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Abstract: The objective of this paper is to analyze the
spectral variations of texture spatial frequencies as a
function of orientation and depth of a 3-D planar surface.
Based on this relationship we attempt to derive an
expression for the extraction of  3-D surface orientation
using texture features alone. Using experimentation on
simulated images, we illustrate the advantage of using 1-D
wavelets over Fourier based analysis for this purpose.
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1. Introduction
The problem of obtaining 3-D surface orientation from a
monocular static texture image has received a great of
attention [1,2,7,8,10-16]  in the field of computer vision
and pattern recognition. If the surface exhibits a textured
pattern, it is often easy for a human being to extract the
structure information from the image. But the problem is
ill-posed for a machine to solve. This paper presents
analytical expressions using separable 1-D analysis of 2-D
images for extraction of surface orientation of a textured
planar surface.

In this paper we use a model of the viewing geometry
which is similar to that used by Nayar et. al. [4-6] in Curet
database [http://www.cs.columbia.edu/CAVE/curet/], but
different from the one used by  Super and Bovik [11],
Ribeiro and Hancock [10] and Leung and Malik [14].
Dana [4] and Nayar [5] however used our proposed model
of the viewing geometry for measurements of surface
reflectance of textured surfaces, based of different viewing
angles and illumination. Other work [3, 17] have
concentrated on visualization  of surfaces using 3-D
textures. The work by Malik [14] used density, height and
occlusion to derive the shape from textures.   Super and
Bovik [11], Ribeiro and Hancock [10] in their work have
attempted to extract surface orientation using spectral
gradient, peaks and distortion. Most of the earlier work [1,
7, 8, 11, 15, 16] involved an exhaustive numerical search.
The most recent work [10] uses the eigenstructure of an
affine distortion matrix. The advantage with our method
will be the separable analysis in both dimensions of the
image to extract the individual components of the surface
orientation parameters. This will be evident in the next
section, when we present the viewing geometry and derive
the analytical expressions. Due to separable analysis,
errors in computation of one of the orientation angles will
not effect the other, which is a drawback in the method
suggested in [10]. We then present the need and use of a

multi-resolution filter (wavelet) for spectral analysis of
texture surfaces to extract the surface orientation.

2. Basic projective texture equations
Figure 1. shows the viewing geometry and coordinate
system used. Consider a surface element S, containing
a simple sinusoidal texture. This simplicity is assumed
to derive the relationship between spectral features of
the texture pattern in the image space and 3-D surface
properties (depth and surface orientation) of S.
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Figure 1. Viewing geometry and coordinate system.

Let N be the surface normal on S. This vector is
defined using polar and azimuth angles of N w.r.t the
world coordinate system.  The azimuth angle φ, is the
angle between the vector N and its projection, V, on
the horizontal ZW-XW plane. The polar angle, θ (in the
ZW-XW plane), is the angle between the vector V and
ZW  axis, clock-wise looking along the Y-axis from the
origin. This model is similar to that used in the
CURET database [1]. The view axis is along the –ZW

axis and F be the focal length of the viewing system,
assuming a pin-hole camera configuration and
perspective geometry of the viewing setup. The image
plane (2-D) coordinate system is aligned with the XW-
YW axis of the world-coordinate system.

Assume a simple sinusoidal texture pattern on a planar
surface with frequency fr. Let the surface S be at a
distance Z0, from the origin. Let the surface inclination
be such that either θ or φ is zero and the other be a
non-zero value α.  When θ = 0, we do not have any
local spectral variations along the x-axis (horizontal
direction) of  the image plane. Similarly, when  φ  = 0,
we do not have any local  spectral variations along the
y-axis  (vertical direction) of the image plane.



When only one of the angles is non-zero (say, φ), and
the other non-zero, the local spectral variations will be
only along one of the principal axis (in this case, y-
axis) of the image plane. Let the frequency content of
the sinusoidal texture on a planar surface, at  a distance
Z0 from the origin and oriented orthogonal to the
viewing direction, as observed in the image space be a
local spectral peak at fr. Let fr be assumed to be known
initiall y (this constraints will be relaxed later on).
Assume orthogonal projection initiall y, without any
loss of generali ty. Perspective projection and effect of
depth will be considered and incorporated next. If the
surface is  inclined  such that, θ = 0 and  φ = α, then
the observed frequency peak will be fr’ , where

fr’ = fr sec(α).             (1)
This relation is il lustrated in figure 2. Eqn. (1) gives
the relation between the observed frequency of the
texture surface and inclination of the surface w.r.t.
viewing direction. Thus if θ = β and  φ = α, then the
observed frequency will be,

fr” = fr   sec(β). sec(α)            (2)
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Figure 2. (a) A simple sinusoid texture pattern on a
planar surface S, oriented orthogonal to the viewing
direction (θ = φ = 0). (b) The surface is oriented at
φ = α and θ = 0. The projection of one period of the
sinusoid is, T’ = T cos(α) . Orthogonal projection is
assumed� ���	��
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a dotted curve on the planar surface S.

Let us now observe the effect of depth of the surface
from the viewer on the frequency peak. From figure
3(A), we can write using perspective projection
models, the following equation:
H/Z0 = h/F              (3)
where H   is the time period of the sinusoid on the
object surface, and h (= 1/ fr ) is the observed time
period on the image plane. If the surface is moved
away from the viewer by a distance ∆Z, then
H/Z’ = h’/F              (4)
where Z’ = Z 0 + ∆Z, and h’ is the observed time period
of the sinusoid under perspective projection.
Combining equations (3) and (4), we have:
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The observed frequency, fz, now is:
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Figure 3. The planar surface, S, oriented orthogonal to
the viewing direction, is projected on the image plane.
(A) Surface is at a distance Z0  from the camera and
length of the projected segment is h. (B) Surface is
now at a distance (Z0 + ∆Z) from the camera and the
length of the projected segment is h’. F is the focal
length of the camera and viewing direction is along the
–Zw axis.

From equations (2) and (6), we get the locally observed
frequency foi, of a planar surface at depth (Z0 + ∆Zi),
and orientation θ = β,  φ = α, as:
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where, Zi = Z0 + ∆Zi.

Equation 7 is the basic equation for the observed
texture frequency in the image plane, depending on the
surface parameters (depth (Z0 + ∆Zi) and orientation
α, β).  The plot in  Figure 4, il lustrates the nature of the
frequency variation, given in equation (7), where the
normalized observed frequency is (foi/fr).

If any texture pattern can be considered as a
superposition of several sinusoids (band-limited), then
all the individual components of the signal will also be
effected in a similar manner as in equation (7). We will
now derive equations which estimate the surface
orientation parameters from the observed frequency foi,
on the image plane. Henceforth, the term ‘ frequency’
will mean the observed local spectral peak of the
texture around a neighborhood of a point in the image
plane.



3. Estimation of orientation parameters
Observe Figure 5, which shows the perspective
geometry of a planar surface S inclined at an angle
φ = α and θ = 0. Select two points I and J, on the
vertical axis on the image plane, with coordinates (xi,
yi) and (xi, yj) respectively. These may be considered to
be the projections, on the image plane, of points Pi and
Pj on S.

Figure 4. Normalized observed frequency (foi/fr), in the
image texture pattern, as a function of relative depth
∆Zi and orientation angle α.

In equation(7), substituting    φ = α and θ = 0, we
have:
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Since the polar angle θ = 0, the spectral gradient along
the horizontal (x) axis of the image is zero. Hence we
look for the variations in spectral values along the
vertical (y) axis of the image plane. This role is reversed
if  φ = 0 and θ = β. From the above two equations, we
can obtain the difference in the observed frequencies as:
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where, ∆Zij = Zj - Zi  (= ∆Zj -∆Zi ),
and frα  = fr (sec α).

For the ratio of the observed frequencies, we have:
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Using perspective geometry, we write:

]
)(

[][

][

ijii

ijiiji

i

i

iji

iji

i

i

j

j
ijij

yyy

yYYy
F

y

Y

yy

YY
F

y

Y

y

Y
FZZZ

∆+
∆−∆

=−
∆+
∆+

=

−=−=∆
          (10)

where ∆Y ij = Y j – Y i (3-D world space coordinates)
and ∆y ij = yj – yi (2-D image plane coordinates).

From figure 5, we can write:
)(cotαijij ZY ∆=∆

and with some simplifications,  we can derive   ( see
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Figure 5. Surface S is oriented at an angle φ=α. Two
points I and J, selected on the image plane correspond
to points Pi and Pj  on the surface. The viewing axis
intersects the surface at  P0, with depth Z0. The image
plane is orthogonal to the view direction, and is viewed
in the figure as a line.

Appendix A) from equation (10):
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Substituting (11) in (9), we have
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Figure 6 below illustrates the variation in the ratio of
the observed frequencies at two image coordinates Yj

and Yi in the image planes as a function of orientation
angle α  and image coordinate Yj (= -Yi).

Figure 6. Ratio of the observed frequencies as a
function of orientation angle α and image coordinate.



Equation (12) gives the relation between the ratio, fo(i,j),
of the observed frequencies at two arbitrary points on a
vertical line in the image plane and the orientation
angle α. F can be normalized to unity or the image
coordinates calibrated w.r.t. F.

Under the condition yj = 0 (i.e. Zj = Z0, ∆Zj = 0, ∆Zij =
Z0 – Zi = -∆Zi and foj = frα),  equations (12) and (9)
give:
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From equation (13):
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Equation (14) gives the spectral frequency at a point
(xi, yi), on the image plane, as a function of yi, α and
frα (frequency at y = 0).

Equation (8) gives us the numerical  difference
between the two observed frequencies, foi and foj,  as:
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Using the above equation along with (13), gives us:

]
)(tan

tan)(
[]

)(tan

tan)(
[

]
)tan)(tan(

tan)(
[

]
)(tan)(tan

[

,

α
α

α
α

αα
α

αα

α

α

i

ij

oj
j

ij

oi

ij

ij

r

ij
r

oioj
ji

o

yF

yy
f

yF

yy
f

yFyF

yy
Ff

yF

F

yF

F
f

fff

−
−

=
−
−

=

−−
−

=

−
−

−
=

−=∆

(15)

Equations (12) and (15) give the same solution for the
azimuth angle φ = α.  This is given as (for derivation,
see Appendix B):
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Similarly, selecting a pair of points, (xi, yi) and (xj, yi),
on a horizontal axis of the image plane, we obtain the
polar angle θ = β, as:
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Equations (16, 17) gives the solution for the orientation
of the texture surface S, as a function of local spectral
frequency and spatial coordinates of two points
selected on the corresponding axis of the image plane.
The advantage of the proposed method is the separable
analysis in x and y directions which give the polar and
azimuth angles of the surface orientation respectively.

The depth information (up to a scale factor [2, 9], in
the absence of any  additional information) can also
retrieved using the analytical expressions derived so far

(see equations 9-11).  In the next section, we illustrate
the advantage of using wavelet transform in detecting
spectral differences in texture images with
experimentation on simulated data.

4. Wavelet transform for 3-D texture
analysis
Let us consider two 1-D signals obtained by scanning
along the vertical lines of  two texture images, of the
same texture surface with varying posture. The images
are illustrated in Figure 7. The images are simulated as
a superimposition of two pure sinusoidal patterns.
Typical plots (signal I and signal II) of the vertical scan
lines of the pair of images in figure 7, are given in
figure 8.  The corresponding spectral plots are shown
in figure 9, from which it can be observed that it is
difficult to process the texture images using only the
spectral peaks [7, 10, 11]. Hence it is necessary to use
a multi-rate and multi-resolution filter bank to
discriminate these features, rather than the use of a
simple Fourier based analysis.

We suggest the use of wavelet transform for this
purpose. The wavelet plots for the signals in figure 8,
are shown in figure 10 (detail coefficients at level 1 are
not shown, as the values are negligible). Daubechies
10-tap filter [18] with 3 levels of decomposition is used
for this purpose. The wavelet features exhibit  a
distinct difference in the response noticeably at detail
levels 2 and 3, unlike the Fourier spectral features
(compare the pair of plots in figures 9 and 10). The
process of energy computation from the wavelet
coefficients consists of  two steps. The first step
involves mean subtraction, squaring and Gaussian
smoothing. This post-processed signal is illustrated in
figure 11, which is obtained from the 1-D wavelet
coefficients shown in figure 10. The second step
involves computing the variances of the post-processed
signal in figure 10, for each level of decomposition
separately (namely, A3, D3 and D2).

We have observed that the sum of the weighted
(empirically obtained) differences of the variances of
the energy levels in the corresponding bands of the
wavelet decomposition is related to the orientation
angle and depth of the surface, as illustrated in figures
4 and 6. To compute the orientation of the surface,
using equations (16) & (17), the ratio of the observed
frequencies, fo(i,j), is computed using an identical  ratio
of the weighted sums of the variances. Issues of
accuracy and experimentation with real world data are
beyond the scope of this paper.

5. Conclusion
This paper illustrates the advantage of wavelet
transform for discriminating two texture images with
varying orientation (in 3-D). This method is superior
than the  other spectral based methods used in [7, 8, 10,
11, 12 – 17]. The difference of the energy levels in the
decomposition bands, can be used to obtain the
orientation of the texture surface. Expressions relating
the orientation and depth of a texture surface with the
spectral contents of the image texture have been



derived. The spectral variations are less sensitive (and
hence errors are large) when the surface orientation
and image resolution are small . Results are shown
using experimentation with simulated data.

(a) Simulated Texture Image I

(b) Simulated Texture Image II
Figure 7. Two texture images of the same surface with
a difference in only one of the orientation angles.

Appendix A
Using perspective geometry, equation (10):
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From figure 5 we have the relation,
)(cotαijij ZY ∆=∆

Hence from equation (A.1),
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Appendix B
From equation (15), we have
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Figure 8. Intensity profiles along a vertical scan line of the images shown in figure 7.

Figure 9. Plots of the log spectral power for the corresponding 1-D intensity profiles  in figure 8.

Figure 10. Wavelet coefficients (level 3 decomposition) of the corresponding pair of signals shown in figure 8.

Figure 11. Energy features at the corresponding levels derived from the wavelet coefficients


