
OBJECT ORIENTED
PROGRAMMING

OBJECT ORIENTED PROGRAMMING

• A programming “paradigm” introduced to overcome limitations

• Sapir-Whorf Hypothesis: Language in which idea is expressed
directs that nature of thought

• Characteristics of OOP:

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism (Overloading)

2

IMPERATIVE PROGRAMMING

• The “traditional” model of computation

• Describe list of instructions for computer to execute

• Procedural Programming: Division into functions

• Functions have unrestricted access to global data

• Unrelated functions and data are a poor model of the real world

• Complex real world objects have attributes and behaviour

3

OBJECT ORIENTED PROGRAMMING

• See the whole world in the form of objects while designing
modules

• Alan Kay: Why construct whole out of pieces that are useless by
themselves? Build whole out of pieces that are similar at all levels

• Recursive Design: Build program out of little computing agents

4

ABSTRACTION & ENCAPSULATION

• Hide background details and provide essential information

• Bundling data and functions together and hiding them

5

#include<iostream>

class Adder {
public:
Adder(int i=0) {total=i;} //Constructor
void addNum(int num) {total+=num;} //Interface to outside world
int getTotal() {return total;}

private:
int total; //Hidden data to outside world

};

void main() {
Adder a; //Object of class adder
a.addNum(10); a.addNum(20);
cout<<a.getTotal()<<endl;

}

INHERITANCE

• class derivedClass : <access-specifier> baseClass

• Helps in code reusability and faster implementation
6

#include<iostream>

class Shape {
public:
int width, height;
void setWidth(int w){width=w;}
void setHeight(int h){height=h;}

};

class Rectangle {
public:
int width, height;
void setWidth(int w){width=w;}
void setHeight(int h){height=h;}
int getArea() {return width*height;}

};

#include<iostream>

class Shape {
public:
int width, height;
void setWidth(int w){width=w;}
void setHeight(int h){height=h;}

};

class Rectangle : public Shape{
public:
int getArea() {return width*height;}

};

ACCESS SPECIFIERS

Members

• public: Accessible from anywhere

• private: Cannot be accessed from outside the class

• protected: Can be accessed in derived classes

Inheritance

• public: Only public and protected members of base class can be accessed in
derived class

• protected: public and protected members of base class become protected
members of derived class

• private (default): public and protected members of base class become private
members of derived class

7

OVERLOADING

8

#include<iostream>

class Complex {
public:
Complex(double re, double im):real(re),imag(im){};

private:
double real, imag;

};

Complex Complex::operator+(const Complex& other) {
double res_real = real + other.real;
double res_imag = imag + other.imag;
return Complex(res_real, res_imag);

}

void main() {
Complex c1(1,2);
Complex c2(3,4);
Complex c3 = c1 + c2; //Operator overloading

}

void main() {
Complex c1(1,2);
Complex c2(3,4);

//Without op overloading
//Complex c3 = c1.Add(c2);

//Op Overloading
//Complex c3 = c1 + c2;

}

• Precedence, associativity, arity cannot be changed, cannot
redefine meaning of a procedure

FUNCTION OVERLOADING

9

#include<iostream>

class Addition {
public:
int sum(int a, int b) {return a+b;}
int sum(int a, int b, int c) {return a+b+c;}

};

void main() {
Addition a;
cout<<a.sum(10,20);
cout<<a.sum(10,20,30);

}

• The definition of the function must differ from each other by
types and/or the number of arguments

POLYMORPHISM

• Code/operations/objects behave differently in different contexts

• Function overriding: Hierarchy of classes, related by inheritance

10

class Base {
public:
void show() {cout<<“Base class”;}

};

class Derived:public Base {
public:
void show() {cout<<“Derived class”;}

};

void main() {
Base b;
Derived d;
b.show();
d.show();

}

void main() {
Base *b;
Derived d;
b = &d;
b->show();

}

Base class
Derived class

Base class

• Early binding or static
resolution: function show() is
set during compilation of the
program

VIRTUAL FUNCTIONS

11

class Base {
public:
virtual void show() {cout<<“Base class”;}

};

class Derived:public Base {
public:
void show() {cout<<“Derived class”;}

};

void main() {
Base *b;
Derived d;
b = &d;
b->show();

}

Derived class

• Dynamic linkage or late binding: function to
be called is selected based on the kind of
object for which it is called

• Pure virtual function: No meaningful
definition of function in base class
virtual void show() = 0; //pure virtual function

SUMMARY

• OOP is a new way of thinking, not just addition of new features

• Program consists of objects which are an encapsulation of
attributes and behaviour

• Behaviour of an object is dictated by its class

• Inheritance creates class hierarchies which facilitates code
reusability

• Polymorphism: overloading and overriding are powerful concepts

12

REFERENCES

• Wikipedia

• tutorialspoint.com for C++

• http://www.ent.mrt.ac.lk/~ekulasek/c++/lecture7.pdf

• http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info

13

http://tutorialspoint.com
http://www.ent.mrt.ac.lk/~ekulasek/c++/lecture7.pdf
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info

