Problem Set 8

1. Given an $N^{*} N$ matrix filled with zeros and a single 1 somewhere in it, find row-column of the 1 as fast as you can. You can search N^{2} cells of the matrix easily; can you do better?
2. Given two matrices $\mathrm{N} * \mathrm{~N}$, compute a third matrix that is sum of the two matrices.
3. Given two matrices $\mathrm{M}^{*} \mathrm{~N}$ and $\mathrm{N} * \mathrm{~K}$, compute a third matrix that is the multiplication of the two matrices.
4. Using the solution to problem 3 , compute A^{X} where A is an input matrix and X is any positive integer.
5. Given two strings (char arrays), check if their concatenation is a palindrome. For instance, $a b c d c$ and $b a, a b c d c$ and $d c b a$, etc. Use string functions from <string.h> rather than developing your own.
6. Check what grep utility in linux does. It searches for a string in a file - in a way, similar to what google search does on webpages. For instance, grep abc ps86.c prints all the lines in ps86.c file which contain the word $a b c$. Write a program to read a search string and lines of text from the user, and print only those lines (once) that contain the search string.
7. Implement a two-user tic-tac-toe (use a 3×3 matrix).
8. Implement a one-user tic-tac-toe; the other player is your program.
9. Implement a simple calculator. Read an expression from user, and print its output. For instance, $3+5$ -9 should print -1 . Improve it to support * and /. Then, add variable assignments. For instance, $a=$ $12 ; b=a * 2 ; b-a$ should print 12 .
10. Read dimensions (lengthXheight) of four rectangular walls (d1 $\mathrm{Xd} 2, \mathrm{~d} 3 \times \mathrm{d} 4, \mathrm{~d} 5 \mathrm{Xd} 6, \mathrm{~d} 7 \times \mathrm{d} 8$) and check if the walls can form a room. For instance, d2 must match d3 and d5 and d7. That is, all the walls must have the same height. Similarly, opposite walls must have the same length.
