0 : 3]← Plaintext[28− 31]
internalbranch1[0 : 3]← Plaintext[20− 23]
Plaintext[28− 31]← SBoxlayer(Plaintext[28− 31])⊕ Plaintext[27− 24]
Plaintext[20− 23]← SBoxlayer(Plaintext[20− 23])⊕ Plaintext[16− 19]
Plaintext[24− 27]← internalbranch1[0 : 3]
Plaintext[16− 19]← internalbranch3[0 : 3]
internalRound← internalRound+ 1

end while
Plaintext[48− 63]← Plaintext[48− 63]⊕ Plaintext[32− 47]⊕RoundKey[2×R+ 1][0 : 15]
Plaintext[16− 31]← Plaintext[16− 31]⊕ Plaintext[0− 15]⊕RoundKey[2×R][0 : 15]
Plaintext[32− 47]← branch1[0 : 15]
Plaintext[0− 15]← branch3[0 : 15]
R← R+ 1
end while

Algorithm 4 KHUDRAgenerateKey

Require: Key[80]
Ensure: roundKey[16]

whiteningKey0[0 : 15]← k0 ← Key[0 : 15]
whiteningKey1[0 : 15]← k1 ← Key[16 : 31]
whiteningKey3[0 : 15]← k3 ← Key[49 : 63]
whiteningKey4[0 : 15]← k4 ← Key[64 : 79]
k2 ← Key[32 : 48]
i← 0
while i 6= 35 do
Constant← 0||i[0 : 5]||00||i[0 : 5]||0
roundKeyi ← kimod5 ⊕ Constant
i← i+ 1
end while

Section 3.1 Preliminaries 25

+ +

+ +

Key

Round

Key

Round
+ + + +S−box S−box

Plaintext

Ciphertext

N Rounds

Whitening Key Whitening Key

Whitening Key Whitening Key

FF

F−Function (2, 3 or 6 rounds)

Figure 3.1: KHUDRA Block cipher operation

security, was later extended to protect against higher-order DPA attacks as well [BGN+14a,

RBN+15]. The security of masking schemes is inherently tied to an adversary model. An

attacker who observes the dth-order statistical moment of e.g. a power trace or combines

observations from d points in time nonlinearly in that power trace is said to be an attacker

mounting a dth-order attack. To prevent a dth-order attack, a masking scheme of order

(d + 1) is required. Fortunately, the number of readings needed for a higher-order attack

to become successful grows exponentially with the noise standard deviation and therefore

it is reasonable to guarantee practical security up to a certain order.

Implementing masking in hardware in a secure manner is not trivial. It is a delicate job

since all the assumptions made on the leakage behavior of the underlying platform do not

always hold in practice. For example, glitches are a known predominant threat [MPO05]

to the security of masked implementations in CMOS technologies. Some masking schemes

like Threshold Implementations (TI) work under assumptions which are more achievable in

practical scenarios. In addition to these relaxed assumptions on the underlying leakage, TI

offers provable security and allows to construct secure circuits which are realistic in size,

all without requiring much intervention from a designer or many design iterations. For this

reason, TI has been applied to many well-known cryptographic algorithms like KECCAK,

AES, and PRESENT [BDN+13, DCBR+15, MPL+11, PMK+11].

TI is based on multi-party computation and secret sharing, and must satisfy the following

properties in order to achieve the mentioned security:

1. Uniformity. Uniformity requires all intermediate shares to be uniformly distributed.

It ensures state-independence from the mean of the leakages, which is a requirement

to thwart first-order DPA. As mentioned in [Bil15] it suffices to check uniformity at

the inputs and the outputs of each of the functions. Uniformity can be either achieved

Section 3.2 3-shared Threshold Implementation of Khudra 26

through correction terms by using more input shares, or by adding randomness after

the non-uniform computation.

2. Non-completeness. To achieve dth-order non-completeness, any combination of d

or less component functions fi of f must be independent of at least one input share

xi. For protection against first-order DPA, 1st-order non-completeness is required, i.e.

every function must be independent of at least one input share. Non-completeness

ensures that the side-channel security of the final circuit is not affected by glitches.

3. Correctness. This property simply states that applying the sub-functions to a valid

shared input must always yield a valid sharing of the correct output.

In addition to TI’s algorithmic properties, the physical leakage of each share or sub-function

should be independent of all other shares or sub-functions, i.e. no coupling is present

between the shares or sub-functions. Violating this assumption has shown to induce leakage

in masked implementations [DCBG+17].

3.2 3-shared Threshold Implementation of Khudra

we designed a 3 shared Threshold Implementation of KHUDRA, which was the first such

implementation of KHUDRA. The architecture of a 4-bit serialized implementation of KHU-

DRA is shown in Figure 3.3. The only non-linearity in the circuit for KHUDRA is in

the S-Box which is present in the F-function. All other operations are linear. Designing

threshold implementations of linear circuits is a fairly straightforward task. The operations

performed on the shared and unshared input gives same output due to linearity. Hence

for linear operations, we just need to replicate parts of the circuit. The challenge lies in

designing threshold implementation of non-linear circuits. The S-box (non-linear) function

S(x) (S : GF (24) 7→ GF (24)) can be decomposed into G(x) (G : GF (24) 7→ GF (24)) and

F (x)(F : GF (24) 7→ GF (24)), where S(x) = F (G(x)). Each of F (x) and G(x) is split into

three shares as shown in Figure 3.2. The equations for uniform sharing of F and G are given

below. It is similar to the shares in the TI of the PRESENT S-Box as shown in [PMK+11]

Note that inputs and outputs are all 4-bit values.

G1[3] =m2[2]⊕m2[1]⊕m2[0]

G1[2] =1⊕m2[2]⊕m2[1]

G1[1] =1⊕m2[3]⊕m2[1]⊕ (m2[2]×m2[0])⊕ (m2[2]×m3[0])⊕ (m3[2]×m2[0])⊕ (m2[1]×m2[0])

⊕ (m2[1]×m3[0])⊕ (m3[1]×m2[0])

G1[0] =1⊕m2[0]⊕ (m2[3]×m2[2])⊕ (m2[3]×m3[2])⊕ (m3[3]×m2[2])⊕ (m2[3]×m2[1])

⊕ (m2[3]×m3[1])⊕ (m3[3]×m2[1])⊕ (m2[2]×m2[1])⊕ (m2[2]×m3[1])⊕ (m3[2]×m2[1])

Section 3.2 3-shared Threshold Implementation of Khudra 27

G2

G1

F1

F2

F3

m1

m2

m3

S(m1)

S(m2)

S(m3)

4 4 4

444

4 4 4

G3

Figure 3.2: Decomposed S-box with three shares

G2[3] =m3[2]⊕m3[1]⊕m3[0]

G2[2] =m3[2]⊕m3[1]

G2[1] =m3[3]⊕m3[1]⊕ (m3[2]×m3[0])⊕ (m1[2]×m3[0])⊕ (m3[2]×m1[0])⊕ (m3[1]×m3[0])

⊕ (m1[1]×m3[0])⊕ (m3[1]×m1[0])

G2[0] =m3[0]⊕ (m3[3]×m3[2])⊕ (m1[3]×m3[2])⊕ (m3[3]×m1[2])⊕ (m3[3]×m3[1])

⊕ (m1[3]×m3[1])⊕ (m3[3]×m1[1])⊕ (m3[2]×m3[1])⊕ (m1[2]×m3[1])⊕ (m3[2]×m1[1])

G3[3] =m1[2]⊕m1[1]⊕m1[0]

G3[2] =m1[2]⊕m1[1]

G3[1] =m1[3]⊕m1[1]⊕ (m1[2]×m1[0])⊕ (m1[2]×m2[0])⊕ (m2[2]×m1[0])⊕ (m1[1]×m1[0])

⊕ (m1[1]×m2[0])⊕ (m2[1]×m1[0])

G3[0] =m1[0]⊕ (m1[3]×m1[2])⊕ (m1[3]×m2[2])⊕ (m2[3]×m1[2])⊕ (m1[3]×m1[1])

⊕ (m1[3]×m2[1])⊕ (m2[3]×m1[1])⊕ (m1[2]×m1[1])⊕ (m1[2]×m2[1])⊕ (m2[2]×m1[1])

F1[3] =G2[2]⊕G2[1]⊕G2[0]⊕ (G2[3]×G2[0])⊕ (G2[3]×G3[0])⊕ (G3[3]×G2[0])

F1[2] =G2[3]⊕ (G2[1]×G2[0])⊕ (G2[1]×G3[0])⊕ (G3[1]×G2[0])

F1[1] =G2[2]⊕G2[1]⊕ (G2[3]×G2[0])⊕ (G2[3]×G3[0])⊕ (G3[3]×G2[0])

F1[0] =G2[1]⊕ (G2[2]×G2[0])⊕ (G2[2]×G3[0])⊕ (G3[2]×G2[0])

F2[3] =G3[2]⊕G3[1]⊕G3[0]⊕ (G3[3]×G3[0])⊕ (G1[3]×G3[0])⊕ (G3[3]×G1[0])

F2[2] =G3[3]⊕ (G3[1]×G3[0])⊕ (G1[1]×G3[0])⊕ (G3[1]×G1[0])

F2[1] =G3[2]⊕G3[1]⊕ (G3[3]×G3[0])⊕ (G1[3]×G3[0])⊕ (G3[3]×G1[0])

F2[0] =G3[1]⊕ (G3[2]×G3[0])⊕ (G1[2]×G3[0])⊕ (G3[2]×G1[0])

F3[3] =G1[2]⊕G1[1]⊕G1[0]⊕ (G1[3]×G1[0])⊕ (G1[3]×G2[0])⊕ (G2[3]×G1[0])

F3[2] =G1[3]⊕ (G1[1]×G1[0])⊕ (G1[1]×G2[0])⊕ (G2[1]×G1[0])

F3[1] =G1[2]⊕G1[1]⊕ (G1[3]×G1[0])⊕ (G1[3]×G2[0])⊕ (G2[3]×G1[0])

F3[0] =G1[1]⊕ (G1[2]×G1[0])⊕ (G1[2]×G2[0])⊕ (G2[2]×G1[0])

The F-function block for KHUDRA, as shown in Figure 3.3, has 6 rounds, and iterates over

24 clock cycles, where in each 4 clock cycles one round of F-function gets executed. So, the

left and right branch of F-function that pass through S-box takes 48 clock cycles to complete

the whole F-function round and in total 864 (48 × 64) clock cycles for 18 rounds. The TI

shared S-box will have one instance while other components will have three instances, one

for each share.

Section 3.2 3-shared Threshold Implementation of Khudra 28

S−box

4 4

44

4

4

15−063−48 47−32 31−16

16−bits 16−bits

16 16

16 16

16−bits

F−Function

Figure 3.3: KHUDRA Serial Implementation

3.2.1 Test Vector Leakage Assessment (TVLA): T -Test Methodology

The TVLA test is a conformance test which attempts to detect the presence of any leakage

in a cryptographic core. The block cipher hardware is made to operate on a constant

selected plaintext, and the power consumption is compared with when the cipher operates

on randomly chosen inputs. The existence of any differentiability denotes the presence of

leakage of information which can be potentially exploited by an adversary for key recovery.

The basis of the test is statistical hypothesis testing using Welch’s T -test.

Suppose, the number of power traces collected for a fixed plaintext denoted by A | for

set A , and number of power traces processing random inputs denoted by | B | for set B.

The sample mean, the variance for A is denoted by µA and σ2A respectively and similar

for B as well. Then a null hypothesis is made with µA =µB, after which Welch’s T -test is

used to accept or reject the null hypothesis with a confidence of 99.9%. The formula for

T -test is shown below:

t =
µA − µB√
σ2

A
|A | +

σ2
B
|B|

.

If the value of t >| 4.5 |, then the null hypothesis is rejected and the cryptographic algorithm

is said to fail first-order leakage.

Our design had t values within the permitted range for 10000 traces thus experimentally

validating the security of our design.

Section 3.3 Conclusion 29

Table 3.1: Hardware Overhead Comparison With and Without Threshold Implementation
in Terms of Gate Equivalents

Block Cipher Unprotected(GE) Protected(GE)

KHUDRA-64/80 [KM14] 1090 3738

PRESENT-64/80 [CN17] 1619.23 5236.49

SIMON-128/128 [STE17] 1234 5686

SPECK-128/128 [YZS+15] 2018 5940.6

3.2.2 Area comparison with other lightweight protected and unprotected
block ciphers

Table 3.1 shows that the threshold implementation of KHUDRA is one of the smallest

protected implementations among all block ciphers.

3.3 Conclusion

In the present age of ubiquitous computing, extending classical attacker models is the need

of the time. Physical attacks need to be taken into account simultaneously dealing with

fierce area and power constraints. This scenario calls for lightweight solutions. Almost every

side-channel countermeasures introduce power and area overhead which are proportional to

the values of the unprotected implementation for most of the commonly used block ciphers.

This fact prohibits the implementation of a wide range of proposed countermeasures and

also narrows down possible cipher candidates. In this work, we have designed a 3-shared

threshold implementation of the lightweight block cipher KHUDRA. We see that it has very

small area requirement compared to other protected implementations of block ciphers. This

makes the threshold implementation of KHUDRA an ideal choice for lightweight applica-

tions. A future direction of research would be higher order threshold implementations of

KHUDRA against adversaries who are equipped to surmount higher order differential fault

attacks.

Chapter 4

Several Masked Implementations
of the Boyar Peralta AES S-Box

Threshold implementation is a masking technique that provides provable security for im-

plementations of cryptographic algorithms against power analysis attacks. In recent publi-

cations, several different threshold implementations of AES have been designed. However

in most of the threshold implementations of AES, the Canright S-Box has been used. The

Boyar-Peralta S-Box is an alternative implementation of the AES S-Box with a minimal

circuit depth and is comparable in size to the frequently used Canright AES S-Box. In

this chapter, we present several versions of first-order threshold implementations of the

Boyar-Peralta AES S-Box with different number of shares and several trade-offs in area,

randomness and speed. To the best of our knowledge these are the first threshold implemen-

tations of the Boyar-Peralta S-Box. Our implementations compare favourably with some

of the existing threshold implementations of Canright S-Box along the design trade-offs,

e.g. while one of our S-Boxes is 49% larger in area than the smallest known threshold

implementation of the Canright AES S-Box, it uses 63% less randomness and requires only

50% of the clock cycles. We provide results of a practical security evaluation based on real

power traces to confirm the first-order attack resistance of our implementations.

4.1 Introduction

In a black box model, embedded devices have been shown to be secure using modern

ciphers. However, when naively implemented, side-channel information like power con-

sumption, electromagnetic radiations or timing of the device’s computations can leak se-

cret information unintentionally. Attacks based on various side channels were presented

in [GMO01, Koc96, KJJ99] and their mitigation has been the subject of a great deal of

research ever since.

30

Section 4.1 Introduction 31

Masking is an efficient way to strengthen cryptographic implementations against such

physical side-channel attacks [CJRR99, GP99]. Masking detaches leaked side-channel infor-

mation from secret dependent intermediate values by carrying out computations on random-

ized values. It offers provable security [PR13] and can be implemented on the algorithmic

level, making it a flexible Side-Channel Analysis (SCA) countermeasure. The underlying

principle of masking relies on splitting each variable into a set of random values using secret

sharing techniques and using a certain multi-party computation protocol on the resulting

random values for secure computations. Once the secret values are masked, they are in no

way combined until the end of the algorithm, i.e. the sensitive values are not leaked at any

point during the execution of the cryptographic algorithm. Only at the end of the compu-

tation, when the cipher’s outputs are valid, the output masks are combined to reconstruct

the unmasked output.

The security of masking schemes is inherently tied to an adversary model. An attacker

who observes the dth-order statistical moment of e.g. a power trace or combines observations

from d points in time nonlinearly in that power trace is said to be an attacker mounting a

dth-order attack. To prevent a dth-order attack, a masking scheme of order (d+1) is required.

Fortunately, the number of readings needed for a higher-order attack to become successful

grows exponentially with the noise standard deviation and therefore it is reasonable to

guarantee practical security up to a certain order.

Implementing masking in hardware in a secure manner is not trivial. It is a delicate job

since all the assumptions made on the leakage behavior of the underlying platform do not

always hold in practice. For example, glitches are a known predominant threat [MPO05]

to the security of masked implementations in CMOS technologies. Some masking schemes

like Threshold Implementations (TI) work under assumptions which are more achievable in

a practical scenarios. In addition to these relaxed assumptions on the underlying leakage,

TI offers provable security and allows to construct secure circuits which are realistic in size,

all without requiring much intervention from a designer or many design iterations. For this

reason, TI has been applied to many well-known cryptographic algorithms like KECCAK,

AES and PRESENT [BDN+13, DCBR+15, MPL+11, PMK+11].

The Canright S-Box [Can05] and Boyar-Peralta S-Box [BP12] are two of the smallest

implementations of the AES S-Box. As a starting point for threshold implementations and

Side-Channel Analysis (SCA) secure designs, the Canright S-box has been used predomi-

nantly [MPL+11, BGN+14b, GMK16], whereas the Boyar-Peralta S-box has received little

to no attention. The S-box introduced by Boyar and Peralta [BP12] is based on a novel

logic minimization technique, which can be applied to any arbitrary combinational logic

Section 4.1 Introduction 32

problems and even circuits that have been optimized by standard methodologies. The au-

thors described their techniques as a two-step process: a reduction of nonlinear gates and a

reduction of linear gates. Using their method they came up with an S-Box for AES which

has the smallest combinational circuit depth known till date.

The aim of this chapter is to develop secure masked implementations of the Boyar-

Peralta AES S-Box using TI. The Boyar-Peralta S-Box is one of the smallest circuits im-

plementing the AES S-box in unmasked form. We explore whether it is also one of the

smallest masked S-Box of AES. For this purpose we explore several different masking styles

of the Boyar-Peralta S-Box, focusing on various trade-offs between area, randomness and

the number of clock cycles.

4.1.1 Contributions.

We present the first threshold implementations of the Boyar-Peralta AES S-Box. More

precisely, we show TIs of the Boyar-Peralta AES S-Box with 3 and 4 shares, both with

various trade-offs related to the circuit area, the consumed randomness and the required

clock cycles. We consider two approaches to mask the S-Box. The first approach involves

masking the AND gates alone using uniform sharing of the individual AND gates. The

second approach is based on sharing a larger algebraic function, the GF(24) inverter as a

whole.

Our smallest implementation is 2.75% larger in area than the smallest Canright S-Box

presented in [BGN+15] but reduces randomness required by 37.5% and takes the same

number of clock cycles. This implementation of ours which is the smallest in area takes as

many clock cycles as the fastest known Threshold Implementation of the Canright S-Box.

The Canright S-Box in [DCRB+16] is the smallest known TI of the AES S-Box so far.

Our smallest implementation is 47% larger in area but reduces randomness by 63% and

increases speed by 50%. One of our implementations uses no randomness at all while all

known threshold implementations of the Canright S-Box need randomness. We show the

results of leakage detection tests of our implementations on a low noise FPGA platform to

back up the theoretical security.

4.1.2 Organization.

In Section 4.2, we provide the notation and the theory behind the threshold implementa-

tions masking scheme and the Boyar-Peralta AES S-Box. In Section 4.3, we develop the

various secure implementations of the Boyar-Peralta S-Box by successively reducing either

the number of shares, or the required randomness when the number of shares is kept con-

stant. We present the results of the side-channel analysis in Section 4.4. In Section 4.5,

Section 4.2 Preliminaries 33

we discuss the implementation cost of our resulting designs and compare them with costs

of related previously published threshold implementations. We conclude the chapter and

propose directions for future work in Section 4.6.

4.2 Preliminaries

4.2.1 Notation

We use lowercase regular and bold letters to describe elements of GF(2n) and their sharing

respectively. Any sensitive variable x ∈ GF(2n) is split into s shares (x1,, xs) = x, where

xi ∈ GF(2n), in the initialization phase of the cryptographic algorithm. A possible manner

of performing this initialization, which we employ, is as follows: the shares x1, x2,, xs−1

are selected randomly from an uniform distribution and xs is calculated such that x =⊕
i∈{1,2,....,s} xi. We refer to the jth bit of x as xj unless x ∈ GF(2). We use the same

notation to share a function f into s shares f = (f1,, fs). The number of input and

output shares of f are denoted by sin and sout respectively. We refer to field multiplication

as ×, to addition as ⊕ and denote negation of all bits in a value x using x.

4.2.2 The Boyar-Peralta Implementation of the AES S-Box

The Boyar-Peralta S-Box, is a circuit of depth 16 introduced by Boyar and Peralta [BP12].

It uses a total of 128 2-input gates to construct the S-Box: 94 gates are linear operations

(XOR and XNOR gates) and 34 gates are nonlinear (AND gates or 1-bit multiplications).

The circuit is divided into 3 layers:

1. the top linear layer

2. the middle nonlinear layer

3. the bottom linear layer

The equations involved are listed below. The 8 input bits are given by u0, u1, u2, u3, u4,

u5, u6 and u7 with u0 being the most significant bit and u7 being the least significant bit.

Similarly, the 8 output bits are given by s0, s1, s2, s3, s4, s5, s6 and s7, with s0 being the

most significant bit and s7 being the least significant bit.

The set of equations for the top linear layer are:

t1 = u0 ⊕ u3

t2 = u0 ⊕ u5

t3 = u0 ⊕ u6

t4 = u3 ⊕ u5

t5 = u4 ⊕ u6

t6 = t1 ⊕ t5

t7 = u1 ⊕ u2

t8 = u7 ⊕ t6

t9 = u7 ⊕ t7

Section 4.2 Preliminaries 34

t10 = t6 ⊕ t7

t11 = u1 ⊕ u5

t12 = u2 ⊕ u5

t13 = t3 ⊕ t4

t14 = t6 ⊕ t11

t15 = t5 ⊕ t11

t16 = t5 ⊕ t12

t17 = t9 ⊕ t16

t18 = u3 ⊕ u7

t19 = t7 ⊕ t18

t20 = t1 ⊕ t19

t21 = u6 ⊕ u7

t22 = t7 ⊕ t21

t23 = t2 ⊕ t22

t24 = t2 ⊕ t10

t25 = t20 ⊕ t17

t26 = t3 ⊕ t16

t27 = t1 ⊕ t12

The set of equations for the middle nonlinear layer are given by:

m1 = t13 × t6

m2 = t23 × t8

m3 = t14 ⊕ m1

m4 = t19 × u7

m5 = m4 ⊕ m1

m6 = t3 × t16

m7 = t22 × t9

m8 = t26 ⊕ m6

m9 = t20 × t17

m10 = m9 ⊕ m6

m11 = t1 × t15

m12 = t4 × t27

m13 = m12 ⊕ m11

m14 = t2 × t10

m15 = m14 ⊕ m11

m16 = m3 ⊕ m2

m17 = m5 ⊕ t24

m18 = m8 ⊕ m7

m19 = m10 ⊕ m15

m20 = m16 ⊕ m13

m21 = m17 ⊕ m15

m22 = m18 ⊕ m13

m23 = m19 ⊕ t25

m24 = m22 ⊕ m23

m25 = m22 × m20

m26 = m21 ⊕ m25

m27 = m20 ⊕ m21

m28 = m23 ⊕ m25

m29 = m28 × m27

m30 = m26 × m24

m31 = m20 × m23

m32 = m27 × m31

m33 = m27 ⊕ m25

m34 = m21 × m22

m35 = m24 × m34

m36 = m24 ⊕ m25

m37 = m21 ⊕ m29

m38 = m32 ⊕ m33

m39 = m23 ⊕ m30

m40 = m35 ⊕ m36

m41 = m38 ⊕ m40

m42 = m37 ⊕ m39

m43 = m37 ⊕ m38

m44 = m39 ⊕ m40

m45 = m42 ⊕ m41

m46 = m44 × t6

m47 = m40 × t8

m48 = m39 × u7

m49 = m43 × t16

m50 = m38 × t9

m51 = m37 × t17

Section 4.2 Preliminaries 35

m52 = m42 × t15

m53 = m45 × t27

m54 = m41 × t10

m55 = m44 × t13

m56 = m40 × t23

m57 = m39 × t19

m58 = m43 × t3

m59 = m38 × t22

m60 = m37 × t20

m61 = m42 × t1

m62 = m45 × t4

m63 = m41 × t2

The set of equations for the bottom linear layer consist of:

l0 = m61 ⊕ m62

l1 = m50 ⊕ m56

l2 = m46 ⊕ m48

l3 = m47 ⊕ m55

l4 = m54 ⊕ m58

l5 = m49 ⊕ m61

l6 = m62 ⊕ l5

l7 = m46 ⊕ l3

l8 = m51 ⊕ m59

l9 = m52 ⊕ m53

l10 = m53 ⊕ l4

l11 = m60 ⊕ l2

l12 = m48 ⊕ m51

l13 = m50 ⊕ l0

l14 = m52 ⊕ m61

l15 = m55 ⊕ l1

l16 = m56 ⊕ l0

l17 = m57 ⊕ l1

l18 = m58 ⊕ l8

l19 = m63 ⊕ l4

l20 = l0 ⊕ l1

l21 = l1 ⊕ l7

l22 = l3 ⊕ l12

l23 = l18 ⊕ l2

l24 = l15 ⊕ l9

l25 = l6 ⊕ l10

l26 = l7 ⊕ l9

l27 = l8 ⊕ l10

l28 = l11 ⊕ l14

l29 = l11 ⊕ l17

s0 = l6 ⊕ l24

s1 = l16 ⊕ l26

s2 = l19 ⊕ l28

s3 = l6 ⊕ l21

s4 = l20 ⊕ l22

s5 = l25 ⊕ l29

s6 = l13 ⊕ l27

s7 = l6 ⊕ l23

Masked software implementations of the Boyar Peralta AES S-Box were proposed in

[JS17, GR17]. A modified version of the Boyar Peralta S-Box has been masked using the

ISW AND gate [ISW03] in [GR17].

4.2.3 Threshold Implementations

The preliminaries of Threshold Implementations has been covered in the previous chapter.

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 36

4.3 Several SCA Secure Implementations of the Boyar-Peralta
AES S-Box

In this section we present several different threshold implementations of the Boyar-Peralta

AES S-Box. Applying TI to linear functions is straightforward due to the linearity of the

XOR and XNOR operations. Masking the nonlinear functions on the other hand is known to

pose more of a challenge. As mentioned in the previous section the only nonlinear functions

in the Boyar-Peralta AES S-Box are the AND gates. In order to apply TI to these AND

gates we need to make sure the resulting sharings are non-complete and correct, and that

their outputs are uniform. In our first approach, we therefore consider the uniform sharing

of an AND gate and formulate several 1st-order non-complete TI sharings for this S-box. We

additionally investigate a second approach: instead of masking each AND gate individually,

we combine several AND gates to form an inversion in GF(24). In both cases, to avoid

first-order leakages from glitches and early propagation of signals, each masked nonlinear

function must be followed by a set of registers.

The middle layer is the nonlinear layer in the Boyar-Peralta AES S-Box. The top and the

bottom layer are composed of linear functions only. When we mask each gate individually,

the outputs of every AND gate in the middle layer must be registered before the next

operation starts. Hence, we divide the middle layer into stages such that at each stage,

the outputs produced by the AND gates are put into registers before proceeding for the

operation in the next stage.

On inspection of the set of equations, we divide the circuit into 4 stages where each

stage ends with a set of AND operations. Note that there may be other ways to divide the

nonlinear layer into stages. The top linear layer was combined with the first stage of the

nonlinear layer and the outputs of the AND gates from the 4th and final stage of the middle

nonlinear layer are fed into the bottom layer directly, which causes no problem since this

layer is linear. Therefore, we divide our circuit into 4 stages with a set of registers after the

first three stages. A total of 4 clock cycles are required to complete the computation of the

S-Box. The entire circuit of the nonlinear middle layer is shown in Figure 4.1. The set of

equations after division into stages are given below.

Stage 1.

t1 = u0 ⊕ u3

t2 = u0 ⊕ u5

t3 = u0 ⊕ u6

t4 = u3 ⊕ u5

t5 = u4 ⊕ u6

t6 = t1 ⊕ t5

t7 = u1 ⊕ u2

t8 = u7 ⊕ t6

t9 = u7 ⊕ t7

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 37

Figure 4.1: Division of the nonlinear layer into stages.

t10 = t6 ⊕ t7

t11 = u1 ⊕ u5

t12 = u2 ⊕ u5

t13 = t3 ⊕ t4

t14 = t6 ⊕ t11

t15 = t5 ⊕ t11

t16 = t5 ⊕ t12

t17 = t9 ⊕ t16

t18 = u3 ⊕ u7

t19 = t7 ⊕ t18

t20 = t1 ⊕ t19

t21 = u6 ⊕ u7

t22 = t7 ⊕ t21

t23 = t2 ⊕ t22

t24 = t2 ⊕ t10

t25 = t20 ⊕ t17

t26 = t3 ⊕ t16

t27 = t1 ⊕ t12

m1 = t13 × t6

m2 = t23 × t8

m4 = t19 × u7

m6 = t3 × t16

m7 = t22 × t9

m9 = t20 × t17

m11 = t1 × t15

m12 = t4 × t27

m14 = t2 × t10

Stage 2.

m3 = t14 ⊕ m1

m5 = m4 ⊕ m1

m8 = t26 ⊕ m6

m10 = m9 ⊕ m6

m13 = m12 ⊕ m11

m15 = m14 ⊕ m11

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 38

m16 = m3 ⊕ m2

m17 = m5 ⊕ t24

m18 = m8 ⊕ m7

m19 = m10 ⊕ m15

m20 = m16 ⊕ m13

m21 = m17 ⊕ m15

m22 = m18 ⊕ m13

m23 = m19 ⊕ t25

m24 = m22 ⊕ m23

m25 = m22 × m20

m27 = m20 ⊕ m21

m31 = m20 × m23

m34 = m21 × m22

Stage 3.

m26 = m21 ⊕ m25

m28 = m23 ⊕ m25

m29 = m28 × m27

m30 = m26 × m24

m32 = m27 × m31

m33 = m27 ⊕ m25

m35 = m24 × m34

m36 = m24 ⊕ m25

Stage 4.

m37 = m21 ⊕ m29

m38 = m32 ⊕ m33

m39 = m23 ⊕ m30

m40 = m35 ⊕ m36

m41 = m38 ⊕ m40

m42 = m37 ⊕ m39

m43 = m37 ⊕ m38

m44 = m39 ⊕ m40

m45 = m42 ⊕ m41

m46 = m44 × t6

m47 = m40 × t8

m48 = m39 × u7

m49 = m43 × t16

m50 = m38 × t9

m51 = m37 × t17

m52 = m42 × t15

m53 = m45 × t27

m54 = m41 × t10

m55 = m44 × t13

m56 = m40 × t23

m57 = m39 × t19

m58 = m43 × t3

m59 = m38 × t22

m60 = m37 × t20

m61 = m42 × t1

m62 = m45 × t4

m63 = m41 × t2

l0 = m61 ⊕ m62

l1 = m50 ⊕ m56

l2 = m46 ⊕ m48

l3 = m47 ⊕ m55

l4 = m54 ⊕ m58

l5 = m49 ⊕ m61

l6 = m62 ⊕ l5

l7 = m46 ⊕ l3

l8 = m51 ⊕ m59

l9 = m52 ⊕ m53

l10 = m53 ⊕ l4

l11 = m60 ⊕ l2

l12 = m48 ⊕ m51

l13 = m50 ⊕ l0

l14 = m52 ⊕ m61

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 39

l15 = m55 ⊕ l1

l16 = m56 ⊕ l0

l17 = m57 ⊕ l1

l18 = m58 ⊕ l8

l19 = m63 ⊕ l4

l20 = l0 ⊕ l1

l21 = l1 ⊕ l7

l22 = l3 ⊕ l12

l23 = l18 ⊕ l2

l24 = l15 ⊕ l9

l25 = l6 ⊕ l10

l26 = l7 ⊕ l9

l27 = l8 ⊕ l10

l28 = l11 ⊕ l14

l29 = l11 ⊕ l17

s0 = l6 ⊕ l24

s1 = l16 ⊕ l26

s2 = l19 ⊕ l28

s3 = l6 ⊕ l21

s4 = l20 ⊕ l22

s5 = l25 ⊕ l29

s6 = l13 ⊕ l27

s7 = l6 ⊕ l23

For the second approach, where we mask the circuit using the inversion in GF(24) instead

of masking each individual AND gate. m20m21m22m23 are inputs to the GF(24) inverter

and m36m32m39m28 being the output where m20 and m36 are the most significant bits of the

input and output respectively. m20,m21,m22,m23 become available in Stage 2. The part of

the circuit in Stage 2 to obtain m20,m21,m22,m23 is linear. Hence we can put the inverter

right after m20,m21,m22,m23 become available without using a register. The outputs of

the inverter m36,m32,m39,m28 were the outputs of Stage 3. Therefore, we combine Stage

2 and 3 to isolate the inverter. The modified set of equations are given below:

Stage 1.

t1=u0 ⊕ u3

t2=u0 ⊕ u5

t3=u0 ⊕ u6

t4=u3 ⊕ u5

t13=t3 ⊕ t4

t5=u4 ⊕ t13

t6=t5 ⊕ u5

t7=u1 ⊕ u2

t8=u7 ⊕ t6

t9=u7 ⊕ t7

t10=t6 ⊕ t7

t14=t5 ⊕ u1

t15=t14 ⊕ t1

t16=t7 ⊕ t15

t17=t9 ⊕ t16

t19=t9 ⊕ u3

t20=t1 ⊕ t19

t22=t9 ⊕ u6

t23=t2 ⊕ t22

t24=t2 ⊕ t10

t25=t20 ⊕ t17

t26=t3 ⊕ t16

t27=t10 ⊕ t15

m1=t13 × t6

m2=t23 × t8

m3=m2 ⊕ m1

m4=t19 × u7

m5=m4 ⊕ m1

m6=t3 × t16

m7=t22 × t9

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 40

m8=m7 ⊕ m6

m9=t20 × t17

m10=m9 ⊕ m6

m11=t1 × t15

m12=t4 × t27

m13=m12 ⊕ m11

m14=t2 × t10

Stage 2.

m15=m14 ⊕ m11

m16=m3 ⊕ m13

m17=m5 ⊕ m15

m18=m8 ⊕ m13

m19=m10 ⊕ m15

m20=m16 ⊕ t14

m21=m17 ⊕ t24

m22=m18 ⊕ t26

m23=m19 ⊕ t25

m20m21m22m23 are inputs to the GF(24) inverter and m36m32m39m28 being the output

where m20 and m36 are the most significant bits of the input and output respectively.

Stage 3.

m40=m39 ⊕ m36

m41=m28 ⊕ m32

m42=m28 ⊕ m39

m43=m32 ⊕ m36

m44=m40 ⊕ m41

z0=m43 × t6

z1=m36 × t8

z2=m32 × u7

z3=m42 × t16

z4=m39 × t9

z5=m28 × t17

z6=m41 × t15

z7=m44 × t27

z8=m40 × t10

z9=m43 × t13

z10=m36 × t23

z11=m32 × t19

z12=m42 × t3

z13=m39 × t22

z14=m28 × t20

z15=m41 × t1

z16=m44 × t4

z17=m40 × t2

l1=z15 ⊕ z16

l2=z10 ⊕ l1

l3=z9 ⊕ l2

l4=z0 ⊕ z2

l5=z1 ⊕ z0

l6=z3 ⊕ z4

l7=z12 ⊕ l4

l8=z7 ⊕ l6

l9=z8 ⊕ l7

l10=l8 ⊕ l9

l11=l6 ⊕ l5

l12=z3 ⊕ z5

l13=z13 ⊕ l1

l14=l4 ⊕ l12

s3=l3 ⊕ l11

l16=z6 ⊕ l8

l17=z14 ⊕ l10

l18=l13 ⊕ l14

s7=z12 ⊕ l18

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 41

Figure 4.2: Division of the nonlinear layer into stages when centered around the inversion
in GF(24).

l20=z15 ⊕ l16

l21=l2 ⊕ z11

s0=l3 ⊕ l16

s6=l10 ⊕ l18

s4=l14 ⊕ s3

s1=s3 ⊕ l16

l26=l17 ⊕ l20

s2=l26 ⊕ z17

s5=l21 ⊕ l17

The circuit of the middle nonlinear layer using an inverter is shown in figure 4.2.

Using these two different approaches for division into stages of the circuit, we design the

following secure implementations of the Boyar-Peralta S-Box:

1. Threshold implementation with 4 shares and no randomness in Section 3.1

2. Threshold implementation with 3 shares and 68 bits randomness in Section 3.2

3. Threshold implementation with 3 shares and 34 bits of randomness in Section 3.3

4. Threshold Implementation using 3 shares and using sharing with sin = 5 and sout = 5

for a GF(24) inverter in Section 3.4

5. Threshold Implementation using 3 shares and using sharing with sin = 4 and sout = 4

for a GF(24) inverter in Section 3.5

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 42

4.3.1 Threshold implementation with 4 shares and no randomness

As previously mentioned, the sharing for the linear operations is trivial. For the nonlinear

AND gate we first use the following uniform 4-to-4 sharing. This is a novel modification of

a 4-to-3 uniform sharing of the AND gate used in [BGN+14b].

a = x× y

x = (x1, x2, x3, x4)

y = (y1, y2, y3, y4)

a = (a1, a2, a3, a4)

a1 = (x2 ⊕ x3 ⊕ x4)× (y2 ⊕ y3)⊕ y3

a2 = ((x1 ⊕ x3)× (y1 ⊕ y4))⊕ (x1 × y3)⊕ x4

a3 = (x2 ⊕ x4)× (y1 ⊕ y4)⊕ x4 ⊕ y4

a4 = (x1 × y2)⊕ y3

The complete computation of the S-Box will take 4 clock cycles and will not consume

any randomness.

4.3.2 Threshold implementation with 3 shares and 68 bits randomness

Having designed a threshold implementation for the Boyar-Peralta AES S-Box which uses

no randomness, we now aim to reduce the size of our circuit. This can be achieved by

reducing the number of shares.

There is however no 3-to-3 uniform sharing for a 2-input AND gate. To keep the

uniformity of sharing property intact, we introduce some randomness to remask the shares

as shown in [MPL+11]. We use the following 3-to-3 sharing of the 2 input AND gate. r1, r2

are the 2 bits of randomness.

a = x× y

x = (x1, x2, x3)

y = (y1, y2, y3)

a = (a1, a2, a3)

a1 = (x2 × y2)⊕ (x2 × y3)⊕ (x3 × y2)⊕ r1 ⊕ r2

a2 = (x3 × y3)⊕ (x1 × y3)⊕ (x3 × y1)⊕ r2

a3 = (x1 × y1)⊕ (x1 × y2)⊕ (x2 × y1)⊕ r1

Section 4.3 Several SCA Secure Implementations of the Boyar-Peralta AES
S-Box 43

One masked AND gate consumes 2-bits of randomness. The whole S-Box circuit requires 2

× 34 = 68 bits of randomness in total. The complete computation of the S-Box will take 4

clock cycles.

4.3.3 Threshold implementation with 3 shares and 34 bits randomness

We now reduce the amount of randomness required in our circuit by using the technique

of virtual sharing as used in [BNN+12]. This sharing uses 1 bit of randomness per 2-input

AND gate. The following is the resulting 3-to-3 sharing of the 2-input AND gate using 1

bit of randomness. r denotes a bit of randomness.

a = x× y

x = (x1, x2, x3)

y = (y1, y2, y3)

a = (a1, a2, a3)

a1 = (x2 × y2)⊕ (x2 × y3)⊕ (x3 × y2)⊕ r

a2 = (x3 × y3)⊕ (x1 × y3)⊕ (x3 × y1)⊕ (x1 × r)⊕ (y1 × r)

a3 = (x1 × y1)⊕ (x1 × y2)⊕ (x2 × y1)⊕ (x1 × r)⊕ (y1 × r)⊕ r

This S-Box circuit requires 34 bits of randomness. The complete computation of the S-Box

will again take 4 clock cycles.

4.3.4 Threshold Implementation using 3 shares and using sharing with
sin = 5 and sout = 5 for a GF(24) inverter

As stated earlier, we can isolate an inverter in GF(24) within the Boyar-Peralta S-Box. As

shown in [BGN+14b] we can use a 5-to-5 uniform sharing for this GF(24) inverter. We

use 3 shares for the linear and nonlinear gates that fall outside the inverter. In order to

increase the number of shares from 3 to 5 at the input of the inverter we use 4 extra bits

of randomness. To reduce the number of shares at the output from 5 to 3 we use 2 bits of

randomness to combine the output shares just after the register. As mentioned in [Bil15]

uniformity is necessary only for the input of nonlinear functions. The part of the circuit

before the inverter in Stage 2 is linear. In order increase in the number of shares before

input to the inverter, the shares are remasked using randomness. Therefore before input

to the nonlinear part of Stage 2, the inverter, the shares are uniform due to remasking.

Section 4.4 Side-Channel Analysis Evaluation 44

Hence inputs to stage 2 i.e. outputs of Stage 1 need not be uniform. Also all the outputs of

the AND operations in stage 3 are inputs linear functions, hence they need not be uniform.

This version has 27 2-input AND gates. All of them are in stages 1 and 3. Since the outputs

of Stages 1 and 3 need not be uniform, none of the AND gates need to be uniform. So, we

may use any non-complete and correct 3 sharing without using randomness for these AND

gates. The total amount of randomness required is 4× 4× 4 + 2× 4 = 24 bits.

4.3.5 Threshold Implementation using 3 shares and using sharing with
sin = 4 and sout = 4 for a GF(24) inverter

Similar to the previous implementation, we again use the threshold implementation of the

GF(24) inverter. There is 4-to-4 sharing of the GF(24) inverter which is not uniform. We

observe that for decreasing the output shares from 4 to 3, we add randomness to the outputs,

which essentially remasks the outputs and provides uniformity.

The circuit differs from the previous one only in the aspects that the shares are increased

from 3 to 4 and decreased from 4 to 3, and that the sharing for the inverter itself is different.

It takes the same number of clock cycles as the previous one, i.e. 3, but requires 3 bits of

randomness for increasing the number of shares from 3 to 4 and then 2 bits of randomness

for reducing the shares back from 4 to 3. The argument to not use a uniform sharing of

AND gates used in the previous implementation is applicable here too. Hence a total of

3× 4 + 2× 4 = 20 bits of randomness is required.

4.4 Side-Channel Analysis Evaluation

First, we describe the circuit that we used for the sequential evaluation of the S-Boxes.

All the S-Boxes have separate input ports for the input shares and the randomness, and

separate output ports for the output shares. Each S-Box has an enable signal and a reset

signal as input. The execution of the S-Box begins when the enable signal is set to high. The

values at the ports having the input shares and randomness for the corresponding S-Box,

at the time enable goes high, are the ones used as the input to the S-Box. The reset signal

is used to reset the S-Box to a known state. Each S-Box has an output done signal which

goes high after the execution of the S-Box is complete and the outputs at the corresponding

ports of output shares are the results of the execution of the S-Box.

There is an outer wrapper encapsulating the 5 S-Boxes. The wrapper has a control

module. The control module of the wrapper has an enable as input signal and a complete

signal as an output signal. The enable signal is needed to start the sequence of S-Boxes.

The start signal of the first S-Box is set to high on the positive edge of clock following the

enable signal going high. When the done signal of the S-Box goes high, the control waits

Section 4.4 Side-Channel Analysis Evaluation 45

Figure 4.3: Structure of circuit for sequential evaluation of the S-Boxes

for a few clock cycles before setting the start signal of the next S-Box high. After the done

signal of the the last S-Box goes high, the complete signal of the wrapper is set to high.

The wrapper has a reset signal as an input which is sent as the reset signal of the S-Boxes

when set to high resets all S-Boxes to known states. Figure 4.3 shows the structure of the

wrapper.

The design was implemented on a SASEBO-G measurement board using Xilinx ISE

10.1 in order to analyze their leakage characteristics.

The SASEGO-G board has two Xilinx Virtex-II Pro FPGA devices. Our design, was

implemented on the crypto FPGA(xc2vp7). In order to prevent optimizations over module

boundaries, the ”Keep Hierarchy” constraint was kept on while generating the programming

file. The control FPGA (xc2vp30) is responsible for the I/O with the measurement PC and

generation of random bits. The PRNG which the control FPGA uses to generate the input

sharings and random masks for the S-boxes is an AES-128 in OFB mode.

We evaluate the security of our first order secure implementations of the Boyar Per-

alta AES S-Boxes. We use leakage detection tests [GGJR+11, Koc96, CKN00, CNK04,

BCD+13] to test for any power leakage of our masked implementations. The fix class of the

leakage detection is chosen as the zero plaintext in all our evaluations.

We follow the standard practice when testing a masked design i.e. first turn off the

PRNG to switch off the masking countermeasure. The design is expected to show leakage

in this setting, and this serves to confirm that the experimental setup is sound (we can de-

tect leakage). We then proceed by turning on the PRNG. If we do not detect leakage in this

setting, the masking countermeasure is deemed to be effective. Figures 4.4, 4.5, 4.6, 4.7, 4.8

show the result of the first order leakage detection tests on the S-Boxes.

Section 4.4 Side-Channel Analysis Evaluation 46

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Figure 4.4: First Order leakage detection test for the S-Box with 4 shares.

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Figure 4.5: First Order leakage detection test for the S-Box with 3 shares, 68 bits of
randomness

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Figure 4.6: First Order leakage detection test for the S-Box with 3 shares,34 bits of ran-
domness

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Figure 4.7: First Order leakage detection test for the S-Box with 3 shares and using sharing
with sin = 5 and sout = 5 for a GF(24) inverter

Section 4.5 Implementation Cost 47

(a) 5K Traces, Masks Off (b) 10M Traces, Masks On

Figure 4.8: First Order leakage detection test for the S-Box with 3 shares and using sharing
with sin = 4 and sout = 4 for a GF(24) inverter

Table 4.1: Area, Randomness and Clock Cycles required per S-box Implementation.

Area Randomness Clock Cycles
[GEs] [bits]

Unprotected 269 0 1

sin = 4, sout = 4 4609 0 4

sin = 3, sout = 3, 68 random
bits, individual AND gates
masked

3630 68 4

sin = 3, sout = 3, 34 random
bits, individual AND gates
masked

3798 34 4

sin = 3, sout = 3, inverter
masked with sin = 5, sout = 5

3344 24 3

sin = 3, sout = 3, inverter
masked with sin = 4, sout = 4

2913 20 3

4.5 Implementation Cost

Here we give a comparison of the area, the required randomness and the number of clock

cycles for our implementations. The results of area have been obtained using Synopsys

2013.12 and NanGate 45nm Open Cell Library.

In Table 1, we observe a trade-off between randomness, area and clock cycles. As

we reduce the area, the randomness per S-box lookup increases or the number of clock

cycles required increase. In our implementation with smallest area, where we share a large

algebraic function, the GF(24) inverter as a whole, both the number of clock cycles and the

area are reduced.

In Table 2 we compare our implementation with smallest area to some masked imple-

mentations based on Canright S-Box.

We can summarize the comparison of our implementations with related implementations

as follows:

Section 4.6 Conclusion 48

Table 4.2: Area, Randomness and Clock Cycles required per S-box for related Implemen-
tations.

Area Randomness Clock Cycles
[GEs] [bits]

sin = 3, sout = 3, inverter
masked with sin = 4, sout =
4,Boyar Peralta

2914 20 3

sin = 3, sout = 3,Canright S-
Box in [BGN+14b]

3708 44 3

sin = 3, sout = 3,Canright S-
Box in [MPL+11]

4244 48 4

sin = 3, sout = 3,Canright S-
Box in [BGN+15]

2835 32 3

sin = 2, sout = 2,Canright S-
Box in [DCRB+16]

1977 54 6

• We achieve an implementation that consumes no randomness.

• Two of our implementations, which use the sharing for inversion in GF(24), take 3

clock cycles, which is faster than implementations in [MPL+11, DCRB+16]

• Our implementation that uses the 4-sharing of an inverter needs the same number of

clock cycles as the smallest one in [BGN+15], while consuming less randomness for

an increase in area of only 2.75%.

• The S-Box in [DCRB+16] is the smallest known TI of the AES S-Box. Our imple-

mentation is 47% larger in comparison but we obtain a 63% reduction in randomness

of and 50% reduction in number of clock cycles required.

4.6 Conclusion

In this chapter, we present the first threshold implementations of the Boyar-Peralta AES

S-Box. Since this AES S-Box is of minimum known depth, the critical path might be smaller

which would allow clocking the core at higher frequencies making it highly important for

secure high-speed and high-throughput applications. We go through an iterated design

process, starting from a straightforward approach where we mask each gate individually to

arrive at a more efficient implementation by masking the larger algebraic structure of the

inversion in GF(24).

Our smallest implementation is 49% larger in area compared to the smallest known

threshold implementation of the Canright AES S-box but reduces the randomness by 63%

Section 4.6 Conclusion 49

and number of clock cycles by 50%. Moreover, we achieve a secure implementation of the

AES S-Box that requires no randomness at all. The set of secure implementations we present

gives the hardware designer more options for tailoring their implementations according to

their specifications.

A future direction of research can investigate the result of starting from a masked Can-

right AES S-Box and using the optimizations mentioned in [BP12] to arrive at a small

and secure implementation of the Boyar-Peralta S-Box. Masking the Boyar Peralta S-Box

with d + 1 shares as shown in [RBN+15] is a possible direction for future work. Another

future work would be designing circuits for this S-Box with higher-order security levels, as

a determined adversary can still break the first-order masking scheme with a second order

attack.

Chapter 5

Lightweight and Side-channel
Secure 4× 4 S-Boxes from Cellular
Automata Rules

This work focuses on side-channel resilient design strategies for symmetric-key cryptographic

primitives targeting lightweight applications. In light of NIST’s lightweight cryptography

project, design choices for block ciphers must consider not only security against tradi-

tional cryptanalysis but also side-channel security, while adhering to low area and power

requirements. In this chapter, we explore design strategies for substitution-permutation

network (SPN)-based block ciphers that make them amenable to low-cost threshold im-

plementations (TI) - a provably secure strategy against side-channel attacks. The core

building blocks of our strategy are cryptographically optimal 4 × 4 S-Boxes, implemented

via repeated iterations of simple cellular automata (CA) rules. We present highly optimized

TI circuits for such S-Boxes, that consume nearly 40% less area and power as compared

to popular lightweight S-Boxes such as PRESENT and GIFT. We validate our claims via

implementation results on ASIC using 180nm technology. We also present a comparison

of TI circuits for two popular lightweight linear diffusion layer choices - bit permutations

and Mix Columns using almost-maximum-distance-separable (MDS) matrices. We finally

illustrate design paradigms that combine the aforementioned TI circuits for S-Boxes and

diffusion layers to obtain fully side-channel secure SPN block cipher implementations with

low area and power requirements.

5.1 Introduction

Lightweight cryptography has received great momentum with the proposal of a number

of efficient symmetric-key cryptographic primitives in recent years. Design choices for

50

Section 5.1 Introduction 51

lightweight cryptography typically focus on optimizing one or more essential implementation-

based criteria, including (but not limited to) area, power, and throughput. At the same time,

these primitives must also satisfy the basic security requirements against well-known crypt-

analytic attacks such as linear [MY93] and differential [BS91] cryptanalysis. Lightweight

block ciphers follow various design principles, amongst which substitution-permutation net-

work (SPN) is highly popular. An SPN structure typically comprises of several rounds,

where each round has three operational layers - (a) a layer of nonlinear substitution-

boxes (S-Boxes), (b) a linear permutation-layer, and (c) round-key-XOR. The impetus

for lightweight cryptography has been further enhanced by NIST’s recent announcement

of a lightweight cryptography project [MBTM17], seeking design choices targeting a vari-

ety of devices and applications. In particular, the announcement lists resistance against

side-channel attacks (SCA) as a principal design criterion. This opens up the need to ex-

plore new design strategies for lightweight block ciphers that focus not only on security

against traditional cryptanalysis but also side-channel security while adhering to low area

and power requirements. The aim of this chapter is to address this issue with respect to the

SPN block ciphers. In particular, our proposed strategies focus on protecting the two main

components of any SPN block cipher, namely the S-Box layer and the permutation layer.

A common protection strategy applied to both layers is the use of TI [NRR06], a provably

secure technique against side-channels that has its roots in multi-party computation.

S-Boxes are essential components for any SPN block cipher since they contribute to the

protection against traditional cryptanalytic techniques. In order to do so, S-Boxes must ful-

fill certain cryptographic properties. The minimum set of criteria necessary to consider when

designing S-Boxes for SPN designs includes bijectivity, high nonlinearity, and low differential

uniformity. Naturally, in various ciphers, S-Boxes are of different sizes, which results in dif-

ferent values of cryptographic properties and can even lead to using S-Boxes with suboptimal

properties (see e.g., the Keccak design where the S-Box (χ transformation) is suboptimal

with respect to the nonlinearity and differential uniformity properties [BDPA11]).

When considering lightweight cryptography, the situation is simpler. The dominant S-

Box size there is 4 × 4, which does not allow much difference in cryptographic properties,

and in fact, ciphers commonly use S-Boxes that are optimal. Optimal S-Boxes are those

that are bijective, with nonlinearity equal to 4, and differential uniformity equal to 4 [LP07].

Such optimal S-Boxes are found in numerous popular designs like PRESENT [BKL+07b],

Prince [BCG+12], Rectangle [ZBL+15], and Midori [BBI+15]. Some recently proposed

block ciphers such as GIFT [BPP+17] use cryptographically non-optimal lightweight 4× 4

S-Boxes with special properties that allow combining them with bit permutations to achieve

optimal diffusion characteristics. The small size of 4×4 S-Boxes has also enabled researchers

Section 5.1 Introduction 52

to classify all optimal S-Boxes up to the affine equivalence where they show there are 16

optimal non-equivalent classes (commonly denoted G0 to G15) [LP07]. Existing works have

also gone so far as to exhaustively enumerate all 4× 4 bijective S-Boxes [Saa12].

Despite the existence of such classifications, it is largely an open problem to pro-

pose design strategies for S-Boxes that are low-area, low-power, and at the same-time,

amenable to side-channel secure implementations (that is, the corresponding SCA-resistant

implementations also optimize area and power as much as possible). One of the fore-

most techniques for securing S-Box implementations is the use of masking countermea-

sures [RP10, GPQ11, RBN+15] that are provably secure up to a pre-determined attack

order. In more recent times, TI seems to be the preferred choice owing to their enhanced

security coverage, particularly against glitch-based SCAs. Thus, our aim is to design cryp-

tographically optimal 4×4 nonlinear functions that support low-area and low-power imple-

mentations, while having low-cost side-channel protections in the form of TI circuits.

5.1.1 Overview of Our Contributions and Techniques

The main contributions of this chapter are briefly summarized below:

• Lightweight and Side-channel Secure Design Strategies for S-Boxes.

In this chapter, we use cellular automata in order to design such nonlinear functions

with inherently lightweight implementations. A cellular automaton is a finite state

machine whose state transitions are based on simple local rules. Prior studies have

extensively analyzed the scope of realizing complex functions via repeated iterations of

this simple rules [Wol83, Wol84b, Wol84a]. A recent work by Picek et al. [PMY+17]

explores the possibility of designing cryptographically optimal 4 × 4 S-Boxes from

such simple 4 × 1 CA-based rules. The idea is to iterate over a single instance of

the CA rule, while cyclically shifting the input bits, to obtain one output bit of an

S-Box at a time. In this chapter, we take a step further and explore the possibility of

designing cryptographically optimal 4× 4 S-Boxes from CA rules, while also ensuring

that such S-Boxes give rise to side-channel secure TI circuits with low area footprint

and power consumption. The main design principle for the TI circuit remains the

same - we protect the core CA rule by decomposing the input and output bits into

as few shares as possible, and then iterate over this core unit by cyclically permuting

the input bits. We demonstrate that a significant proportion of the resulting S-

Boxes achieve cryptographically optimal properties, and give rise to distinct classes

based on their implementation overheads and amenability to TI implementations.

We also demonstrate additional optimizations on the most lightweight of these S-

Box classes by exploiting the decomposability of its CA rule into smaller Boolean

Section 5.1 Introduction 53

functions. Our implementation results on ASIC (180nm technology) show that the

most lightweight TI circuit among all CA-based S-boxes has a 49.42% smaller area-

footprint and consumes 52.3% less power as compared to the best-known TI of the

PRESENT S-Box [PMK+11]. The same TI circuit also consumes 35.36% smaller

area-footprint and consumes 44.46% less power as compared to a highly optimized TI

of the GIFT S-Box.

• Lightweight and Side-channel Secure Design Strategies for Permutation

Layers. Permutation layers provide the much-needed diffusion in any block cipher

construction, and are hence important for side-channel security. Two main classes of

permutation layers dominate nearly all lightweight SPN constructions - bit permu-

tations and almost-maximum-distance-separable (almost-MDS) permutations. Ex-

amples of the former include PRESENT [BKL+07b] and GIFT [BPP+17], while an

example of the latter strategy is Midori [BBI+15]. In this chapter, we present a

comparative analysis of the area and power overheads corresponding to TI implemen-

tations for both these choices of permutations. Such a comparative analysis allows

a designer to analyze the pros and cons of choosing either of these strategies with

respect to a given application.

• Putting it All Together. Finally, we present a trade-off analysis between the

design choices for the S-Box and permutation layers as components in an overall

SPN structure. We first observe that our CA-based S-Boxes have a branch number

of 2 (as opposed to 3 for the PRESENT S-Box), and also lacks the bad-output-

good-input (BOGI) property exhibited by the GIFT S-Box [BPP+17]. This makes

it practically infeasible to combine these S-Boxes with bit-permutation layers in a

full SPN structure and necessitates almost-MDS permutation layers. Interestingly, it

turns out that the area and power savings from our CA-based S-Boxes outweigh the

additional area and power requirements for an almost-MDS permutation layer over

a bit permutation layer, particularly when implemented for side-channel security via

TI. With these observations, we propose using CA-based S-Boxes in conjunction with

almost-MDS mappings as a new design-for-security strategy for designing lightweight

block ciphers that are amenable to low-area and low-power TI implementations.

5.1.2 Organization

The rest of this chapter is organized as follows. In Section 5.2, we introduce the notation

and present background material on cryptographic properties of S-Boxes, threshold im-

plementations (TI), cellular automata (CA) and its properties, and relevant measurement

Section 5.2 Preliminaries 54

units for area footprint and power consumption of CMOS devices. Section 5.3 presents

direct-shared TI circuits for cryptographically optimal 4× 4 S-Boxes obtained via repeated

iterations of local CA rules, along with area and power overheads for the same on ASIC

platforms (180nm technology). Section 5.4 further refines these TI circuits by reducing the

number of shares to achieve even lower area footprint and power consumption. Section 5.5

compares bit permutations and Mix Columns using almost-MDS matrices in terms of their

amenability to low-cost TI implementations. This section also presents design paradigms for

combining TI for S-Boxes and diffusion layers to achieve lightweight and fully side-channel

secure block cipher implementations. Finally, Section 5.6 summarizes the major findings of

the chapter and discusses possible future research directions.

5.2 Preliminaries

5.2.1 Cryptographic Optimality and Representation of S-Boxes

In the standard cryptographic nomenclature, a substitution box (abbreviated as S-Box), is a

nonlinear n×m Boolean function f . Here, we briefly describe some important cryptographic

properties of S-boxes.

• Algebraic Degree. To define the algebraic degree of an S-Box, we use the algebraic

normal form (ANF) representation of a boolean function f represented by a polyno-

mial in F2 [x0, . . . , xn−1] /(x
2
0 − x0, . . . , x2n−1 − xn−1) [Car10a]. The algebraic degree

degf of a Boolean function f is defined as the number of variables in the largest prod-

uct term of the function’s ANF having a non-zero coefficient [Car10a]. The algebraic

degree degF of an S-Box F is the maximum algebraic degree of all non-zero linear

combinations of the coordinate functions (i.e., component functions) or coordinate

functions of F [Car10b]. Ideally, a cryptographically useful S-Box should have high

algebraic degree to resist algebraic attacks [MPC]

• Balancedness. Let F be a function from Fn2 into Fm2 . We call F to be balanced if

it takes every value of Fm2 same number of times.

• Nonlinearity. Nonlinearity of an (n,m)-function F equals the minimum nonlinear-

ity of all its component functions v · F , where v ∈ Fm∗2 [Nyb93, Car10b]:

NLF = 2n−1 − 1

2
max
a ∈ Fn

2
v ∈ Fm∗

2

|WF (a, v)|,

where

WF (a, v) =
∑
x∈Fm

2

(−1)v·F (x)+a·x, a, v ∈ Fm2 ,

Section 5.2 Preliminaries 55

is the Walsh-Hadamard transform [Car10b] of the function F and a · b is the usual

inner product of a, b ∈ Fn2 that equals a ·b =
⊕n

i=1 aibi. The nonlinearity of any (n,m)

function F is bounded above by the covering radius bound:

NLF ≤ 2n−1 − 2
n
2
−1.

• Differential Uniformity. Let F be a function from Fn2 into Fm2 with a ∈ Fn2 and

b ∈ Fm2 . We define the difference distribution table of F with respect to a and b as:

DF (a, b) = {x ∈ Fn2 : F (x)⊕ F (x⊕ a) = b} .

The entry at position (a, b) corresponds to the cardinality of the difference distribution

table DF (a, b) and is denoted as δF (a, b). The differential uniformity δF is then defined

as [Nyb94]:

δF = max
a ∈ Fn∗

2
b ∈ Fm

2

δf (a, b).

• Differential Branch Number. Let F be a function from Fn2 into Fm2 . We define

the differential branch number of F as:

BNF = min
x 6= y

wt(x⊕ y) + wt(F (x)⊕ F (y)),

where wt(a) denotes the Hamming weight of a. Throughout this chapter we use the

term branch number to denote differential branch number.

In order to resist linear and differential cryptanalysis attacks, a balanced S-Box should

ideally have high nonlinearity and low differential uniformity. In particular, a 4× 4 S-Box

is said to be cryptographically optimal if it is balanced, has nonlinearity equal to 4, and

differential uniformity equal to 4 [LP07].

5.2.2 Threshold Implementation: Countermeasure to SCA

The preliminaries of Threshold Implementations has been covered in chapter 3.

5.2.3 Cellular Automata

Cellular Automata (CA) are parallel computational models used in order to simulate and

analyze various discrete complex systems. A cellular automaton consists of a regular grid

(lattice) of cells. The grid may be in any finite number of dimensions. For each cell, a

set of cells called its neighborhood is defined relative to the specified cell. Each cell is in

one of a finite number of states. Typically, at every time step all the cells update their

states synchronously. The state update is governed by a local rule which is applied to the

Section 5.2 Preliminaries 56

neighborhood of every cell.

CA as Vectorial Boolean Function. In this chapter, we restrict ourselves to periodic

boundary one dimensional Boolean-cellular automata i.e., the case where every cell is in

state 0 or 1 and the lattice is a linear array. A Periodic Boundary CA (PBCA) with n input

cells F : F2
n → F2

n is defined for all x ∈ F2
n as:

F (x1, x2, · · · , xn) = (f(x1, · · · , xd), · · · , f(xn−d, · · · , x1), · · · , f(xn, · · · , xd−1))

where f is a Boolean function on d variables(d ≤ n) is called a local rule. Thus, a CA can be

seen as a vectorial Boolean function where each coordinate function fi corresponds to the

local rule f applied to the neighborhood (xi, · · · , xi+d−1). The vectorial Boolean function

F of a CA is also called the CA global rule.

We note that cellular automata based S-Boxes are actually widely used today, since the

nonlinear transformation χ in Keccak is actually a PBCA with n = 5 cells and local rule f

defined as:

f(x1, x2, x3) = x1 ⊕ x2x3 ⊕ x3 . (5.1)

Besides being used in Keccak, the same rule is also used in Panama [DC98], Radio-

Gatún [BDPA06], Subterranean [CDGP93], and 3Way [DGV94] ciphers. Unfortunately,

despite being a very small rule that can be efficiently implemented, it results in optimal

S-Boxes only for dimension 3 × 3 and is bijective only for odd dimensions. Finally, Picek

et al. recently showed that CA-based S-boxes can be very efficient when considering power

and area [PMY+17].

5.2.4 Area Overhead and Power Consumption Results

The CMOS technology used for all ASIC implementation results reported in this chapter

is 180nm. Each implemented circuit is taken through the RTL-to-GDS2 flow to estimate

the area overhead and power consumption. We used Synopsys Design Compiler version I-

2013.12-SP5-4 for synthesis and Synopsys IC-Compiler version J-2014.09-SP1 for placement

and routing of the design. For simulation, we used Synopsys VCS version I-2014.03-SP1-1.

Standard cell library TSL18FS120 from Tower Semiconductor Ltd. is used for physical

design. The area overhead for all implemented circuits are measured in terms of gate

equivalents (GE), where a GE in our case is equal to the lowest area occupied by a 2-input

NAND gate of 1x drive of 180nm technology.

The total power consumption of a CMOS device is given by:

Ptotal = Pstatic + Pdynamic,

Section 5.3 Lightweight S-Boxes from Cellular Automata Rules 57

where Pstatic and Pdynamic denote the static and dynamic power consumption of the device.

In this chapter, we concentrate on the dynamic power consumption that originates from

the switching activity of the circuit:

Pdynamic = αCV 2f,

where α is the switching factor (the probability of a bit switching from 0 to 1), C is the

switched capacitance, V is the voltage, and f is the clock frequency. In our approach, we aim

to use a simple structure of CA-based elements, which reduces the area and consequently the

capacitance (since capacitance depends on the area). As the capacitance reduces, Pdynamic

also reduces since the other factors do not increase.

5.3 Lightweight S-Boxes from Cellular Automata Rules

In this section, we illustrate our cellular automata (CA)-based design strategies for obtaining

4× 4 S-Boxes that are area and power-efficient, and also amenable to low-cost TI. The idea

is to choose a local CA rule, which is essentially a 4× 1 Boolean function, such that it has

a low-cost equivalent implementation in hardware. The 4 × 4 S-Box mapping is obtained

by applying the same CA rule to four different (cyclic) permutations of the input bits.

This allows for an iterative implementation in hardware, with the CA rule implemented

once in the data-path, and the control unit applying a cyclically shifted variant of the

input bits in each clock cycle to obtain the corresponding output bit. We first describe the

De Bruijn graph-based technique to choose the local CA rule and subsequently enumerate

certain cryptographically optimal S-Boxes obtained via the aforementioned procedure. We

also classify these S-Boxes in terms of their amenability to low-area and low-power TI and

present optimized TI implementations for representatives from each class.

5.3.1 Choosing the CA Rule

Given a 4× 1 CA rule f , the corresponding 4× 4 S-Box is given by:

S (X,Y, Z,W) = (f (X,Y, Z,W) , f (Y,Z,W,X) , f (Z,W,X, Y) , f (W,X, Y, Z))

We focus on choosing such CA rules that ensure that the corresponding S-box is bijective.

The test for injectivity of the global map of a one-dimensional CA was shown to be decidable

in [AP72], while the test for surjectivity for the same was shown to have a quadratic-time

algorithm in [Sut91], using De Bruijn graphs. These graphs provide a convenient way to

describe configurations of linear CAs. We follow these principles to identify local 4× 1 CA

rules, which in turn guarantee that the resultant 4 × 4 S-Box is bijective. The detailed

technique for choosing such a CA rule is as follows.

Section 5.3 Lightweight S-Boxes from Cellular Automata Rules 58

5.3.1.1 De Bruijn Graph Representation.

For any CA with an n-variable local rule f : F2
n → F2, the associated De Bruijn graph is a

directed graph G = (V,E), where every vertex v ∈ V is labeled with an (n− 1)-bit string.

There exists an edge e from vertex v1 to vertex v2 if the first (n− 2) bits of the label of v2

are the same as the last (n − 2) bits of the label of v1. For example, the De Bruijn graph

with n = 4 has an edge from v1 = 010 to v2 = 100 as the first two bits of v2 is 10 which is

same as the last 2 bits of v1. Quite evidently, |V | = 2n−1, and |E| = 2 · 2n−1 = 2n (observe

that each vertex has exactly two incoming and two outgoing edges).

5.3.1.2 Generating Optimal 4× 4 S-Boxes from De Bruijn Graphs.

Given a De-Bruijn graph G = (V,E) with |V | = 2n−1, a CA local rule may be derived

by associating each edge of this graph with a bit b ∈ {0, 1}. Since there are 2n edges,

the total number of possible CA rules that can be associated with this graph is 22
n
. In

particular, for n = 4, the total number of such CA rules is 22
4

= 216. Each such rule gives

rise to a unique surjective 4 × 4 function. An exhaustive search of these functions yields

1 536 bijective functions, which are our candidate S-Boxes. Finally, we test these functions

for cryptographic optimality (in terms of their nonlinearity and differential uniformity),

which narrows down our search space to 512 candidate S-Boxes, which may be further sub-

classified into four affine-equivalent classes - namely, G3, G4, G5, and G6. Details of these

S-Boxes have been reported previously in [MPLJ17].

5.3.2 Classification of Cryptographically Optimal CA-based 4×4 S-Boxes

Our next step is to classify the 512 cryptographically optimal CA-based 4× 4 S-Boxes into

certain classes, such that each category comprises of S-Boxes that are expected to have sim-

ilar area and power overhead in hardware, as well as similar TI circuit representations. As

it turns out, each of these quantities are closely related to the nature of the algebraic normal

form (ANF) representation of the S-Boxes. Given that each S-Box under consideration has

optimal algebraic degree 3, we make the following essential observations:

• S-Boxes with the same number of cubic, quadratic, and linear terms in their ANF

form have similar area footprint and expected power consumption in hardware.

• S-Boxes with the same number of cubic, quadratic, and linear terms in their ANF form

have nearly identical TI circuits owing to their nearly identical algebraic structure.

Based on this rationale, we classify the S-Boxes depending on the number of linear, quadratic,

and cubic terms present in the ANF of the S-Box. According to this classification, we have

Section 5.3 Lightweight S-Boxes from Cellular Automata Rules 59

obtained 12 S-Box classes as shown in Table 5.1. We also list the CA rules corresponding to

representative optimal S-Boxes for each class. Note that class (a, b, c) comprises of optimal

S-Boxes with a cubic terms, b quadratic terms, and c linear terms, respectively. We also

summarize the cryptographic properties of these representative S-Boxes in Table 5.2, and

compare them with the cryptographic properties of the PRESENT and GIFT S-Boxes.

Table 5.1: Grouping S-Boxes into classes by ANF properties

S-Box Class Representative CA Rule
(1,2,2) f(X,Y, Z,W) = XZW ⊕XY ⊕ YW ⊕ Y ⊕ Z
(1,3,1) f(X,Y, Z,W) = Y ZW ⊕XZ ⊕ Y Z ⊕ YW ⊕X
(1,3,3) f(X,Y, Z,W) = Y ZW ⊕XY ⊕XZ ⊕ YW ⊕ Y ⊕ Z ⊕W
(1,4,2) f(X,Y, Z,W) = Y ZW ⊕XY ⊕XZ ⊕XW ⊕ ZW ⊕X ⊕W
(1,5,1) f(X,Y, Z,W) = XYW ⊕XY ⊕XZ ⊕XW ⊕ YW ⊕ ZW ⊕ Z
(1,5,3) f(X,Y, Z,W) = XYW ⊕XY ⊕XZ ⊕XW ⊕ Y Z ⊕ YW ⊕ Y ⊕ Z ⊕W
(3,2,2) f(X,Y, Z,W) = XY Z ⊕XZW ⊕ Y ZW ⊕XZ ⊕ Y Z ⊕X ⊕ Y
(3,3,1) f(X,Y, Z,W) = XY Z ⊕XZW ⊕ Y ZW ⊕XZ ⊕XW ⊕ YW ⊕ Z
(3,3,3) f(X,Y, Z,W) = XYW ⊕XZW ⊕ Y ZW ⊕XY ⊕XZ ⊕ YW ⊕X ⊕ Z ⊕W
(3,4,2) f(X,Y, Z,W) = XY Z ⊕XYW ⊕XZW ⊕XY ⊕XZ ⊕XW ⊕ Y Z ⊕ Z ⊕W
(3,5,1) f(X,Y, Z,W) = XY Z ⊕XYW ⊕ Y ZW ⊕XZ ⊕XW ⊕ Y Z ⊕ YW ⊕ ZW ⊕ Y
(3,5,3) f(X,Y, Z,W) = XY Z ⊕XYW ⊕XZW ⊕XY ⊕XZ ⊕ Y Z ⊕ YW ⊕ ZW ⊕X ⊕ Y ⊕W

Table 5.2: Cryptographic properties of the considered S-boxes

S-Box Nonlinearity
Differential

Balancedness
Algebraic Branch

Uniformity Degree Number

CA-based (Optimal) 4 4 Yes 3 2

PRESENT (Optimal) 4 4 Yes 3 3

GIFT (Non-Optimal) 4 6 Yes 3 2

5.3.3 Threshold Implementations of CA-based S-Boxes

We now describe direct sharing-based TI circuits for the aforementioned classes of CA-based

S-boxes and compare their relative area overheads and power consumption results. Since

each of the representative S-Boxes listed above has algebraic degree equal to 3, we adopt the

direct 4-to-4 non-complete sharing method for cubic functions originally proposed in [Bil15]

to obtain the corresponding TI circuits for each of the corresponding CA rules. We explicitly

depict two of the most area-efficient and low-power TI circuits below. These correspond

to the representative CA-rules for the S-Box classes (1, 2, 2) and (1, 3, 1) respectively. Note

that {Xj , Yj , Zj ,Wj}j∈[1,4] denote the shares for the input bits X,Y, Z and W , respectively,

while {fj}j∈[1,4] denotes the shares for the output f of the CA rule.

Section 5.3 Lightweight S-Boxes from Cellular Automata Rules 60

Class:(1,2,2) , CA-Rule: f = XZW ⊕ Y W ⊕XY ⊕ Y ⊕Z

f1 = (X1Z2W3)⊕ (X1Z3W2)⊕ (X2Z1W3)⊕ (X2Z3W1)⊕ (X3Z1W2)⊕ (X3Z2W1)⊕ Y1 ⊕ Z1

f2 = ((X2 ⊕X3 ⊕X4)(Z2 ⊕ Z3 ⊕ Z4)(W2 ⊕W3 ⊕W4))⊕ ((X2 ⊕X3 ⊕X4)(Y2 ⊕ Y3 ⊕ Y4))

⊕ ((Y2 ⊕ Y3 ⊕ Y4)(W2 ⊕W3 ⊕W4))⊕ Y2 ⊕ Z2

f3 = (X1(Z3 ⊕ Z4)(W3 ⊕W4))⊕ (Z1(X3 ⊕X4)(W3 ⊕W4))⊕ (W1(X3 ⊕X4)(Z3 ⊕ Z4))

⊕ (X1Z1(W3 ⊕W4))⊕ (X1W1(Z3 ⊕ Z4))⊕ (Z1W1(X3 ⊕X4))⊕ (X1Z1W1)

⊕ (X1(Y3 ⊕ Y4))⊕ (Y1(X3 ⊕X4))⊕ (X1Y1)⊕ (Y1(W3 ⊕W4))⊕ (W1(Y3 ⊕ Y4))

⊕ (Y1W1)⊕ Y3 ⊕ Z3

f4 = (X1Z1W2)⊕ (X1Z2W1)⊕ (X2Z1W1)⊕ (X1Z2W2)⊕ (X2Z1W2)⊕ (X2Z2W1)

⊕ (X1Z2W4)⊕ (X2Z1W4)⊕ (X1Z4W2)⊕ (X2Z4W1)⊕ (X4Z1W2)⊕ (X4Z2W1)

⊕ (X1Y2)⊕ (Y1X2)⊕ (Y1W2)⊕ (W1Y2)⊕ Y4 ⊕ Z4

Class:(1,3,1) , CA-Rule: f = Y ZW ⊕ Y W ⊕ Y Z ⊕XZ ⊕X

f1 = (Y1Z2W3)⊕ (Y1Z3W2)⊕ (Y2Z1W3)⊕ (Y2Z3W1)⊕ (Y3Z1W2)⊕ (Y3Z2W1)⊕X1

f2 = ((Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4)(W2 ⊕W3 ⊕W4))⊕ ((X2 ⊕X3 ⊕X4)(Z2 ⊕ Z3 ⊕ Z4))

⊕ ((Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4))⊕ ((Y2 ⊕ Y3 ⊕ Y4)(W2 ⊕W3 ⊕W4))⊕X2

f3 = (Y1(Z3 ⊕ Z4)(W3 ⊕W4))⊕ (Z1(Y3 ⊕ Y4)(W3 ⊕W4))⊕ (W1(Y3 ⊕ Y4)(Z3 ⊕ Z4))

⊕ (Y1Z1(W3 ⊕W4))⊕ (Y1W1(Z3 ⊕ Z4))⊕ (Z1W1(Y3 ⊕ Y4))⊕ (Y1Z1W1)

⊕ (X1(Z3 ⊕ Z4))⊕ (Z1(X3 ⊕X4))⊕ (X1Z1)⊕ (Y1(Z3 ⊕ Z4))⊕ (Z1(Y3 ⊕ Y4))⊕

(Y1Z1)⊕ (Y1(W3 ⊕W4))⊕ (W1(Y3 ⊕ Y4))⊕ (Y1W1)⊕X3

f4 = (Y1Z1W2)⊕ (Y1Z2W1)⊕ (Y2Z1W1)⊕ (Y1Z2W2)⊕ (Y2Z1W2)⊕ (Y2Z2W1)⊕ (Y1Z2W4)

⊕ (Y2Z1W4)⊕ (Y1Z4W2)⊕ (Y2Z4W1)⊕ (Y4Z1W2)⊕ (Y4Z2W1)⊕ (X1Z2)⊕ (Z1X2)

⊕ (Y1Z2)⊕ (Z1Y2)⊕ (Y1W2)⊕ (W1Y2)⊕X4

Figure 5.1 illustrates the hardware architecture for the direct-sharing based TI circuit corre-

sponding to a given CA rule. The main components of the architecture are the shift registers

(cyclic) for the shares corresponding to the input variables, the core block implementing the

TI circuit for the CA rule, and the demultiplexer gates that are used to output one bit per

clock cycle. Note that the counter bits are dependent only on the clock signal; in particular,

they are independent of the other intermediate share values, and hence need not themselves

Section 5.3 Lightweight S-Boxes from Cellular Automata Rules 61

be shared. A comparison of the area and power consumption for the direct sharing-based

TI circuits for all representative S-Boxes is depicted in Table 5.3. The following trend is

evident from the hardware implementation results:

Observation 1. TI of an S-Box of class (a1, b1, c1) has lower area and power consumption

than an S-Box of class (a2, b2, c2), if:

• a1 < a2,

• a1 = a2 and (b1 + c1) < (b2 + c2).

Contrary, in the case where a1 = a2 and (b1 + c1) = (b2 + c2), there is no such obvious

trend. This could be attributed to certain optimizations made by the design compiler

during synthesis.

Table 5.3: TI of CA-based S-Box representatives: area and power consumption (ASIC
Technology: 180nm)

S-Box
Area (GE) Dynamic Power (µW)

CA-Based

Class
(1,2,2) 265.03 232.51
(1,3,1) 259.23 222.36
(1,3,3) 276.06 247.78
(1,4,2) 288.35 254.89
(1,5,1) 276.55 244.97
(1,5,3) 298.7 284.19
(3,2,2) 378.98 349.76
(3,3,1) 393.83 357.6
(3,3,3) 415.21 398.51
(3,4,2) 405.57 381.00
(3,5,1) 397.10 381.46
(3,5,3) 418.16 413.14

PRESENT 450.54 490.18

GIFT 303.81 380.44

Comparison with Direct-Shared TI for PRESENT and GIFT S-Box. Note that

the first six CA-based S-Box representatives (for classes (1, 2, 2) through (1, 5, 3)) in Ta-

ble 5.3 have TI circuits with lower area footprint as compared to both the PRESENT and

GIFT S-Boxes. Additionally, the power consumption for nearly all CA-based TI circuits is

significantly lower.

Note that in the direct-shared TI, each input and output variable is four-shared, which

leads to a significant area overhead. It is possible to minimize the area overheads of these

circuits even further by reducing the number of shares in each case. This is achieved by a

technique referred to as composite TI, which we describe in the next section.

Section 5.4 Composite TI: Optimizing TI Circuits for Low Area and Power62

Figure 5.1: Architecture for TI circuits corresponding to CA-based S-Boxes

5.4 Composite TI: Optimizing TI Circuits for Low Area and
Power

In this section, we present composite TI - a generic technique that allows for highly opti-

mized TI implementations of CA rules, in comparison to direct sharing techniques. A similar

technique has been used in [PMK+11] to obtain a highly optimized TI for the PRESENT

S-Box. The idea is to express each 4 × 1 CA rule of algebraic degree 3 as a composition

of Boolean sub-functions of degree 2 each. We then proceed by identifying uniform and

non-complete sharing for these degree two sub-functions and subsequently cascading them.

In order to maintain non-completeness, the cascading must ensure that the TI circuits for

the two sub-functions are separated by using registers. This can be illustrated using the

following instance. Suppose that a CA-rule f(X) is expressed as a composition of two sub-

rules g(A) and h(X), where A denotes the intermediate output of h(X). Now, consider a

uniform first-order 3-sharing of h, denoted as A1 = h1(X1, X2) and A2 = h2(X2, X3), that

Section 5.4 Composite TI: Optimizing TI Circuits for Low Area and Power63

Figure 5.2: Architecture for TI circuits corresponding to CA-based S-Boxes

are fed subsequently to the sharing of g. Note that the share function g1 (A1, A2) can also

be written as g1(X1, X2, X3), in which case, a glitch in this function produces a leakage

dependent on all the shares of X. This is avoided by partitioning the nonlinear operations

with a register that disallows the propagation of a glitch affecting all the shares of an un-

masked value. We illustrate the decomposition strategy for the representative S-Boxes of

the classes (1, 2, 2) and (1, 3, 1), which are the most area and power-efficient among all the

S-Box classes (see Table 5.3).

5.4.1 Decomposition for CA-based S-Box Class (1, 2, 2)

We begin by illustrating a decomposition of the representative CA-rule for the S-Box class

(1, 2, 2). While the original rule f has algebraic degree 3, each of the decomposed functions

b1, b2 and b3 have degree 2.

f = XZW ⊕ Y W ⊕XY ⊕ Y ⊕Z

b1(X,Y,W) = X ⊕ Y ⊕XW ⊕ YW

b2(X,Y, Z) = Z ⊕XY ⊕XZ

b3(X,Z,W) = X ⊕W ⊕XZ ⊕ ZW

f(X,Y, Z,W) = b1 ⊕ b2 ⊕ b1b3 ⊕ b2b3 = b1(b1, b2, b3)

Section 5.4 Composite TI: Optimizing TI Circuits for Low Area and Power64

The next step is to obtain a uniform three-sharing for the decomposed functions b1, b2

and b3. We first present a nomenclature of the shares for the various input variables and

decomposed functions.

b1 = b11 ⊕ b12 ⊕ b13

b2 = b21 ⊕ b22 ⊕ b23

b3 = b31 ⊕ b32 ⊕ b33

X = X1 ⊕X2 ⊕X3

Y = Y1 ⊕ Y2 ⊕ Y3

Z = Z1 ⊕ Z2 ⊕ Z3

W = W1 ⊕W2 ⊕W3

The three-shared TI circuit is now illustrated below:

b11 = X1 ⊕ Y2 ⊕ (Y1W1)⊕ (Y1W2)⊕ (Y2W1)⊕ (X1W1)⊕ (X1W2)⊕ (X2W1)

b12 = X2 ⊕ Y3 ⊕ (Y2W2)⊕ (Y2W3)⊕ (Y3W2)⊕ (X2W2)⊕ (X2W3)⊕ (X3W2)

b13 = X3 ⊕ Y1 ⊕ (Y3W3)⊕ (Y3W1)⊕ (Y1W3)⊕ (X3W3)⊕ (X3W1)⊕ (X1W3)

b21 = Z1 ⊕ (Z1X2)⊕ (Z2X1)⊕ (Y1X2)⊕ (Y2X1)⊕ (Z1X1)⊕ (Y1X1)

b22 = Z2 ⊕ (Z2X3)⊕ (Z3X2)⊕ (Y2X3)⊕ (Y3X2)⊕ (Z2X2)⊕ (Y2X2)

b23 = Z3 ⊕ (Z1X3)⊕ (Z3X1)⊕ (Y1X3)⊕ (Y3X1)⊕ (Y3X3)⊕ (Z3X3)

b31 = X1 ⊕W2 ⊕ (Z1W1)⊕ (Z1W2)⊕ (Z2W1)⊕ (X1Z1)⊕ (X1Z2)⊕ (X2Z1)

b32 = X2 ⊕W3 ⊕ (Z2W2)⊕ (Z2W3)⊕ (Z3W2)⊕ (X2Z2)⊕ (X2Z3)⊕ (X3Z2)

b33 = X3 ⊕W1 ⊕ (Z3W3)⊕ (Z3W1)⊕ (Z1W3)⊕ (X3Z3)⊕ (X3Z1)⊕ (X1Z3)

5.4.2 Decomposition for CA-based S-Box Class (1, 3, 1)

We now illustrate a decomposition of the representative CA-rule for the S-Box class (1, 3, 1).

Once again, while the original rule f has algebraic degree 3, each of the decomposed func-

tions b1, b2 and b3 have degree 2.

f = Y ZW ⊕XZ ⊕ Y W ⊕ Y Z ⊕X

b1(X,Y,W) = X ⊕ YW

b2(X,Y, Z) = Y Z ⊕ YW

f(X,Y, Z,W) = b2 ⊕ b1W ⊕X = b3(b1, b2, X,W)

We now present a uniform three-sharing for the decomposed functions b1, b2 and b3. The

nomenclature of the shares for the various input variables and decomposed functions is the

Section 5.4 Composite TI: Optimizing TI Circuits for Low Area and Power65

Table 5.4: Hardware overhead of CA-based S-Box representatives(ASIC Technology:
180nm)

S-Box
Area (GE) Dynamic Power (µW)

CA-Based
Class
(1,2,2) 212.61 170.2
(1,3,1) 140.62 113.3

PRESENT 278.00 237.4

GIFT 217.57 207.75

same as described above.

b11 = X1 ⊕ (Y1W2)⊕ (W1Y2)

b12 = X2 ⊕ (W2W3)⊕ (Y2Y3)

b13 = X3 ⊕ (Y3W1)⊕ (Y3W1)⊕ (Y1W3)⊕ (Y3W1)

b21 = (Z1Y2)⊕ (Z2Y1)⊕ (W1Y2)⊕ (W2Y1)⊕ (Z1Y1)⊕ (W1Y1)⊕ (Z1W1)⊕ (Z2W2)

b22 = (Z2Y3)⊕ (Z3Y2)⊕ (W2Y3)⊕ (W3Y2)⊕ (Z2Y2)⊕ (W2Y2)⊕ (Z2W2)⊕ (Z3W3)

b23 = (Z1Y3)⊕ (Z3Y1)⊕ (W1Y3)⊕ (W3Y1)⊕ (W3Y3)⊕ (Z3Y3)⊕ (Z3W3)⊕ (Z1W1)

b31 = (Z1b12)⊕ (b11Z2)⊕ (b21)⊕ (X1)

b32 = ((Z2 ⊕ Z3)(b12 ⊕ (b13)))⊕ (b22)⊕ (X2)

b33 = (Z1b13)⊕ (b11Z3)⊕ (b13b11)⊕ (b23)⊕ (X3)

5.4.3 Hardware Results for Composite TI of CA-based S-Boxes

In this section, we compare the area and power requirements of the composite TI circuits

described above. We also compare these results with composite TI for the PRESENT and

GIFT S-Boxes. The architecture for the composite TI circuit is illustrated in Figure 5.2. As

mentioned before, the counter bits need not be shared as they are independent of all other

intermediate share values. For the PRESENT S-Box, we implement the same composite

TI circuit reported in [PMK+11], while for the GIFT S-Box we present new results for

composite TI that have not been reported in existing literature. The comparison reveals

that the smallest composite TI circuit among CA-based S-boxes has a 49.42% smaller area-

footprint and consumes 52.3% less power as compared to the best-known composite TI of

the PRESENT S-Box. The same S-Box also consumes 35.36% smaller area-footprint and

consumes 44.46% less power as compared to our highly optimized composite TI of the GIFT

S-Box.

Section 5.5 Area and Power Efficient Threshold Implementations for SPN
Block Ciphers 66

Figure 5.3: TVLA of Composite-TI circuit for CA-Based S-Box representing class (1, 3, 3)

5.4.4 Side-channel Leakage Resistance Evaluation using TVLA

We conclude this section by presenting a side-channel evaluation of the best TI circuit among

all CA-based S-Boxes, corresponding to the representative CA rule for the class (1, 3, 3).

The evaluation was performed by implementing the TI circuit on a Virtex-5 FPGA on a

SASEBO-GII board. The programming file for our design was generated using Xilinx ISE

14.7; the “Keep Hierarchy” constraint was kept on while generating the programming file in

order to prevent optimizations over module boundaries. We collected 1 000 000 power trace

samples from the target FPGA device, and performed a fixed-versus-random statistical test

vector leakage assessment (TVLA) test on these collected traces. The fixed class for the test

was chosen as the all-zero input in all our evaluations. Figure 5.3 demonstrates the result of

the TVLA analysis on the power traces. The outcome of the statistical test consists of values

in the range (−0.4, 0.3), which is well within the permissible range of (−4.5.4.5) [SM15].

5.5 Area and Power Efficient Threshold Implementations for
SPN Block Ciphers

In this section, we provide a brief discussion on lightweight TI implementations for the

other major component of an SPN block cipher, namely, the linear diffusion layer. We then

discuss how our CA-based S-Boxes may be combined with such diffusion layers to achieve

lightweight TI circuits for full block ciphers.

Section 5.5 Area and Power Efficient Threshold Implementations for SPN
Block Ciphers 67

5.5.1 Lightweight TI circuits for Linear Diffusion Layers

Popular diffusion layer choices in SPN block ciphers include bit-permutation (as in PRESENT

and GIFT), Mix Columns using MDS matrices (as in AES [DR00]), and Mix Columns us-

ing almost-MDS matrices (as in Midori [BBI+15]). Of these, MDS matrices are typically

avoided in ciphers targeting lightweight applications owing to their high area footprints and

power requirements. Bit permutations are obviously the most efficient choice for hardware

implementations since they have minimal area footprint and power consumption. However,

bit-permutation based block ciphers require a greater number of rounds to achieve secu-

rity against standard cryptanalytic attacks. Almost-MDS matrices constitute a somewhat

intermediate alternative, in the sense that they lead to slightly more expensive implemen-

tations, but provide better throughput by reducing the number of required rounds. In this

section, we compare the area and power requirements for TI circuits of bit permutations

and almost-MDS matrices:

TI for Bit Permutations. As a bit permutation is essentially simple wiring of bits, and

doesn’t require any mathematical operations, there is no extra overhead for TI of bit per-

mutation. Note that, permutation layers like Shift-Row (used in AES) or Shuffle-Cell (used

in Midori) are essentially bit permutations, and hence no additional overhead is required

during TI design of these operations (see Table 5.5).

Mix Columns using Almost-MDS. Another lightweight choice for obtaining diffusion is mix

column operation using almost-MDS matrices. Following is the most lightweight 4 × 4

almost-MDS matrix: 
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


This matrix is used in popular block cipher Midori. We implemented a TI circuit for

multiplying a 4×1 state vector with the aforementioned matrix. Note that a straightforward

TI circuit must protect 8 XOR gates (two per row of the matrix). In our implementation,

we reduce the overhead to 7 XOR gates as follows: we first compute the XOR of all input

vector elements (this requires 3 XORs), and then XOR one element per row to obtain the

desired output. The area and power requirements for the same are reported in Table 5.5.

Table 5.5: TI circuits for diffusion layer choices (ASIC Technology: 180nm)

Diffusion Layer Area (GE) Dynamic Power (mW)

Bit Permutation 3.15 0

Almost-MDS 213.47 1.47

Section 5.5 Area and Power Efficient Threshold Implementations for SPN
Block Ciphers 68

5.5.2 Putting it all Together

In this section, we propose two design paradigms for combining the CA-based optimal S-

Boxes with the aforementioned diffusion layer choices to achieve SPN block ciphers with

low-area and low-power TI circuits. The first of these paradigms focuses only on optimizing

area and power of the TI circuit, without caring for the throughput. In the second design

paradigm, we also incorporate the throughput as an additional performance criterion for

the TI circuit.

Design Paradigm-1: Focus on Area and Power Only. In this design paradigm, we adopt the

SPN block cipher structure of GIFT (which is conceptually identical to that of PRESENT),

in the sense that a layer of n 4× 4 S-Boxes (typically, n = 16) is followed by a bit permu-

tation layer. The S-Box is chosen to be one of the two CA-based S-Boxes (corresponding

to classes (1, 2, 2) and (1, 3, 1)), or is the original GIFT/PRESENT S-Box. Note that both

the CA-based S-Boxes (i) have branch number equal to 2 and (ii) do not possess the BOGI

(Bad Output Good Input) property1 defined in [BPP+17]. This observation essentially

tells us that, to sustain against linear and differential cryptanalysis, the number of rounds

required for an SPN block cipher using our CA-based S-Box with bit permutations would

be considerably higher than an equivalent cipher using the GIFT/PRESENT S-Box with

bit permutations. However, since this design paradigm targets area and power efficiency,

without any restrictions on throughput, our CA-based S-Boxes outperform the GIFT/P-

RESENT S-Boxes.

Design Paradigm-2: Focus on Area and Power with reasonable Throughput. In this design

paradigm, we adopt an SPN block cipher structure with the following design choices:

• We use standard bit permutations in conjunction with the S-Boxes of PRESENT/

GIFT.

• We use a standard bit permutation followed by a Mix Columns operation using an

almost-MDS matrix in conjunction with our CA-based S-Boxes.

Note that use of Mix Columns operation with an almost-MDS matrix achieves significant

diffusion in each round, ensuring a significant reduction in the number of rounds (and hence,

an improved throughput) as compared to the previous design paradigm.

Table 5.6 summarizes the implementation overheads for TI circuits following both the

design paradigms. We note that in both cases, the TI circuit using the CA-based S-Box rep-

resenting class (1, 3, 1) outperforms the TI circuits using the PRESENT and GIFT S-Boxes.

Interestingly, even when the CA-based S-Box is used in conjunction with the almost-MDS

1In fact, all the 4×4 CA-based optimal S-Boxes have branch number 2 and do not possess BOGI property

Section 5.6 Conclusions and Discussions 69

matrix, the area and power savings from the choice of S-Box makes up for the additional

overhead due to the linear layer.

Table 5.6: Lightweight TI for SPN block cipher: area and power (ASIC Technology: 180nm)

S-Box
Diffusion Layer

Area (GE)
Power (mW)

CA-Based

Class 16 S-Boxes Diffusion Layer Total

(1, 2, 2)
Bit permutation

3 401.76
3.15 3 404.91 2.72

Almost-MDS 216.62 3 618.38 4.19

(1, 3, 1)
Bit permutation

2 249.92
3.15 2 253.07 1.81

Almost-MDS 216.62 2 466.54 3.28

PRESENT Bit permutation 4 448.00 3.15 4 451.15 3.79

GIFT Bit permutation 3 481.12 3.15 3 484.27 3.32

5.6 Conclusions and Discussions

In this chapter, we present highly optimized TI circuits for cryptographically optimal 4×4 S-

Boxes, obtained from CA rules. We classify such CA-based S-Boxes into 12 categories based

on their amenability to low-area and low-power TI, and present direct-sharings for repre-

sentative S-Boxes from each class. The architecture for our implementation direct-shares

the local CA rule, and iterates over the same to obtain SCA resistant S-Box implementa-

tions. Subsequently, we reduce the number of shares further via functional decomposition

of CA-rules, to obtain composite TI-circuits with even lower area footprint and power con-

sumption. Our implementation results on ASIC (180nm technology) show that the most

lightweight TI circuit among all CA-based S-boxes has a 49.42% smaller area-footprint and

consumes 52.3% less power as compared to the best-known TI of the PRESENT S-Box.

The same TI circuit also consumes 35.36% smaller area-footprint and consumes 44.46% less

power as compared to a highly optimized TI of the GIFT S-Box. Finally, this TI circuit

also passes the TVLA test over 1 000 000 power traces.

Subsequently, we present TI circuits for bit permutations and Mix Columns using

almost-MDS matrices, with hardware results naturally favoring the former for lightweight

applications. We finally present design paradigms for SPN block ciphers that combine TI

circuits for our CA-based S-Boxes with TI circuits for bit permutations (and optionally, for

Mix Columns operations) for full-fledged side-channel resistance. In particular, the use of

TI-protected Mix Columns operation offers a practical trade-off between area and power

savings and reasonable throughput requirements.

An apparent disadvantage inherent to any CA-based S-Box design strategy is the re-

duction in throughput due to its iterative nature. One possible workaround is to operate

the target device at higher clock frequencies, keeping in mind that local CA rules are usu-

ally simple combinatorial circuits, and hence afford designs with higher critical frequencies.

Section 5.6 Conclusions and Discussions 70

Additionally, with respect to TI circuits, iterative architectures seem to minimize the pos-

sibility of additional leakages resulting from correlations among the output bits, since they

are processed in different clock cycles. A more thorough exploration of the pros and cons

of such iterative S-Box design principles can be an interesting direction for future work.

Extensions of our design principles to TI circuits for 5 × 5 and 8 × 8 S-Boxes seems to be

an intriguing direction for future research.

Chapter 6

Conclusion and Future Work

The vulnerability of block ciphers to active fault analysis and side-channel analysis makes it

imperative to study new attacks that can be exploited to compromise its security and design

suitable countermeasures against these attacks. Template based fault injection analysis

attacks is a new form of fault attacks that have been introduced in chapter 2. This attack

does not the exact knowledge of the underlying fault model. This thesis also deals with

designing countermeasures against side-channel power analysis attacks. Chapter 3 and

4 design side-channel resistant implementations of the KHUDRA and AES. Lightweight

designs for S-Boxes with countermeasures are also explored. Chapter 5 deals with S-Box

designs with optimal cryptographic properties amenable to small designs with side-channel

resistant countermeasures. The next section summarizes the results obtained in this thesis.

6.1 Summary of Results

Introduction of a new domain of fault attacks: Template-based fault in-
jection analysis of block ciphers

In Chapter 2 we develop a new form of fault attack based on templates akin to template

attacks in side-channel power attacks. We formulate a generic algorithm which of a template

building followed by a template matching phase. This generic algorithm is easily instantiable

for any target block cipher. This attack does not require high precision fault injection

equipment and allows exploitation of low-granularity faults such as multi-byte faults. Most

importantly, the exact knowledge of the underlying fault model is not required. To round off,

a case-study of this attack targeting a hardware implementation of AES-128 on a Spartan-6

FPGA is presented in order to substantiate our claims.

71

Section 6.1 Summary of Results 72

Side-channel Resistant implementation for lightweight block cipher KHU-
DRA

In the light of increased focus on lightweight cryptography, given the emergence of IoT

devices, this thesis deals with side-channel resistant implementations of lightweight block

ciphers. KHUDRA is one such lightweight block cipher which had no previous side-channel

resistant implementation. This thesis presents the design of the first threshold implemen-

tation of the block cipher KHUDRA. The 3 shared threshold implementation presented in

this thesis requires lesser area than protected implementations of other well-known block

ciphers like PRESENT, SIMON, SPECK etc.

Several masked implementations of the Boyar Peralta AES S-Box

In this thesis, we present several threshold implementations of the Boyar-Peralta AES S-

Box which has received little attention with respect to masked implementations. We explore

several area, randomness and clock cycles trade-offs to come up with 5 separate designs.

In terms of resource requirements, our implementations compare very favourably with the

existing implementations of the AES S-Box. Our smallest implementation requires 63%

less randomness and the 50% less number of clock cycles compared to the smallest known

masked implementation of the AES S-Box. We also present a TI design of the Boyar Peralta

AES S-Box using 4 shares that requires no randomness at all. This is the first TI design of

an AES S-Box with no randomness.

Designing lightweight and Side-channel Secure cryptographically optimal
4× 4 S-Boxes from Cellular Automata Rules

In order to design lightweight side-channel secure block ciphers, cryptographically optimal

S-Boxes with low area and power requirements are necessary. We formulate a design strategy

of optimal 4×4 S-Boxes from CA rules in this thesis. We demonstrate that cellular automata

can be used in order to design nonlinear functions. The single instance of the CA rule can

be iterated over while cyclically shifting the input bits, to obtain one output bit of an S-Box

at a time. This greatly reduces the area requirement of the design. A large proportion of

the resulting S-Boxes achieve cryptographically optimal properties. We segregate S-Boxes

into distinct classes based on their implementation overheads and their amenability to TI

designs. One of our implementations on ASIC has a 49.42% smaller area-footprint and

consumes 52.3% less power as compared to the best-known TI of the PRESENT S-Box.

The same TI circuit also consumes 35.36% smaller area-footprint and consumes 44.46% less

power as compared to a highly optimized TI of the GIFT S-Box. Therefore, our exploration

Section 6.2 Directions for Future Research 73

leads to one of the smallest masked implementations of a 4 × 4 cryptographically optimal

S-Box.

6.2 Directions for Future Research

We put forward a few research problems that can be explored as an extension of the work

done in this thesis. Some possible problems that can be possibly addressed in future work

are:

1. Testing the efficacy of template-based fault injection analysis attacks in presence of

traditional time-redundancy, round-redundancy and infective countermeasures against

fault attacks.

2. Higher order threshold implementations of KHUDRA and AES for protection against

more resourceful adversaries with the ability to carry out higher order power attacks.

3. Design of a secure implementation of the Boyar-Peralta S-Box starting from a masked

Canright AES S-Box and using the optimizations mentioned in [BP12].

4. Using cellular automata rules to find optimal 5 × 5 and 8 × 8 S-Boxes with small

overheads for masked implementations.

Disseminations

• Ghoshal A., De Cnudde T. (2017) Several Masked Implementations of the Boyar-

Peralta AES S-Box. In: Patra A., Smart N. (eds) Progress in Cryptology IN-

DOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science, vol 10698.

Springer, Cham

• Sadhukhan, R., Patranabis, S., Ghoshal, A., Mukhopadhyay, D., Saraswat, V.

and Ghosh, S., 2017. An Evaluation of Lightweight Block Ciphers for Resource-

Constrained Applications: Area, Performance, and Security. Journal of Hardware

and Systems Security, pp.1-16.

• Ghoshal, A., Sadhukhan, R., Patranabis, S., Datta, N., Picek, S., Mukhopad-

hyay, D. (2018). Lightweight and Side-channel Secure 4 4 S-Boxes from Cellular

Automata Rules. IACR Transactions on Symmetric Cryptology, 2018(3), 311-334.

https://doi.org/10.13154/tosc.v2018.i3.311-334

• Ghoshal, A., Patranabis S., Mukhopadhyay D. (2018) Template-Based Fault Injec-

tion Analysis of Block Ciphers. In: Chattopadhyay A., Rebeiro C., Yarom Y. (eds)

Security, Privacy, and Applied Cryptography Engineering. SPACE 2018. Lecture

Notes in Computer Science, vol 11348. Springer, Cham

74

Bibliography

[ADN+10] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and

Assia Tria. When Clocks Fail: On Critical Paths and Clock Faults. Smart

Card Research and Advanced Application, pages 182–193, 2010.

[AP72] Serafino Amoroso and Yale N. Patt. Decision procedures for surjectivity and

injectivity of parallel maps for tessellation structures. Journal of Computer

and System Sciences, 6(5):448–464, 1972.

[BBBP13] Alessandro Barenghi, Guido M Bertoni, Luca Breveglieri, and Gerardo Pelosi.

A fault induction technique based on voltage underfeeding with application to

attacks against aes and rsa. Journal of Systems and Software, 86(7):1864–1878,

2013.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,

Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block

cipher for low energy. In Proceedings, Part II, of the 21st International Confer-

ence on Advances in Cryptology — ASIACRYPT 2015 - Volume 9453, pages

411–436, New York, NY, USA, 2015. Springer-Verlag New York, Inc.

[BCD+13] GT Becker, J Cooper, E DeMulder, G Goodwill, J Jaffe, G Kenworthy,

T Kouzminov, A Leiserson, M Marson, P Rohatgi, et al. Test vector leak-

age assessment (tvla) methodology in practice. In International Cryptographic

Module Conference, volume 1001, page 13, 2013.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav

Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,

Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.

PRINCE - A low-latency block cipher for pervasive computing applications

- extended abstract. In Advances in Cryptology - ASIACRYPT 2012 - 18th

International Conference on the Theory and Application of Cryptology and

75

BIBLIOGRAPHY 76

Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages

208–225, 2012.

[BDL97] Dan Boneh, Richard DeMillo, and Richard Lipton. On the importance

of checking cryptographic protocols for faults. In Advances in Cryptology-

EUROCRYPT97, pages 37–51. Springer, 1997.

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,

and Gilles Van Assche. Efficient and first-order dpa resistant implementations

of keccak. In International Conference on Smart Card Research and Advanced

Applications, pages 187–199. Springer, 2013.

[BDPA06] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Ra-

diogatún, a belt-and-mill hash function. IACR Cryptology ePrint Archive,

2006:369, 2006.

[BDPA11] Guido Bertoni, Joan Daemen, Michäel Peeters, and Gilles Van Assche. The

Keccak reference, January 2011. http://keccak.noekeon.org/.

[BGN+14a] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent

Rijmen. Higher-order threshold implementations. In International Conference

on the Theory and Application of Cryptology and Information Security, pages

326–343. Springer, 2014.

[BGN+14b] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vin-

cent Rijmen. A more efficient aes threshold implementation. In International

Conference on Cryptology in Africa, pages 267–284. Springer, 2014.

[BGN+15] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent

Rijmen. Trade-offs for threshold implementations illustrated on aes. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

34(7):1188–1200, 2015.

[Bil15] Begül Bilgin. Threshold implementations: as countermeasure against higher-

order differential power analysis. 2015.

[BKL+07a] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.

PRESENT: an ultra-lightweight block cipher. In CHES, volume 4727 of LNCS,

pages 450–466. Springer, 2007.

http://keccak.noekeon.org/

BIBLIOGRAPHY 77

[BKL+07b] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.

PRESENT: an ultra-lightweight block cipher. In CHES 2007, pages 450–466,

2007.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg

Stütz. Threshold implementations of all 3× 3 and 4× 4 s-boxes. In Inter-

national Workshop on Cryptographic Hardware and Embedded Systems, pages

76–91. Springer, 2012.

[BP12] Joan Boyar and René Peralta. A small depth-16 circuit for the aes s-box. In

IFIP International Information Security Conference, pages 287–298. Springer,

2012.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,

Siang Meng Sim, and Yosuke Todo. Gift: A small present. In Wieland Fischer

and Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems

– CHES 2017, pages 321–345, Cham, 2017. Springer International Publishing.

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-

tems. In Proceedings of the 10th Annual International Cryptology Conference

on Advances in Cryptology, CRYPTO ’90, pages 2–21, London, UK, UK, 1991.

Springer-Verlag.

[BS03] Johannes Blömer and Jean-Pierre Seifert. Fault Based Cryptanalysis of the

Advanced Encryption Standard (AES). In Rebecca N. Wright, editor, Finan-

cial Cryptography, volume 2742 of Lecture Notes in Computer Science, pages

162–181. Springer, 2003.

[Can05] D. Canright. A Very Compact S-Box for AES, pages 441–455. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2005.

[Car10a] Claude Carlet. Boolean Functions for Cryptography and Error Correcting

Codes. In Yves Crama and Peter L. Hammer, editors, Boolean Models and

Methods in Mathematics, Computer Science, and Engineering, pages 257–397.

Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[Car10b] Claude Carlet. Vectorial Boolean Functions for Cryptography. In Yves Crama

and Peter L. Hammer, editors, Boolean Models and Methods in Mathemat-

ics, Computer Science, and Engineering, pages 398–469. Cambridge University

Press, New York, USA, 1st edition, 2010.

BIBLIOGRAPHY 78

[CCF+08] Gaetan Canivet, Jessy Clédière, Jean Baptiste Ferron, Frédéric Valette, Marc

Renaudin, and Régis Leveugle. Detailed analyses of single laser shot effects

in the configuration of a virtex-ii fpga. In On-Line Testing Symposium, 2008.

IOLTS’08. 14th IEEE International, pages 289–294. IEEE, 2008.

[CDGP93] L. Claesen, J. Daemen, M. Genoe, and G. Peeters. Subterranean: A 600

Mbit/sec cryptographic VLSI chip. In Computer Design: VLSI in Comput-

ers and Processors, 1993. ICCD ’93. Proceedings., 1993 IEEE International

Conference on, pages 610–613, Oct 1993.

[CJRR99] Suresh Chari, Charanjit Jutla, Josyula Rao, and Pankaj Rohatgi. Towards

sound approaches to counteract power-analysis attacks. In Advances in Cryp-

tologyCRYPTO99, pages 791–791. Springer, 1999.

[CKN00] JS Coron, P Kocher, and D Naccache. Statistics and secret leackage, to appear

in proceedings of financial cryptography, 2000.

[CML+11] Gaetan Canivet, Paolo Maistri, Régis Leveugle, Jessy Clédière, Florent Valette,

and Marc Renaudin. Glitch and laser fault attacks onto a secure aes imple-

mentation on a sram-based fpga. Journal of Cryptology, 24(2):247–268, 2011.

[CN17] T. De Cnudde and S. Nikova. Securing the present block cipher against com-

bined side-channel analysis and fault attacks. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, PP(99):1–11, 2017.

[CNK04] Jean-Sebastien Coron, David Naccache, and Paul Kocher. Statistics and se-

cret leakage. ACM Transactions on Embedded Computing Systems (TECS),

3(3):492–508, 2004.

[CRR02] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In

International Workshop on Cryptographic Hardware and Embedded Systems,

pages 13–28. Springer, 2002.

[CT05] Hamid Choukri and Michael Tunstall. Round reduction using faults. FDTC,

5:13–24, 2005.

[DC98] Joan Daemen and Craig S. K. Clapp. Fast Hashing and Stream Encryption

with PANAMA. In Fast Software Encryption, 5th International Workshop,

FSE ’98, Paris, France, March 23-25, 1998, Proceedings, pages 60–74, 1998.

BIBLIOGRAPHY 79

[DCBG+17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla

Nikova, and Vincent Rijmen. Does coupling affect the security of masked

implementations? In International Workshop on Constructive Side-Channel

Analysis and Secure Design, pages 1–18. Springer, 2017.

[DCBR+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla

Nikova. Higher-order threshold implementation of the aes s-box. In Interna-

tional Conference on Smart Card Research and Advanced Applications, pages

259–272. Springer, 2015.

[DCRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav

Nikov, and Vincent Rijmen. Masking aes with d+ 1 shares in hardware. In

International Conference on Cryptographic Hardware and Embedded Systems,

pages 194–212. Springer, 2016.

[DDRT12] Amine Dehbaoui, J-M Dutertre, Bruno Robisson, and Assia Tria. Electromag-

netic transient faults injection on a hardware and a software implementations

of aes. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2012 Work-

shop on, pages 7–15. IEEE, 2012.

[DGV94] Joan Daemen, René Govaerts, and Joos Vandewalle. A new approach to block

cipher design. In Ross Anderson, editor, Fast Software Encryption: Cambridge

Security Workshop Cambridge, U. K.,1993 Proceedings, pages 18–32, Berlin,

Heidelberg, 1994. Springer Berlin Heidelberg.

[DLV03] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault anal-

ysis on aes. In Applied Cryptography and Network Security, pages 293–306.

Springer, 2003.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography.

In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual

IEEE Symposium on, pages 293–302. IEEE, 2008.

[DR00] Joan Daemen and Vincent Rijmen. Rijndael for AES. In AES Candidate

Conference, pages 343–348, 2000.

[DRS+12] François Durvaux, Mathieu Renauld, François-Xavier Standaert, Loic van Old-

eneel tot Oldenzeel, and Nicolas Veyrat-Charvillon. Cryptanalysis of the ches

2009/2010 random delay countermeasure. IACR Cryptology ePrint Archive,

2012:38, 2012.

BIBLIOGRAPHY 80

[FJLT13] Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault

attacks on aes with faulty ciphertexts only. In Fault Diagnosis and Tolerance

in Cryptography (FDTC), 2013 Workshop on, pages 108–118. IEEE, 2013.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A test-

ing methodology for side-channel resistance validation. In NIST Non-invasive

attack testing workshop, 2011.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented mask-

ing: Compact masked hardware implementations with arbitrary protection

order. IACR Cryptology ePrint Archive, 2016:486, 2016.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic

analysis: Concrete results. In Cryptographic Hardware and Embedded System-

sCHES 2001, pages 251–261. Springer, 2001.

[GP99] Louis Goubin and Jacques Patarin. Des and differential power analysis the

duplication method. In Cryptographic Hardware and Embedded Systems, pages

728–728. Springer, 1999.

[GPQ11] Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Thwarting higher-

order side channel analysis with additive and multiplicative maskings. In Bart

Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded

Systems – CHES 2011: 13th International Workshop, Nara, Japan, September

28 – October 1, 2011. Proceedings, pages 240–255, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking

Be in Software?, pages 567–597. Springer International Publishing, Cham,

2017.

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa Taha, and Patrick Schau-

mont. Differential fault intensity analysis. In Fault Diagnosis and Tolerance

in Cryptography (FDTC), 2014 Workshop on, pages 49–58. IEEE, 2014.

[HMER] Karine Heydemann, Nicolas Moro, Emmanuelle Encrenaz, and Bruno Robis-

son. Formal verification of a software countermeasure against instruction skip

attacks. In PROOFS 2013.

[HR10] Viet Tung Hoang and Phillip Rogaway. On generalized feistel networks. In

CRYPTO, volume 6223 of LNCS, pages 613–630. Springer, 2010.

BIBLIOGRAPHY 81

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-

ware against probing attacks. In Annual International Cryptology Conference,

pages 463–481. Springer, 2003.

[JS17] Anthony Journault and François-Xavier Standaert. Very High Order Masking:

Efficient Implementation and Security Evaluation, pages 623–643. Springer

International Publishing, Cham, 2017.

[Kim10] Chong Hee Kim. Differential fault analysis against aes-192 and aes-256 with

minimal faults. In Fault Diagnosis and Tolerance in Cryptography (FDTC),

2010 Workshop on, pages 3–9. IEEE, 2010.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

Advances in cryptologyCRYPTO99, pages 789–789. Springer, 1999.

[KM14] Souvik Kolay and Debdeep Mukhopadhyay. Khudra: A new lightweight block

cipher for fpgas. In SPACE, volume 8804 of LNCS, pages 126–145. Springer,

2014.

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa,

dss, and other systems. In Annual International Cryptology Conference, pages

104–113. Springer, 1996.

[LP07] G. Leander and A. Poschmann. On the Classification of 4 Bit S-Boxes. In

Claude Carlet and Berk Sunar, editors, Arithmetic of Finite Fields, volume

4547 of Lecture Notes in Computer Science, pages 159–176. Springer Berlin

Heidelberg, 2007.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko

Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In CHES, volume

6225, pages 320–334. Springer, 2010.

[MBTM17] Kerry A. McKay, Larry Bassham, Meltem Snmez Turan, and Nicky Mouha.

Report on Lightweight Cryptography. 2017. http://nvlpubs.nist.gov/

nistpubs/ir/2017/NIST.IR.8114.pdf.

[MMG14] Oliver Mischke, Amir Moradi, and Tim Güneysu. Fault sensitivity analysis

meets zero-value attack. In 2014 Workshop on Fault Diagnosis and Tolerance

in Cryptography, FDTC 2014, Busan, South Korea, September 23, 2014, pages

59–67, 2014.

http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

BIBLIOGRAPHY 82

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:

Revealing the secrets of smart cards, volume 31. Springer Science & Business

Media, 2008.

[MPC] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decom-

position of boolean functions. In Christian Cachin and Jan L. Camenisch,

editors, Advances in Cryptology - EUROCRYPT 2004.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.

Pushing the limits: a very compact and a threshold implementation of aes. In

Eurocrypt, volume 6632, pages 69–88. Springer, 2011.

[MPLJ17] Luca Mariot, Stjepan Picek, Alberto Leporati, and Domagoj Jakobovic. Cel-

lular automata based s-boxes. Cryptology ePrint Archive, Report 2017/1055,

2017. https://eprint.iacr.org/2017/1055.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully

attacking masked aes hardware implementations. In International Workshop

on Cryptographic Hardware and Embedded Systems, pages 157–171. Springer,

2005.

[Muk09] Debdeep Mukhopadhyay. An improved fault based attack of the advanced

encryption standard. Africacrypt, 5580:421–434, 2009.

[MY93] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext

attack of FEAL cipher. In Proceedings of the 11th annual international confer-

ence on Theory and application of cryptographic techniques, EUROCRYPT’92,

pages 81–91, Berlin, Heidelberg, 1993. Springer-Verlag.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-

mentations against side-channel attacks and glitches. In International Confer-

ence on Information and Communications Security, pages 529–545. Springer,

2006.

[Nyb93] Kaisa Nyberg. On the construction of highly nonlinear permutations. In Rain-

erA. Rueppel, editor, Advances in Cryptology - EUROCRYPT’ 92, volume 658

of Lecture Notes in Computer Science, pages 92–98. Springer Berlin Heidel-

berg, 1993.

https://eprint.iacr.org/2017/1055

BIBLIOGRAPHY 83

[Nyb94] Kaisa Nyberg. S-boxes and round functions with controllable linearity and

differential uniformity. In Fast Software Encryption: Second International

Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, pages 111–

130, 1994.

[PCNM15] Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha Nguyen, and Debdeep

Mukhopadhyay. A biased fault attack on the time redundancy countermeasure

for aes. In International Workshop on Constructive Side-Channel Analysis and

Secure Design, pages 189–203. Springer, 2015.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong

Wang, and San Ling. Side-channel resistant crypto for less than 2,300 ge.

Journal of Cryptology, 24(2):322–345, 2011.

[PMY+17] Stjepan Picek, Luca Mariot, Bohan Yang, Domagoj Jakobovic, and Nele

Mentens. Design of s-boxes defined with cellular automata rules. In Proceed-

ings of the Computing Frontiers Conference, CF’17, Siena, Italy, May 15-17,

2017, pages 409–414, 2017.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique

against spn structures, with application to the aes and khazad. In CHES,

volume 2779, pages 77–88. Springer, 2003.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:

A formal security proof. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 142–159. Springer, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid

Verbauwhede. Consolidating masking schemes. In Annual Cryptology Confer-

ence, pages 764–783. Springer, 2015.

[RM07] Bruno Robisson and Pascal Manet. Differential behavioral analysis. In Inter-

national Workshop on Cryptographic Hardware and Embedded Systems, pages

413–426. Springer, 2007.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-

ing of aes. In Stefan Mangard and François-Xavier Standaert, editors, Cryp-

tographic Hardware and Embedded Systems, CHES 2010: 12th International

Workshop, Santa Barbara, USA, August 17-20, 2010. Proceedings, pages 413–

427, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

BIBLIOGRAPHY 84

[Saa12] Markku-Juhani O. Saarinen. Cryptographic analysis of all 4 x 4-bit s-boxes. In

Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography, pages

118–133, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[SGD08] Nidhal Selmane, Sylvain Guilley, and J-L Danger. Practical setup time viola-

tion attacks on aes. In Dependable Computing Conference, 2008. EDCC 2008.

Seventh European, pages 91–96. IEEE, 2008.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In

International Workshop on Cryptographic Hardware and Embedded Systems,

pages 495–513. Springer, 2015.

[SMC09] Dhiman Saha, Debdeep Mukhopadhyay, and Dipanwita Roy Chowdhury. A

diagonal fault attack on the advanced encryption standard. IACR Cryptology

ePrint Archive, 2009:581, 2009.

[STE17] Aria Shahverdi, Mostafa Taha, and Thomas Eisenbarth. Lightweight side

channel resistance: Threshold implementations of simon. IEEE Transactions

on Computers, 66(4):661–671, 2017.

[Sut91] Klaus Sutner. De bruijn graphs and linear cellular automata. Complex Sys-

tems, 5(1):19–30, 1991.

[TMA11] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential fault

analysis of the advanced encryption standard using a single fault. WISTP,

6633:224–233, 2011.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a

secure dpa resistant asic or fpga implementation. In Proceedings of the confer-

ence on Design, automation and test in Europe-Volume 1, page 10246. IEEE

Computer Society, 2004.

[Wol83] Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of

modern physics, 55(3):601, 1983.

[Wol84a] Stephen Wolfram. Cellular automata as models of complexity. Nature,

311(5985):419, 1984.

[Wol84b] Stephen Wolfram. Universality and complexity in cellular automata. Physica

D: Nonlinear Phenomena, 10(1-2):1–35, 1984.

BIBLIOGRAPHY 85

[YZS+15] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and Guang Gong.

The simeck family of lightweight block ciphers. In CHES, volume 9293 of

LNCS, pages 307–329. Springer, 2015.

[ZBL+15] WenTao Zhang, ZhenZhen Bao, DongDai Lin, Vincent Rijmen, BoHan Yang,

and Ingrid Verbauwhede. Rectangle: a bit-slice lightweight block cipher suit-

able for multiple platforms. Science China Information Sciences, 58(12):1–15,

2015.

	Introduction
	Motivation and Objectives of the Work
	Major contributions of this Thesis
	Thesis Organization and Overview

	Template-based Fault Injection Analysis of Block Ciphers
	Introduction
	Fault Models for Fault Injection Analysis
	Template Attacks: Maximizing the Power of SCA
	Our Contribution: Templates for Fault Injection Analysis
	Comparison with Existing FIA Techniques

	Template-Based FIA: Detailed Approach
	Template Building Phase
	Template Matching Phase
	The Statistical measure M

	Case Study: Template-Based FIA on AES-128
	The Fault Injection Setup
	Templates for Single Byte Faults
	Templates for Multi-Byte Faults
	Variation with Key Byte Values
	Template matching for Key-Recovery

	Conclusion

	Threshold Implementation of KHUDRA
	Preliminaries
	Description of the KHUDRA Block Cipher
	Threshold Implementations

	3-shared Threshold Implementation of Khudra
	Test Vector Leakage Assessment (TVLA): T-Test Methodology
	Area comparison with other lightweight protected and unprotected block ciphers

	Conclusion

	Several Masked Implementations of the Boyar Peralta AES S-Box
	Introduction
	Contributions.
	Organization.

	Preliminaries
	Notation
	The Boyar-Peralta Implementation of the AES S-Box
	Threshold Implementations

	Several SCA Secure Implementations of the Boyar-Peralta AES S-Box
	Threshold implementation with 4 shares and no randomness
	Threshold implementation with 3 shares and 68 bits randomness
	Threshold implementation with 3 shares and 34 bits randomness
	Threshold Implementation using 3 shares and using sharing with sin=5 and sout=5 for a GF(24) inverter
	Threshold Implementation using 3 shares and using sharing with sin=4 and sout=4 for a GF(24) inverter

	Side-Channel Analysis Evaluation
	Implementation Cost
	Conclusion

	Lightweight and Side-channel Secure 44 S-Boxes from Cellular Automata Rules
	Introduction
	Overview of Our Contributions and Techniques
	Organization

	Preliminaries
	Cryptographic Optimality and Representation of S-Boxes
	Threshold Implementation: Countermeasure to SCA
	Cellular Automata
	Area Overhead and Power Consumption Results

	Lightweight S-Boxes from Cellular Automata Rules
	Choosing the CA Rule
	De Bruijn Graph Representation.
	Generating Optimal 44 S-Boxes from De Bruijn Graphs.

	Classification of Cryptographically Optimal CA-based 44 S-Boxes
	Threshold Implementations of CA-based S-Boxes

	Composite TI: Optimizing TI Circuits for Low Area and Power
	Decomposition for CA-based S-Box Class (1,2,2)
	Decomposition for CA-based S-Box Class (1,3,1)
	Hardware Results for Composite TI of CA-based S-Boxes
	Side-channel Leakage Resistance Evaluation using TVLA

	Area and Power Efficient Threshold Implementations for SPN Block Ciphers
	Lightweight TI circuits for Linear Diffusion Layers
	Putting it all Together

	Conclusions and Discussions

	Conclusion and Future Work
	Summary of Results
	Directions for Future Research

	Bibliography

