OBJECT ORIENTED

PROGRAMMING

OBJECT ORIENTED PROGRAMMING

* A programming “paradigm” introduced to overcome limitations

« Sapir-Whorf Hypothesis: Language in which idea is expressed
directs that nature of thought

Characteristics of OOP:
* Abstraction
« Encapsulation
* Inheritance

* Polymorphism (Overloading)

IMPERATIVE PROGRAMMING

The “traditional” model of computation

Describe list of instructions for computer to execute

Procedural Programming: Division into functions

Functions have unrestricted access to global data

Unrelated functions and data are a poor model of the real world

Complex real world objects have attributes and behaviour

OBJECT ORIENTED PROGRAMMING

» See the whole world in the form of objects while designing
modules

» Alan Kay: Why construct whole out of pieces that are useless by
themselves? Build whole out of pieces that are similar at all levels

* Recursive Design: Build program out of little computing agents

ABSTRACTION & ENCAPSULATION

* Hide background details and provide essential information

» Bundling data and functions together and hiding them

#include<iostream>

class Adder {
public:
Adder(int 1=0) {total=1;} //Constructor
void addNum(int num) {total+=num;} //Interface to outside world
int getTotal() {return total;}

private:
int total; //Hidden data to outside world

s

void main() {
Adder a; //0bject of class adder
a.addNum(10); a.addNum(20);
cout<<a.getTotal()<<endl;

}

INHERITANCE

#include<iostream>

class Shape {
public:
int width, height;
void setWidth(int w){width=w;}
void setHeight(int h){height=h;}
s

class Rectangle {
public:
int width, height;
void setWidth(int w){width=w;}
volid setHeight(int h){height=h;}
int getArea() {return width*height;}
{

#include<iostream>

class Shape {
public:
int width, height;
void setWidth(int w){width=w;}
void setHeight(int h){height=h;}
s

class Rectangle :
public:
int getArea() {return width*height;}

public Shape{

i

* class derivedClass : <access-specifier> baseClass

* Helps in code reusability and faster implementation

6

ACCESS SPECIFIERS

Members

* public: Accessible from anywhere

* private: Cannot be accessed from outside the class
* protected: Can be accessed in derived classes

Inheritance

* public: Only public and protected members of base class can be accessed in
derived class

* protected: public and protected members of base class become protected
members of derived class

* private (default): public and protected members of base class become private
members of derived class

OVERLOADING

#include<iostream>

class Complex {
public:
Complex(double re, double im):real(re),imag(im){};
private:
double real, 1imag;

doa

void main() { Complex Complex: :operator+(const Complex& other) {
Complex c1(1,2); double res_real = real + other.real;
Complex c2(3,4); double res_imag = imag + other.imag;
return Complex(res_real, res_imag);
//Without op overloading }
//Complex c3 = cl.Add(c2);
void main() {
//0p Overloading Complex c1(1,2);
//Complex ¢c3 = cl + c2; Complex c2(3,4);
Complex c3 = cl1 + c2; //Operator overloading
ks

* Precedence, associativity, arity cannot be changed, cannot
redefine meaning of a procedure

FUNCTION OVERLOADING

#include<iostream>

class Addition {
public:
int sum(int a, int b) {return a+b;}
int sum(int a, int b, int c) {return a+b+c;}

i

void main() {
Addition a;
cout<<a.sum(10,20);
cout<<a.sum(10,20,30);

}

* The definition of the function must differ from each other by
types and/or the number of arguments

POLYMORPHISM

» Code/operations/objects behave differently in different contexts

* Function overriding: Hierarchy of classes, related by inheritance

class Base {

public:
void show() {cout<<“Base class”;}

=5

class Derived:public Base {

public:
void show() {cout<<“Derived class”;}

I

void mainQ) { void mainQ) { Early binding or static

Base b; Base *b; : : A

b.show(); b = &d; o 2 ,
A horC L s set during compilation of the
; ; program

Base class Base class

Derived class

VIRTUAL FUNCTIONS

§ 3

¥

class Base {

class Derived:public Base {

public:
virtual void show() {cout<<“Base class”;}

public:
void show() {cout<<“Derived class”;}

void main() {
Base *b;
Derived d;
b = &d;
b->show();

Iy

« Dynamic linkage or late binding: function to
be called is selected based on the kind of
object for which it is called

 Pure virtual function: No meaningful

Derived class

definition of function in base class

virtual void show() = 0; //pure virtual function

SUMMARY

OOP is a new way of thinking, not just addition of new features

Program consists of objects which are an encapsulation of
attributes and behaviour

Behaviour of an object is dictated by its class

Inheritance creates class hierarchies which facilitates code
reusability

Polymorphism: overloading and overriding are powerful concepts

REFERENCES

Wikipedia

tutorialspoint.com for C++

http://www.ent.mrt.ac.lk/~ekulasek/c++/lecture7.pdt

http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info

http://tutorialspoint.com
http://www.ent.mrt.ac.lk/~ekulasek/c++/lecture7.pdf
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info

