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Texture Definition

• Purpose of texture analysis:
– To identify different textured and non-

textured regions in an image.
– To classify/segment different texture regions in 

an image.
– To extract boundaries between major texture 

regions.
– To describe the texel unit.
– 3-D shape from texture

Texture: the regular repetition of 
an element or pattern on a surface.

Ref: [Forsyth2003, Raghu95]



Texture Regions & Edges
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Flow-chart of a typical method of texture classification 
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Processing of Texture-like Images
2-D Gabor Filter

A typical Gaussian 
filter with σ=30

A typical Gabor filter with 

σ=30, ω=3.14 and θ=45°
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Gabor filters with different combinations of 
spatial width σ, frequency ω and orientation θ.
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2-D Gabor filter:

1-D Gabor filter:

1-D Gaussian function:

where
σ is the spatial spread
ω is the frequency
θ is the orientation
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Processing of Texture-like Images
1-D Gabor Filter

1-D Gaussian Filter

Odd Component

Even Component

Next >< Prev



Asymmetric 2-D Gaussian function



• K : Scales the magnitude of the 
Gaussian envelop.
• (a, b) : Scale the two axis of the 
Gaussian envelop.
•  θ : (Rotation) angle of the Gaussian 
envelop.
• (x0, y0) : Location of the peak of the 
Gaussian envelop.
• (u0, v0) : Spatial frequencies of the 
sinusoidal carrier in Cartesian
coordinates. It can also be expressed in 
polar coordinates as (F0, ω0).
• P : Phase of the sinusoidal carrier.
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Asymmetrical Gaussian of 128×128 pixels. The parameters are as 
follows: 

x0 = y0 = 0; a = 1/50 pixels; b = 1/40 pixels;  θ = −45 deg.

The real and imaginary parts of a complex Gabor function in 
space domain, with

F0 = sqrt(2)/80 cycles/pixel, ω0 = 45 deg, P = 0 deg.
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Gaussian and 
its integral

Fourier transform 
of the Gaussian

Fourier transform 
of the GABOR ??

Green  – Gaussian; Yellow  - FT of Gaussian



The frequency response of a typical dyadic bank of Gabor filters. 
One center-symmetric pair of lobes in the illustration 

represents each filter. 



Octave bands:   ..(.., 0.0625); (0.0625, 0.125); (0.125, 0.25); (0.25, 0.5); (0.5, 1).

Center frequencies:   …. 0.0938 (3/32); 0.1875 (3/16);  0.375 (3/8); 0.75 (3/4).

[3/32]

Octave bands, 
due to Dyadic 
decomposition

Filter bank 

Read more about –
in wavelets, QMFB
and Q-factor
etc.



Some properties of Gabor filters:

• A tunable bandpass filter

• Similar to a STFT or windowed Fourier transform

• Satisfies the lower-most bound of the time-spectrum resolution 
(uncertainty principle) 

• It’s a multi-scale, multi-resolution filter

• Has selectivity for orientation, spectral bandwidth and spatial 
extent.

• Has response similar to that of the Human visual cortex (first 
few layers of brain cells)

• Used in many applications – texture segmentation; iris, face and 
fingerprint recognition. 
• Computational cost often high, due to the necessity of using a 
large bank of filters (or Gabor jet) in most applications
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Natural Textures Initial Classification Final Classification
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Segmentation using Gabor based features 
of a texture image containing five regions.



SIR-C/X-SAR image 
of Lost City of Ubar  

Classification using 
multispectral information 

Classification using 
multispectral and textural 

information 
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• Filtering methods:
– Discrete Wavelet Transform (DWT)  (Daubechies 8-Taps)  
– Gabor Filter (Bank of 8 Gabor filters)                                             
– Discrete Cosine Transform (DCT) (9 filters)  Ref: [Ng 92]
– Gaussian Markov random field models Ref: [Cesmeli 2001]
– Combination of DWT and Gabor filter           Ref: [Rao 2004]
– Combination of DWT and MRF Ref: [Wang 99]

• Non-linearity:
– Magnitude  (| . |)

• Smoothing:
– Gaussian filter

• Feature vectors:
– Mean (computed in a local window around a pixel)

• Classification:
– Fuzzy-C Means (FCM) (unsupervised classifier)

• Combine Edge and region map
using a CSNN



IIT Madras

VP LAB

Input Image

Segmented map 
before integration

Edge map before 
integration 

Segmented map 
and Edge map 
after integration

Results
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GLCM based texture feature (statistical)

The Grey Level Co-occurrence Matrix, GLCM 
(also called the Grey Tone Spatial Dependency Matrix)

The GLCM is a tabulation of how often different 
combinations of pixel brightness values (grey levels) occur
in an image. 

The GLCM is usually defined for a series of "second 
order" texture calculations. 

Second order means they consider the relationship 
between groups of two pixels in the original image. 

First order texture measures are statistics calculated 
from the original image values, like variance, and do not 
consider pixel relationships. Third and higher order textures 
(considering the relationships among three or more pixels) 
are theoretically possible but not implemented due to 
calculation time and interpretation difficulty.



Spatial relationship 
between two pixels: 

GLCM texture considers the relation between two 
pixels at a time, called the reference and the neighbour 
pixel. Let, the neighbour pixel is chosen to be the one to the 
east (right) of each reference pixel. This can also be 
expressed as a (1,0) relation:  (i, j) -> (i+1, j).

Each pixel within the window becomes the reference 
pixel in turn, starting in the upper left corner and proceeding 
to the lower right.
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(-1,0) relation:  (i, j) -> (i-1, j).
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Symmetrical (1,0) GLCM Expressing the GLCM 
as a probability: 

This is the number of times 
this outcome occurs, divided by the 
total number of possible outcomes.

This process is called 
normalizing the matrix. 
Normalization  involves dividing 
by the sum of values.
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Find,
(1,0), South GLCM (solve it):

Any reason for
Diagonal dominance ?
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