Problem Set 4

1. Find the number of times each of the following loops executes.

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=10 ;++\mathrm{i})++ \text { sum; } \\
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<10 ;++\mathrm{i})++ \text { sum; } \\
& \text { for (} \mathrm{i}=\text { ' }^{\prime} \text { '; } \mathrm{i}<={ }^{\prime} \mathrm{j} ' ;++\mathrm{i} \text {) ++sum; } \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<10 ;++\mathrm{i})++ \text { sum; } \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<10 ;++\mathrm{i})++\mathrm{i} \text {; } \\
& \text { for }(\mathrm{i}=-5 ; \mathrm{i}<5 ;++\mathrm{i})++ \text { sum; } \\
& \text { for }(\mathrm{i}=5 ;++\mathrm{i}<-5 ;++\mathrm{i})++ \text { sum; } \\
& \text { for }(\mathrm{i}=5 ; \mathrm{i}<-5 ;-\mathrm{i})++ \text { sum; } \\
& \text { for }(\mathrm{i}=10 ; \mathrm{i}>0 ;-\mathrm{i})++ \text { sum; } \\
& \text { for (} \mathrm{i}=\mathrm{'} 1 \text { '; i }>=\text { ' } 0 \text { '; --i } \text {) ++i; } \\
& \text { for }(i=10 ; i>=0 ;--i)-i \text {; } \\
& \mathrm{i}=0 \text {; while (i) ++sum; } \\
& \mathrm{i}=0 \text {; while }(\mathrm{i}<10)\{++\mathrm{i} ;++ \text { sum; }\} \\
& \text { do }\{\mathrm{i}=0 ;\} \text { while }(++\mathrm{i}<10) \text {; } \\
& \text { do }\{\mathrm{i}=0 ; \mathrm{i}++;\} \text { while }(++\mathrm{i}<1) \text {; }
\end{aligned}
$$

2. Write a program to read integers from user and print their sum in the end. The loop should not accept any input as soon as the sum is $>=100$. For instance, 992 should print 101, and 90423100 should print 199.
3. Write a program to read integers from user and print the sum of only those numbers that are multiples of 10 . For instance, 1221033607033 should print 140 , and 14288323 should print 0 .
4. Write a program to read integers from user and print the sum. The loop should terminate as soon as either -1 is entered or when the sum is $>=100$.
5. Read two positive integers x and y from the user and print the value of x^{y}. Check your answer by printing pow(x, y). Modify the program so it works for negative values of y .
6. Print the following patterns with loops now. Ask for number of characters in the first row from the user.

7. What is the output of the following program? Why?

$$
\begin{aligned}
& \text { \#include }<\text { stdio.h }> \\
& \text { int main() \{ }
\end{aligned}
$$

```
    int z=1;
        int x, y;
        scanf("%d%d", &x, &y);
        do {
        z *= x;
    } while (--y);
    printf("%d\n", z);
}
```

8. Write a program to print all perfect numbers less than $2^{\wedge} 20$. A perfect number is a positive integer that is equal to the sum of its proper divisors. For instance, $6==1+2+3$. If you are interested, read interesting notes at https://en.wikipedia.org/wiki/Perfect number
9. Write a program to find $\mathrm{N}^{\text {th }}$ fibonacci number. First and second fibonacci numbers are 0 and 1 , and each next fibonacci number is computed using the previous two numbers: $\operatorname{fib}(\mathrm{N})=\mathrm{fib}(\mathrm{N}-1)$ and $\operatorname{fib}(\mathrm{N}-$ 2). The fibonacci sequence is $0112358132134 \ldots$
10. Write a program to print N ! (that is factorial of N$) . \mathrm{N}!=\mathrm{N} *(\mathrm{~N}-1) *(\mathrm{~N}-2) * \ldots * 1$.
