
Problem Set 8

1. Given an N*N matrix filled with zeros and a single 1 somewhere in it, find row-column of the 1 as
fast as you can. You can search N2 cells of the matrix easily; can you do better?

2. Given two matrices N*N, compute a third matrix that is sum of the two matrices.

3. Given two matrices M*N and N*K, compute a third matrix that is the multiplication of the two
matrices.

4. Using the solution to problem 3, compute AX where A is an input matrix and X is any positive
integer.

5. Given two strings (char arrays), check if their concatenation is a palindrome. For instance, abcdc and
ba, abcdc and dcba, etc. Use string functions from <string.h> rather than developing your own.

6. Check what grep utility in linux does. It searches for a string in a file – in a way, similar to what
google search does on webpages. For instance, grep abc ps86.c prints all the lines in ps86.c file which
contain the word abc. Write a program to read a search string and lines of text from the user, and print
only those lines (once) that contain the search string.

7. Implement a two-user tic-tac-toe (use a 3x3 matrix).

8. Implement a one-user tic-tac-toe; the other player is your program.

9. Implement a simple calculator. Read an expression from user, and print its output. For instance, 3 + 5
– 9 should print -1. Improve it to support * and /. Then, add variable assignments. For instance, a =
12; b = a * 2; b – a should print 12.

10. Read dimensions (lengthXheight) of four rectangular walls (d1Xd2, d3Xd4, d5Xd6, d7Xd8) and
check if the walls can form a room. For instance, d2 must match d3 and d5 and d7. That is, all the walls
must have the same height. Similarly, opposite walls must have the same length.

	Problem Set 8

