Problem Solving
using Files

Rupesh Nasre.



Files allow persistent data.

* Our programs so far were transient.

 Once a.out Is terminated, the data Is lost.

* |[n many applications, data entered one day should
be available on some other day.

* Files make data persistent.

* Across multiple invocations of a.out
* Across multiple executables also (a.out, b.out)

 \We can read data stored In files, or write to It.




File Operations

* fopen: opens a file.

* fclose: closes it.

* fscanf, fgets, fread: Read data from a file.
* fprintf, fputs, fwrite: Write data to a file.

* These operations work with a file pointer.



Problem: Implement cat.

{ If the flle does not exist, or is not readable, fopen returns NULL ;

. cat aIIows prlntlng contents of a file.

FILE*fp fopen(b[l] );
char str[100];

File pointer
automatically
moves ahead.
Same as scanf.

fgets(str, 100, fp);

while (feof(fp)) {
puts(str);
fgets(str, 100, fp);

} Does this miss the last
fclose(fp); linein the file? |

* fgets retains \n in str. Either remove it prior to puts, or print it using printf without extra \n.
* Recall that gets does not include \n.
 Both fgets and gets end the string with \0. 4



Problem: Implement cp.

If the file does not exist, w mode creates a new file.

Use "2" to append to a file.
* Copy afile to another.

|nt main(int a, char *b[]) {
FILE *fpr = fopen(b[1], "I},
FILE *fpw = fopen(b[2], "W");
char str[100];

fgets(str, 100, fpr);

while (feof(fpr)) {
fputs(str, fpw);
fgets(str, 100, fpr);

}

fclose(fpr);

fclose(fpw);



Problem: Implement cp.

. Copy a file to another: from input to output

|nt main(int a. char *bll {

char str[100];

Same as gets fgets(str, 100, stdin);
Ctrl-dis eof while (Ifeof(stdin)) {
Same as puts fputs(str, stdout);

C provides two standard I/O devices:
stdin and stdout.

These are always open (and should
not be closed).

A third one is called stderr, which is
primarily used to print error
messages.

fgets(str, 100, stdin);




'$ mycat file.in
- Lexical analyzer groups a sequence of characters into tokens.
- Syntax analyzer checks if these tokens adhere to a grammar syntax.

$ mysplit file.in file.out
$ mycat file.out

1: Lexical int main(int a, char *b[]) {

o g[‘j‘lﬂ{fser FILE *fpr = fopen(b[1], "1'):
13 FILE *fpw = fopen(b[2], "W");
' 5: sequence char str[100];

- 6: of

7: characters fscanf(fpr, "0s", str);

8: into int lineno = 0;

9: tokens. while (ifeof(fpr)) {

10: Syntax
- 11: analyzer
. 12: checks

fprintf(fpw, "%0d: %s\n", ++lineno, str);
fscanf(fpr, "00s", str);

13:if }

14 these fclose(fpr);
- 15: tokens fclose(fpw);
- 16: adhere }

- 17:to

. 18: a

- 19: grammar



Problem: Join words Into text.

'$ mycat file.out
. Lexical

analyzer

groups

int main(int a, char *b[]) {

©99§‘.@.U.1.4>.09!\?!—‘

a
sequence FILE *fpr = fopen(b[1], "1");
of FILE *fpw = fopen(b[2], "W");
characters char str[100];
into
9: tokens. int lineno;
10: Syntax fscanf(fpr, "%0d: %s", &lineno, str);
E analyzer while ('feof(fpr)) {
- 12: checks - L )
13 if fprintf(fpw, "90s “, str);
14: these it (strstr(str, ".")) fprintf(fpw, "\n");
15: tokens fscanf(fpr, "o %5, &lineno, str);
- 16: adhere }
17:to fclose(fpr);
18:a fclose(fpw);
- 19: grammar ]

- 20: syntax.
$ myjoin file.out file.in

$ mycat file.in
- Lexical analyzer groups a sequence of characters into tokens.
- Syntax analyzer checks if these tokens adhere to a grammar syntax.




Problem: Text correction

* Replace mispelt with misspelt in a file.

* Unlike previous

problems, this demands reading

as well as writing to the same file.

* fopen supports

additional modes.

* r+: Allows reading and writing. Returns NULL if the file
cannot be opened.

* w+: Allows reading and writing, initially erases the file

content.
* After reading, fi

 Thus, after reac

e pointer FP moves ahead.
Ing mispelt, FP needs to go back.



Problem: Text correction

int main(int a, char *b[]) {
FILE *fp = fopen(b[1], "r+"); |
char str[100]; From the current position (relative)
Also supported: SEEK_SET, SEEK_END

fscanf(fp, , Str);
while (feof(fp)) {

if (strcmp(str, ) ==0){
}
fscanf(p, , Str);

}

fclose(fp);

| In general, we can use
~another file for writing.

r+ allows filesize to grow.
| e.9.,if mispeltis the last
| word in the file.




Problem: Student Records

* Read student records from user.
» Store in a file (RAM --> DISK).
* Retrieve records from the file (DI

struct student {
char rollno[9];
char name[20];
char hostel[20];
Int room;

%

After executing
a.out, how many
student's records will
stud.dat contain?

#include "filestud.h"

void writetofile(struct student *stud
FILE *fp = fopen(
fprintf(fp,
stud->rolino, stud->name,
stud->hostel, stud->room);
fclose(fp);
}
void readfromfile() {
FILE *fp = fopen(

fé:llose(fp);

file, we can open itin

To append to an existing
the append mode

--> RAM).

g filestudmain.c
#include "filestud.h"

int main() {
struct student stud;
populate(&stud);
writetofile(&stud);
populate(&stud);
writetofile(&stud);

readfromfile();

11



Application: Ticket Booking System

N seats: 1 to N, initially unoccupied
Booking needs name, assigns an unoccupied seat
Cancellation needs seat number

Update needs seat nhumber, allows change of
name.

12



SN S S S S SS SN SSSAS

Problems

Solve equations, find weighted sum.
Find max, convert marks to grade.
Find weighted sum for all students.

Encrypt and decrypt a secret message.

Our first game: Tic-tac-toe

Making game modular, reuse.

Find Hemachandra/Fibonacci numbers.

Encrypt and decrypt many messages.
Maintain student records.

Search and sort student records.
Reduce memory wastage.

Implement token system in banks.
IRCTC-like ticket booking system

Putting it all together

Tools

Data types, expressions, assignments
Conditionals, logical expressions
Loops

Character arrays

2D arrays

Functions

Recursion

Dynamic memory, pointers
Aggregate data types

Searching and sorting algorithms
Linked lists

Queues

File handling

All the above



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

