Problem Set 12

1. Write programs to create, insert, remove, search elements in a linked list.
2. Implement polynomials using arrays and lists. In case of arrays, $a[i]$ indicates the coefficient of x^{i}. Write a function to add two polynomials. Now implement it with lists, where a node stores both the coefficient and power (e.g., 3 and 5 in $3 x^{5}$). Rewrite addition of polynomials using lists.
3. Find out if a list contains a cycle.
4. Print a list in reverse. Write iterative and recursive versions.
5. Concatenate two lists.
6. Merge two sorted lists.
7. Create a rudimentary memory allocator where you keep track of allocated and free memory using linked list. Support mymalloc and myfree functions.
8. Using the same set of nodes, maintain multiple lists (having pointers nextname, nextrollno, nextroom, etc.). Keep each list sorted based on the appropriate field.
9. Extend your singly list functions (Problem 1 above) to doubly linked list (using a previous pointer). Which of the operations get simplified and which get complicated?
