Problem Set 7

1. Write a menu-driven program to implement the following functionality.
2. Enter a new char string
3. Print the string
4. Find length of the string
5. Reverse the string
6. Check if the string is a palindrome
7. Count number of times letter 'e' appears in the string
8. Print a histogram of all characters in the string (Problem 7 in Problem Set 6)
9. Exit the program
10. Write a program to read two strings s1 and s2, and print how many times s2 appears in s1. For instance, if the inputs are abracadabra and ab, the output should be 2 ; if the inputs are abababab and $a b a$, the output should be 3 .
11. Write a program to read two integer arrays a1 and a2 which are already sorted in ascending order, and create a third sorted array a3. For instance, if a1 is $\{1,3,5,7,8\}$ and a 2 is $\{4,4,8\}$, the output should be $\{1,3,4,4,5,7,8,8\}$.
12. What is the output of the following program?
```
#include <stdio.h>
#define _[]
#define _- "Code Obfuscation.\n"
#define _p printf
#define p_const
#define _p_ char
int main() {
    p__p_p_=__;
    _p(p);
}
```

5. Similar to Problem 1 above, create a menu-driven program to (i) read $\mathrm{N}^{*} \mathrm{~N}$ matrix of integers, (ii) print the matrix, (iii) square the matrix, (iv) find determinant of the matrix, (v) compute matrix-raised-to- k where k is read as an integer input, (vi) check if the matrix is lower-triangular, (vii) check if the matrix is diagonal, (viii) exit.
6. Read, store and print information about students using a 5 -dimensional array. The dimensions are for Department ($0=\mathrm{AE}, 1=\mathrm{BT}, 2=\mathrm{CE}, 3=\mathrm{CS}, 4=\mathrm{EE}, 5=\mathrm{ME}$), Program ($0=\mathrm{BTech}, 1=\mathrm{DD}, 2=\mathrm{MTech}$, $3=\mathrm{MS}, 4=\mathrm{PhD}$), Year (2010-2016), Hostel ($0=$ Cauvery, $1=$ Ganga, $2=$ Godavari, $3=$ Pampa, $4=$ Sarayu, $5=$ Tunga), and FavoriteEatery ($0=$ CCD, $1=$ Gurunath, $2=$ IRCTC, $3=$ Zaitoon, 4=CampusCafe, 5=Himalaya). Thus, read Department, Program, Year, Hostel, FavoriteEatery for each student; store in an array; and in the end, print it for each student.
7. Given a two-dimensional matrix, print all its sentinel elements. We call an element a sentinel if it is the largest in its row but the smallest in its column. For instance, in the following matrix, matrix[3][2], that is, value 9 is the sentinel.
```
5 3 9 17
224116
422109
0}3319
```

8. Create an 8×8 matrix resembling a chessboard. Assume that a knight (the piece that moves two-and-a-half places) is at matrix[0][0]. From any place, a knight can move to at maximum eight other places on the chessboard. Write a program to simulate knight's moves (print matrix after each move). Can you make sure that the knight moves to all the 64 cells without going to a cell twice?

9. A die has six faces with values 1 through 6. Assume you are rolling two dice, and storing the outcome frequency in an integer matrix[6][6]. Thus, if the dice outcome is $(3,6)$, we increment matrix[3-1][6-1]++. Write a program to roll two dice repeatedly 1000 times and note the frequencies in the matrix. In the end, print the matrix. You can use rand() function to generate a random number (see rand() example below).

