Wavelet based separable analysis of texture images
for extracting orientation of a planar surface
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Abstract: The objective of this paper is to analyze the
spectral variations of texture spatial frequencies as a
function of orientation and depth of a 3-D planar surface.
Based on this relationship we attempt to derive an
expression for the extraction of 3-D surface orientation
using texture features alone. Using experimentation on
simulated images, we illustrate the advantage of using 1-D
wavelets over Fourier based analysis for this purpose.
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1. Introduction

The problem of obtaining 3-D surface orientation from a
monocular static texture image has received a great of
attention [1,2,7,8,10-16] in the field of computer vision
and pattern recognition. If the surface exhibits a textured
pattern, it is often easy for a human being to extract the
structure information from the image. But the problem is
ill-posed for a machine to solve. This paper presents
analytical expressions using separable 1-D analysis of 2-D
images for extraction of surface orientation of a textured
planar surface.

In this paper we use a model of the viewing geometry
which is similar to that used by Nayar et. al. [4-6] in Curet
database [http://www.cs.columbia.edu/CAVE/curet/], but
different from the one used by Super and Bovik [11],
Ribeiro and Hancock [10] and Leung and Malik [14].
Dana[4] and Nayar [5] however used our proposed model
of the viewing geometry for measurements of surface
reflectance of textured surfaces, based of different viewing
angles and illumination. Other work [3, 17] have
concentrated on visualization of surfaces using 3-D
textures. The work by Malik [14] used density, height and
occlusion to derive the shape from textures. Super and
Bovik [11], Ribeiro and Hancock [10] in their work have
attempted to extract surface orientation using spectral
gradient, peaks and distortion. Most of the earlier work [1,
7, 8, 11, 15, 16] involved an exhaustive numerical search.
The most recent work [10] uses the eigenstructure of an
affine distortion matrix. The advantage with our method
will be the separable analysis in both dimensions of the
image to extract the individual components of the surface
orientation parameters. This will be evident in the next
section, when we present the viewing geometry and derive
the anaytical expressions. Due to separable analysis,
errors in computation of one of the orientation angles will
not effect the other, which is a drawback in the method
suggested in [10]. We then present the need and use of a
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multi-resolution filter (wavelet) for spectral analysis of
texture surfaces to extract the surface orientation.

2. Basic projective textur e equations

Figure 1. shows the viewing geometry and coordinate
system used. Consider a surface element S, containing
asimple sinusoidal texture. This simplicity is assumed
to derive the relationship between spectral features of
the texture pattern in the image space and 3-D surface
properti%k (depth and surface orientation) of S.
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Figure 1. Viewing geometry and coordinate system.

Let N be the surface normal on S. This vedor is
defined using poar and azmuth angles of N w.r.t the
world coordinate system. The aimuth angle @, is the
ange between the vedor N and its projedion, V, on
the horizontal Z,y-Xyy plane. The polar ange, 6 (in the
Zw-Xw plane), is the angle between the vedor V and
Zyy axis, clock-wise looking along the Y -axis from the
origin. This model is dmilar to that used in the
CURET database [1]. The view axis is along the —Zy
axis and F be the focd length of the viewing system,
assuming a pin-hole @mera onfiguration and
perspedive geometry of the viewing setup. The image
plane (2-D) coordinate system is aligned with the Xy-
Y w axis of the world-coordinate system.

Assume asimple sinusoidal texture pattern on a planar
surface with frequency f.. Let the surface S be & a
distance Z,, from the origin. Let the surfaceinclination
be such that either 6 or @is zero and the other be a
non-zero value a. When 6 = 0, we do not have any
locd spedral variations aong the x-axis (horizontal
diredion) of the image plane. Similarly, when ¢ =0,
we do not have any locd spedral variations along the
y-axis (verticd diredion) of the image plane.



When only one of the angles is non-zero (say, @), and
the other non-zero, the locd spedral variations will be
only along one of the principal axis (in this case, y-
axis) of the image plane. Let the frequency content of
the sinusoidal texture on a planar surface at a distance
Zy from the origin and oriented orthogonal to the
viewing diredion, as observed in the image spacebe a
locd spedral pe&k at f,. Let f, be assumed to be known
initially (this constraints will be relaxed later on).
Assume orthogonal projedion initialy, without any
lossof generality. Perspedive projedion and effed of
depth will be considered and incorporated next. If the
surfaceis inclined such that, 8= 0 and ¢@=q, then
the observed frequency peak will bef,’, where

¢ =frseda). (1)
This relation is illustrated in figure 2. Egn. (1) gives
the relation between the observed frequency of the
texture surface ad inclination of the surface w.r.t.

viewing diredion. Thus if 6= 3 and @=q, then the
observed frequency will be,

¢ = fr sed). seqa) 2

Figure 2. (&) A simple sinusoid texture pattern on a
planar surface S, oriented orthogona to the viewing
direction (8= @= 0). (b) The surface is oriented at
@=aand 6= 0. The projection of one period of the
sinusoid is, T' = T cos(a) . Orthogona projection is
assumed and the sinusoidal texture pattern is shown as
adotted curve on the planar surface S.

Let us now observe the effect of depth of the surface
from the viewer on the frequency peak. From figure
3(A), we can write using perspective projection
models, the following equation:

H/Zy = hiF (3)
where H is the time period of the sinusoid on the
object surface, and h (= 1/ f, ) is the observed time
period on the image plane. If the surface is moved
away from the viewer by a distance AZ, then

H/Z' = h/IF 4
whereZ' = Z, + AZ, and h' is the observed time period
of the snusoid under perspective projection.
Combining equations (3) and (4), we have:
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The observed frequency, f,, now is:
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Figure 3. The planar surface S, oriented orthogona to
the viewing diredion, is projeded on the image plane.
(A) Surfaceis at a distance Z, from the amera axd
length of the projeded segment is h. (B) Surfaceis
now at a distance (Z, + AZ) from the aamera and the
length of the projeded segment is h'. F is the focd
length of the aamera and viewing diredion is along the
—Z,, axis.

From equations (2) and (6), we get the locdly observed
frequency f,, of a planar surface & depth (Z, + AZ),
and orientation 8 =3, @=aq, as:

f, = .0+ “2)(sea)(secp)
. ° ()
- 1,(2)(sem)(seh)

where, Z; = Zy + AZ;.

Equation 7 is the basic eguation for the observed
texture frequency in the image plane, depending on the
surface parameters (depth (Z, + AZ;) and arientation
a, B). Theplotin Figure 4, illustrates the nature of the
frequency variation, given in equation (7), where the
normali zed olserved frequency is (fo/f,).

If any texture pattern can be onsidered as a
superpasition of several sinusoids (band-limited), then
al the individual components of the signal will also be
effected in a similar manner as in equation (7). We will
now derive auations which estimate the surface
orientation parameters from the observed frequency f;,
on the image plane. Henceforth, the term ‘frequency’
will mean the observed locd spedral pea of the
texture aound a neighborhood d a point in the image
plane.



3. Estimation of orientation parameters
Observe Figure 5, which shows the perspective
geometry of a planar surface S inclined at an angle
¢=aand 6= 0. Select two points | and J, on the
vertical axis on the image plane, with coordinates (x;,
y;) and (x;, y;) respectively. These may be considered to
be the projections, on the image plane, of points P; and
P, onS.

Normalised Observed Frequency
& B W Ok B OB N OB B

B
500 vy

b =
~500" 100

Orientation Angle

Figure 4. Normalized olserved frequency (fy/f;), in the
image texture pattern, as a function of relative depth
AZ; and arientation angle a.

In equation(7), substituting
have:

¢=aand 6= 0, we

f, = fr(1+%)(se(u), at a point (x;, y;) in the
0
image plane, and

AZ.
fy = fr(1+z—‘)(sea:r), a a point (x;, y;) in the
0
image plane.

Since the polar angle 6 = 0, the spedral gradient along
the horizontal (x) axis of the image is zero. Hence we
look for the variations in spedral values along the
verticd (y) axis of theimage plane. Thisroleis reversed
if @=0and 6= 3. From the &ove two equations, we
can obtain the differencein the observed frequencies as:

. AZ.
AR = f =y = 1, ®
ZO
where, AZij = ZJ' - Z; (: AZJ -NZ; ),
and f,, =f; (seca).

For theratio of the observed frequencies, we have:

f. Z,+AZ  Z AZ,
fo(i _):_J:—J:_]::|_+_] 9)
Dt Z,+0Z, Z, Z
Using perspedive geometry, we write:
Y, Y
AZ;=2Z,-7 = F[—+ -]
Yi ¥ (10)
_ o Y TAY; Y F[yiAYij _YiAyij]
Y, +Ayij Y, yi(yi +Ayij)

where AY;; = Y; - Y; (3-D world space oordinates)
and Ay = y; — Vi (2-D image plane mordinates).

From figure 5, we ca write:
AY; =AZ;(cota)
and with some simplifications, we can derive (see
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Figure 5. Surface S is oriented at an angle g=a. Two
points | and J, selected on the image plane correspond
to points P, and P; on the surface. The viewing axis
intersects the surface at Py, with depth Z,. The image
planeis orthogonal to the view direction, and is viewed
inthefigureasaline.

Appendix A) from equation (10):
AZ; Ay;

= (11)
Z;,  F(cota)-y,
Substituting (11) in (9), we have
f,, =1+ AZ; _ F(cow) —y; +(y; ~¥%)
z F(cota) -,
_F-y(tam) 12
F -y, (tan)

Figure 6 below illustrates the variation in the ratio of
the observed frequencies at two image coordinates Y
and Y; in the image planes as a function of orientation
anglea and image coordinate Y; (= -Y).
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Figure 6. Ratio of the observed frequencies as a
function of orientation angle o and image coordinate.



Equation (12) gives the relation between the ratio, fq j),
of the observed frequencies at two arbitrary points on a
vertical line in the image plane and the orientation
angle a. F can be normalized to unity or the image
coordinates calibrated w.r.t. F.

Under the condition y; = 0 (i.e. Zj = Zo, AZ; = 0, AZ;; =
Zo— Z; = -AZi and fy = f), equations (12) and (9)
give:

f . =_ra="0— 13

o0 " 77 = (13)
From equation (13):
F

f.=f [——— 14

ol ra[F _yl(tana)] ( )

Equation (14) gives the spectral frequency at a point
(i, vi), on the image plane, as a function of y;, a and
fro (frequency at y = 0).

Equation (8) gives us the numerical  difference
between the two observed frequencies, f,; and fy, as:

AT =f —f =f ﬂ

o [0]] ol ra ZO
Using the above equation aong with (13), gives us:
Afoi'j = fOj - f,

o ) P S M
F-y;(tana) F -y (tana)
e Yyena 5
“(F -y, tana)(F -y, tana)
s .[(yj _yi)tana]: ‘¢ (y; —y)tana
*"F -y, (tana) " F -y (tana)

Equations (12) and (15) give the same solution for the
azimuth angle @=a. Thisis given as (for derivation,
see Appendix B):

a:arctanM] = arctanM] (16)

aYj ~ fa Y, oY ~ ¥

Similarly, selecting a pair of points, (x;, y;) and (x;, vi),
on a horizontal axis of the image plane, we obtain the
polar angle 8 =3, as.

ﬁ:arctan[rLf"j - fOi)] :arctan[rL"“"') _])] (17)
o ~ X ot % X%

Equations (16, 17) gives the solution for the orientation
of the texture surface S, as a function of local spectral
frequency and gpatial coordinates of two points
selected on the corresponding axis of the image plane.
The advantage of the proposed method is the separable
anaysisin x and y directions which give the polar and
azimuth angles of the surface orientation respectively.

The depth information (up to a scale factor [2, 9], in
the absence of any additional information) can also
retrieved using the analytical expressions derived so far

(see equations 9-11). In the next section, we illustrate
the advantage of using wavelet transform in detecting
spectral  differences in  texture images with
experimentation on simulated data.

4. Wavelet transform for 3-D texture
analysis

Let us consider two 1-D signals obtained by scanning
aong the vertical lines of two texture images, of the
same texture surface with varying posture. The images
areillustrated in Figure 7. The images are simulated as
a superimposition of two pure sinusoidal patterns.
Typical plots (signa | and signal 1) of the vertical scan
lines of the pair of images in figure 7, are given in
figure 8. The corresponding spectral plots are shown
in figure 9, from which it can be observed that it is
difficult to process the texture images using only the
spectral peaks [7, 10, 11]. Hence it is necessary to use
a multi-rate and multi-resolution filter bank to
discriminate these features, rather than the use of a
simple Fourier based analysis.

We suggest the use of wavelet transform for this
purpose. The wavelet plots for the signals in figure 8,
are shown in figure 10 (detail coefficients at level 1 are
not shown, as the values are negligible). Daubechies
10-tap filter [18] with 3 levels of decomposition is used
for this purpose. The wavelet features exhibit a
distinct difference in the response noticeably at detail
levels 2 and 3, unlike the Fourier spectral features
(compare the pair of plots in figures 9 and 10). The
process of energy computation from the wavelet
coefficients consists of two steps. The first step
involves mean subtraction, squaring and Gaussian
smoothing. This post-processed signal is illustrated in
figure 11, which is obtained from the 1-D wavelet
coefficients shown in figure 10. The second step
involves computing the variances of the post-processed
signa in figure 10, for each level of decomposition
separately (namely, A3, D3 and D2).

We have observed that the sum of the weighted
(empirically obtained) differences of the variances of
the energy levels in the corresponding bands of the
wavelet decomposition is related to the orientation
angle and depth of the surface, asillustrated in figures
4 and 6. To compute the orientation of the surface,
using equations (16) & (17), the ratio of the observed
frequencies, fy;j), is computed using an identical ratio
of the weighted sums of the variances. Issues of
accuracy and experimentation with real world data are
beyond the scope of this paper.

5. Conclusion

This paper illustrates the advantage of wavelet
transform for discriminating two texture images with
varying orientation (in 3-D). This method is superior
than the other spectral based methodsused in[7, 8, 10,
11, 12 — 17]. The difference of the energy levelsin the
decomposition bands, can be used to obtain the
orientation of the texture surface. Expressions relating
the orientation and depth of a texture surface with the
spectral contents of the image texture have been



derived. The spedral variations are less &nsitive (and
hence earors are large) when the surface orientation
and image resolution are small. Results are shown
using experimentation with ssmulated data.

() Simulated Texture Image |

(b) Simulated Texture Image Il
Figure 7. Two texture images of the same surfacewith
adifferencein only one of the orientation angles.

Appendix A
Using perspedive geometry, equation (10):
Y, Y.
AZ;=7,-27 = F[L-—
i % (A.2)
Y, + AY, . AY. —YAy.
=F[ i ij _l]:F[yl ij i le]
Y, tAy; Y, y. (y; +4y;)

From figure 5 we have the relation,

AY; =AZ;(cota)

Hencefrom equation (A.1),

Azij (yi2 Y, Ayij )=Fly, Azij (cota) _YiAyij )]
UsingAy; =y, - Y;, wethenhave:

iz
AZ,(y,y, - Fy, cota) = -FY,Ay, = _F(yT)Ay

ij

Azij —_ Ayij Yi — Ayij
Z, y;y; —Fy,cota Fcota -y,
Appendix B
From equation (15), we have
o .-y )tana
Afgt =1y - fy = foi[(yJ %) 1
F-y(tana)

Thus
tan(a)[ f, (y; = yi)] = Af'[F -y, (tana)]
Hence
Af)'F
fa(y; = y)+y;(fy = f5)
— F( 1:oj - foi)
foy, = fa Y

tan(a) =
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Figure 8. Intensity profiles along a vertical scan line of the images shown in figure 7.
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Figure 9. Plots of the log spectral power for the corresponding 1-D intensity profiles in figure 8.
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Figure 11. Energy features at the corresponding levels derived from the wavelet coefficients



