CS1111: Problem Solving using Computers

Rupesh Nasre.

Mentor TAs: Returaj, Akshay, Narayana, Sankaranarayanan, Ruheena, Pranshu, Dipanshu, Deepankar, Amit

Placement in Computer Science

- CS1111: Problem Solving and Coding
- CS1200: Proofs, Counting
- CS2200: Computation Theory
- CS2300: Overview of Digital World subject feeding into all the
- CS2600: Hardware
- CS2700: Efficient Implementation
- CS2800: Algorithms
- CS3100: Ways of Programming
- CS3300: Translation (Programmer and Machine)
- CS3500: Resource Management (User and Machine) 2

Learning Outcomes

- Model a given problem computationally.
- Identify a solution to the problem.
- Decompose the solution into a sequence of logical steps.
- Implement the steps in a computer program. implementations
- Solve the problem with the program.
- Iterate through the solution as required.

Our first problem: Make tea.

1.Take tea-powder. // how much?
2.Take sugar.
3.Take milk.
4.Boil together.
// where is it?
// what if I don't have milk?
// for how long?

5.Tea is ready!

Even for intellectuals such as humans, we need more information.
For dumb machines such as computers, we need to be precise.
Programming is about precise understanding;
so precise that even a machine should be able to follow.

Preparation Time: 2 minutes	Print Recipe
Cooking Time: 10 minutes	Cooking Measurements

Serves: 2 servings (2 cups)

Ingredients:

Your laptop is unlikely to be able to make tea. But then ...

1 cup (250 ml) Milk
2 teaspoons Tea Powder
1/4 cup (approx. 60 ml) Water
3 teaspoons Sugar

Directions:

1. Boil water in a saucepan.
2. Add sugar and tea powder in it and boil it for 3-4 minutes on medium flame.
3. Add milk and boil it over medium flame for 6-7 minutes or until bubble starts to rise. You will see the change in color of the tea from milky shade to brown shade when it is ready.
4. Turn off the gas and strain tea in cups.

Is your tea vending machine a computer?
What if it can give you tea, coffee, milk, hot water, ...? How about a calculator?

A computer is programmable.

A vending machine or a calculator are not. They can perform only pre-programmed computation. Then how about your iPads or smart phones?

Week	Problems	Tools
0	Solve equations, find weighted sum.	Data types, expressions, assignments
1	Find max, convert marks to grade.	Conditionals, logical expressions
2	Find weighted sum for all students.	Loops
3	Encrypt and decrypt a secret message.	Character arrays
4	Our first game: Tic-tac-toe	2D arrays
5	Making game modular, reuse.	Functions
6	Find Hemachandra/Fibonacci numbers.	Recursion
7	Encrypt and decrypt many messages.	Dynamic memory, pointers
8	Maintain student records.	Aggregate data types
9	Search and sort student records.	Searching and sorting algorithms
A	Reduce memory wastage.	Linked lists
B	Implement token system in banks.	Queues
C	IRCTC-like ticket booking system	File handling
D	Putting it all together	All the above

Logistics

- Course credits: 3-0-0-3-6-12
- if (date $==$ Nov 9 or date $==$ Nov 16) \{ theoryAt(RJN 102, Wed 14, Thu 15, Fri 8); labAt(CSE DCF, Thu 9);
\} else \{
theoryAt(RJN 102, Wed 11, Thu 15, Fri 8); labAt(CSE DCF, Thu 9);
\}
- We will use replit platform for the labs.

Logistics

- Evaluation
- 30\% Lab + 15\% Q1 + 15\% Q2 + remaining\% EndSem
- Every lab (except the first) is evaluated.
- Attendance: Standard institute rules apply.
- course webpage (slides, codes, information).
- Moodle / Google Group
- Will be used as a communication mechanism.
- Join moodle here.

To get the MOST out of this course

- Keep hands away from WhatsApp.
- Solve questions during classwork.
- Keep a copy with you. Take notes.
- Ask questions (others also haven't understood).
- Do not let a few dominate the discussion.

First Program

```
print "Hello World!"
```

- Unfortunately, this is Tamil for a Bengali person.
- And our mother-tongue is C. So we will have to follow the C syntax.
-Where do you write this program?
- On Linux: text editor, vi, VS code, nano, sublime, ...
- On replit

Hello World!

A line with \# indicates a preprocessor directive (such as \#if, \#pragma, \#define).

Returns an exit code (integer) to the shell.

This is a header file.
(check /usr/include/stdio.h)
() indicate arguments to the function (e.g., $\sin (x))$.

Please allow me to use prints.
int main() \{

Entry function
Print this to the screen when the program is executed.

Block or body of the function in $\{\ldots\}$.

Formatted printing Newline $\begin{aligned} & \text { This semicolon is required. } \\ & \text { End of statement (like a full-stop). }\end{aligned}$

Whitespace can be added freely (almost).
Whitespace means space, tab, newline.

main()\{\}

Smallest C program

A Small Problem

```
#include <stdio.h>
int main() {
    printf("Hello World!In');
}
```

- This English-like program can be understood by humans, but not by machines - such as your laptop.
- Computers understand only 0 and 1.
- How about writing our code in binary?
- Possible, but not very motivating.
- Is it possible to write in C and the machine reads binary?

$c \Rightarrow$ Compiler

Machine code

- We will use a translator!
- On replit and your Linux laptops, the compiler is gcc.

gcc is also a big program written by many people, such as you.
So are firefox, chrome, minesweeper, powerpoint, Windows OS, Android OS, ...

```
#include <stdio.h>
int main() {
    printf("Hello World!ln");
}
#include <stdio.h>
int main() {
    printf("Hello ");
    printf("World!!n');
}
```

\#include <stdio.h>
int main() \{
printf("3*5 = 15ln');
\}
$3 * 5=15$

```
#include <stdio.h>
```

int main() \{
printf("Bye World!!n');
\}
\#include <stdio.h>
int main() \{
printf("Hello "
"World!!n");
\}

```
#include <stdio.h>
int main() {
    printf(3*5);
}
```

Compiler issues a warning, but compiles to a.out. a.out prints

Segmentation fault (core dumped)
\#include <stdio.h>
int main() \{
printf("printf(printf)ln');
\}
\#include <stdio.h>
int main() \{
printf("Hello I
Worldln');
\}

```
#include <stdio.h>
int main() {
    printf(TN's CM);
}
```

Compiler issues a warning and an error.
What does a.out print?

We need to understand printf a little better.

printf

Placeholder for decimal integer.
printf here took two arguments " $3 * 5=\% d \ln$ " and $3 * 5$
The first argument in double-quotes is called a format-string.
This format-string is our bus without people, but with their placeholders.
\#include <stdio.h>
int main() \{ printf("3*5 = \%dln", 3*5);

Placeholders, to be replaced by people.

printf

\#include <stdio.h>

$$
\begin{aligned}
& \text { int } \operatorname{main}()\{ \\
& \text { printf("3*5 }=\% \text { d, a-z are \%d́ letters, } 5 \text { is } 50 \% \% \text { of \%dln", } 3 * 5,26,10 \text {); }
\end{aligned}
$$

3*5 = 15, a-z are 26 letters, 5 is 50\% of 10

Placeholders, to be replaced by people.

There are more format specifiers, which we will study soon.

\#include <stdio.h>

```
int main() {
    printf("3*5 = %d, a-z are %d letters, 5 is 50%% of %d||", 3*5, 26, 10);
}
```

$3 * 5=15, a-z$ are 26 letters, 5 is 50% of 10

- What if there is a mismatch in the number of placeholders and the number of arguments?
- For a correct program, the two should match.
- You can play around with these numbers to know the behavior of the compiler / runtime, but it would not fetch you much w.r.t. the application semantics.
- Why does C have such a cryptic way for simple printin'g?

Classwork: Find outputs.

\#include <stdio.h>

```
int main() {
    printf("3*5 = %d, a-z are %d letters, 5 is 50%% of %d\n", 3*5, 26,10);
}
```

$\left.\begin{array}{|c|l|}\hline \text { Format specifier } & \text { Meaning } \\ \hline \text { \%d } & \text { Decimal integer } \\ \hline \% \mathrm{o} & \text { Octal integer } \\ \hline \% \mathrm{c} & \text { Character } \\ \hline \% \mathrm{f} & \text { Real number } \\ \ldots & \ldots \\ \hline & \\ \hline\end{array}\right\}$ Data types

Why do we need data types?

- Numbers are of different types (number of students vs. height).
- Text vs. numbers vs. roll number
- Academic record vs. bank account transactions
Some of these are provided by C .
Others can be created by us.

printf Format Specifiers

Format specifier	Meaning	C type	Constant	Examples
\%d	Decimal integer	int	99, 0, -1, 600036	Number of books, pincode, number of classes attended
\%o	Octal integer	int	010,071	Same in octal
\%c	Character	char	'a', 'C'	First letter of name, grade in
\%f	Real number	float	-2.345, 1.0e10	Height, PI, percentile

This was output. Does C have a capability to take input? Hello, which course is this?
1111
We want this to be typed by the user.
Hi! Welcome to CS1111. We reed to understand printf a little better.

How does our brain remember?
It stores the information in memory cells. Can we also do the same?
But which cell to access? Hmm... Let's name the cells.

How does our brain remember?
It stores the information in memory cells.
Can we also do the same?
But which cell to access?
Hmm... Let's name the cells.

```
```

printf("Hello, which course is this?
n");

```
```

printf("Hello, which course is this?
n");
What user enters is stored in cell celli.
What user enters is stored in cell celli.
printf("Hi! Welcome to CS%odln", cell1);

```
```

printf("Hi! Welcome to CS%odln", cell1);

```
```

Hello, which course is this?

Where is this cell1 stored?
Inside your computer. But where?
Well, in memory.
We call it random access memory.

int cell1; printf("Hello, which course is this?!n"); scanf("\%d", cell1); printf("Hi! Welcome to CS\%dln", cell1);

```
printf("Hello, which course is this?\n");
```

What user enters is stored in cell cell?
printf("Hi! Welcome to CS\%dln", cell1);
Hello, which course is this?

```
Hello, which course is this?
1 1 1 1
Segmentation fault (core dumped)
```

```
int cell1;
printf("Hello, which course is this?\n");
scanf("%d", cell1);
printf("Hi! Welcome to CS%dln", cell1);
```

printf("Hello, which course is this? \ln ");
What user enters is stored in cell cell.
printf("Hi! Welcome to CS\%dln", cell1);
Hello, which course is this?

Let's compile and run it.

Where is this cell1 stored?
Inside your computer.
But where?
Well, in memory.
We call it random access memory.

A New Problem

- Say you want to get your room/house painted.
- Which of the following whatsapp messages would help a painter reach and paint your house?
- Hi, my house color is white.
- Hi, my house is around 1500 sq ft .
- "Hi, I have \%d members in my house.", 4 the color.
- Hi, my house address is 670, New Nandanvan.

Allows the painter to go and change the color.
In addition, the painter can get the other information also!

Coming back to the old problem

```
int cell1;
printf("Hello, which course is this?\n");
scanf("%d", cell1);
printf("Hi! Welcome to CS%dln", cell1);
```

Informs scanf of the value in cell1, but does not allow scanf to change it.

We need to send address of cell1.
cell1
int cell1;
printf("Hello, which course is this? \ln ");
scanf("\%d", 670, New Nandanvan);
printf("Hi! Welcome to CS\%dln", cell1);

- Hi, my house address is 670, New Nandanvan.

Allows the painter to go and change the color.
In addition, the painter can get the other information also!

Coming back to the old problem

What if I I pass cell1 to scanf?
int cell1; printf("Hello, which course is this? \ln ");
scanf("\%d", cell1); printf("Hi! Welcome to CS\%dln", cell1);
int cell1;
printf("Hello, which course is this?!n"); scanf("\%d", 670, New Nandanvan); printf("Hi! Welcome to CS\%dln", cell1);

Informs scanf of the value in cell1, but does not allow scanf to change it.

We need to send address of cell1.
cell1
???
670, New Nandanvan
cell1
???
670, RAM

Note that printf is interested in the value, and not in changing it.

Coming back to the old problem

int year;
scanf("\%d", \&year); printf("\%s of \%dln", "Summer", year);
short nidiots;
scanf("\%d", \&nidiots); printf("\%d", nidiots); printf(" idiots");
int nstuds;
scanf("\%d", \&nstuds); printf("\%s has \%d studentsln", "CS1111", nstuds);
int age; double height; scanf("\%d", \&age);
printf("age = \%dln", age);
scanf("\%lf", \&height);
printf("height = \%lf ftln", height); printf("weight is $50 \mathrm{~kg} / \mathrm{n} ")$;
int max32;
scanf(" $\%$ x", \&max32); printf("32 1s is \%x in hex 1 and $\%$ o in octalln", max32, max32);

```
float pi;
printf("Value of pi?");
scanf("%f", &pi);
printf("The value of Pl");
printf(" is %f", pi);
```

long int course; scanf("\%ld", \&course); printf("CS\%d is \%s courseln", course, "foundational");
int num;
scanf("\%c", \&c);
scanf("\%d", \&num);
printf("\%cS\%xln", c, num);

Problem: Find age from birth year.

Problem: Find your team number.

Extent the program for full roll number.

```
// create cell for last two digits of roll number
int rollnumber;
// take input from user in cell rollnumber
scanf("%d", &rollnumber);
// create cell for team number
int teamnumber;
// find rollnumber / 10 + 1 and store in teamnumber
teamnumber = ((rollnumber - 1) / 10 + 1);
// output team number
printf("Your team is Team %d\n", teamnumber);
```

Expect last two digits alone.

```
15
Your team is Team 2
78
Your team is Team 8
20
Your team is Team 2
```

Testing helps find bugs.

- Here is your replit team mapping.
- Team 1: Roll numbers CS22B001-10

Given a team number, find the first and the

- Team 2: Roll numbers CS22B011 - 20 last roll numbers in that input team.
- Team 9: Roll numbers CS22B081 -- 90
(assume 90 students)

Problem: Find team members.

As a good programming practice

- Avoid implicit type conversion.
- Avoid constants such as 65.

// create data

char teamid;
int startroll, endroll;
// take input
scanf("\%c", \&teamid)
// find the roll numbels
-haracters are stored as integers.
' A ' is 65 , ' B ' is 66 ,...
(teamid +5) is allowed
in C.
startroll = ((int)teamid - 'A') * 10 + 1;
endroll = startroll +9 ;
// output
printf("\%d to \%dln", startroll, endroll);

```
A
1 to 10
|
81 to 90
C
21 to 30
```

- Here is your replit team mapping.
- Team A: Roll numbers CS22B001 - 10
- Team B: Roll numbers CS22B011 - 20 nubst and the last numbers in that team. (assume 90 students)
- Team I : Roll numbers CS22B081 -- 90

Problem: Find endsem percentage.

endsem = (100 - labs - quizzes);

```
// create data
int labs, quizzes, endsem;
// take input
scanf("%d%d", &labs, &quizzes);
// do computation
endsem = (100 - (labs + quizzes));
// output
printf("Endsem %% is %dln", endsem);
    labs quizzes remaining
    30
int nonendsem;
nonendsem = labs + quizzes;
endsem = 100 - nonendsem;
int remaining;
remaining = 100;
scanf("%d", &labs);
remaining = remaining - labs;
scanf("%d", &quizzes);
remaining = remaining - quizzes;
printf("Endsem %% is %dln", remaining);
```

- 30\% Lab + 15\% Q1 + 15\% Q2 + remaining\% EndSem

Problem: Find sum.

```
int n;
// read n
scanf("%d", &n);
// compute sum
int sum = n * ( n + 1) / 2;
// print sum
printf("Sum of first %d numbers is %d\n", n, sum);
```

$$
\begin{array}{rlrl}
\Sigma \mathrm{n} & =1+2+3+\ldots+\mathrm{n} & \Sigma 2^{\mathrm{i}}=1+2+4+8+\ldots \mathrm{n} \text { terms } \\
& =\mathrm{n}^{*}(\mathrm{n}+1) / 2 & & =2^{\mathrm{n}}-1
\end{array} \begin{aligned}
& \text { Needs pow() functior } \\
& \text { or a loop. } \\
& \text { now }(x) \text { return }
\end{aligned}
$$

Problem: Find probability.

int nCards = 52;
int nKings = 4;
int nSpades = 13;
int nKingAndSpade = 1;
int nNonkingNonspade $=$ nCards -
(nKings + nSpades - nKingAndSpade);
float prob = nNonkingNonspade / nCards; printf("Probability of nonking, nonspade is \%fln", prob);

A card is drawn at random from a deck of well-shuffled cards. Find the probability of it being neither a king nor a spade.

Problem: Find the line.

```
float x1, y1, x2, y2;
scanf("%f%f%f%%f", &x1, &y1, &x2, &y2);
float m = (y2 - y1) / (x2 - x1);
float c = (y1 - m*x1);
printf("Equation of the line is y = %.2fx + %.2fnn", m, c);
printf("Equation of the line is y = %gx + %g\n", m, c);
printf("Equation of the line is y = %.2ex + %.2eln", m, c);
```

3.239 .65

Equation of the line is $y=0.31 x+2.00$
Equation of the line is $y=0.3125 x+2$
Equation of the line is $y=3.12 e-01 x+2.00 e+00$
Given two points on a line, find its equation in $y=m x+c$ format.

Future Connect:
Replacing \&name1 with name1 also works.

Problem: Print tabular.

char name1[20], name2[20], name3[20]; char array or string int m11, m12, m13, m21, m22, m23, m31, m32, m33;
scanf("\%s\%d\%d\%d", \&name1, \&m11, \&m12, \&m13);
scanf("\%s\%d\%d\%d", \&name2, \&m21, \&m22, \&m23);
scanf("\%s\%d\%d\%d", \&name3, \&m31, \&m32, \&m33);
int t1, t2, t3;
$\mathrm{t} 1=\mathrm{m} 11+\mathrm{m} 12+\mathrm{m} 13 ;$

Rajesh	1	43	$43=$	87
SomeshSingh	23	55	$6=$	144
JK	21	21	$21=$	63

$\mathrm{t} 3=\mathrm{m} 31+\mathrm{m} 32+\mathrm{m} 33$;
printf("\%-12s\%5d\%5d\%5d = \%5dln", name1, m11, m12, m13, t1);
printf("\%-12s\%5d\%5d\%5d = \%5dln", name2, m21, m22, m23, t2);
printf("\%-12s\%5d\%5d\%5d = \%5dln", name3, m31, m32, m33, t3);

Read names and marks of three students and print the names and total in a table.

Homework Problem: Number game.

Choose a number from 0..9.
Multiply by 5 .
Add 3 to it.
Double it up.
Choose another number from $0 . .9$ and add to it.
Tell me the number. I will tell you both the chosen numbers.

Computer System

All C Keywords

auto	break	case	char
const	continue	default	do
double	else	enum	extern
float	for	goto	if
int	long	register	return
short	signed	sizeof	static
struct	switch	typedef	union
unsigned	void	volatile	while

Summary

- Hello World!
- Formatted input, output
- Problem Solving with assignments

