

Basics Of OOPs

Class

● Classes are the most important feature of C++ that leads
to Object Oriented Programming. Class is a user defined
data type, which holds its own data members and member
functions, which can be accessed and used by creating
instance of that class.

● Class in C++ are similar to structures in C, the only
difference being, class defaults to private access control,
where as structure defaults to public.

● The data and functions within a class are called members
of the class.

C++ Class Definitions

● When you define a class, you define a blueprint for a data
type. This doesn't actually define any data, but it does
define what the class name means, that is, what an object
of the class will consist of and what operations can be
performed on such an object.
class Box {

public: // access attribute of the members

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

Object

● A class provides the blueprints for objects, so basically an
object is created from a class. We declare objects of a
class with exactly the same sort of declaration that we
declare variables of basic types.

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Accessing the Data Members

● The public data members of objects of a class can be
accessed using the direct member access operator (.)

Example Program

#include <iostream>

using namespace std;

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

Contd..

 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

Contd..

 // box 2 specification
 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

// volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 cout << "Volume of Box1 : " << volume <<endl;

Contd..

// volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 cout << "Volume of Box2 : " << volume <<endl;

● Output of the this program will be

Volume of Box1 : 210

Volume of Box2 : 1560

Member Functions

● A member function of a class is a function that has its
definition or its prototype within the class definition like any
other variable.
class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 double getVolume(void); // Returns box volume

};

Contd..

double Box::getVolume(void) {

return length * breadth * height;

}

● A member function will be called using a dot operator (.)
Box myBox; // Create an object

myBox.getVolume(); // Call member function for the object

Access Modifiers

● The access restriction to the class members is specified by
the labeled public, private, and protected sections within
the class body.

● A public member is accessible from anywhere outside the
class but within a program.

● A private member variable or function cannot be accessed,
or even viewed from outside the class. Only the class can
access private members.

Example

class Box {

 public:

 double length;

 void setWidth(double wid);

 double getWidth(void);

 private:

 double width;

};

// Member functions definitions

double Box::getWidth(void) {

 return width ;

}

void Box::setWidth(double wid) {

 width = wid;

}

Contd..

// Main function for the program

int main() {

 Box box;

 // set box length without member function

 box.length = 10.0; // OK: because length is public

 cout << "Length of box : " << box.length <<endl;

 // set box width without member function

 // box.width = 10.0; // Error: because width is private

 box.setWidth(10.0); // Use member function to set it.

 cout << "Width of box : " << box.getWidth() <<endl;

 return 0;

}

Constructor

● Constructor is a special member function of a class that is executed
whenever we create new objects of that class.

class Box {

 Public:

 Box(int, int, int); // This is the constructor

};

Box::Box(int height, int width, int length) {

 // Sets the height, width and length of the Box

}

int main() {

 Box Box1(10,15,20);

 display(Box1);

 return 0;

}

Destructor

● A destructor is a special member function of a class that is
executed whenever an object of it's class goes out of scope or
whenever the delete expression is applied to a pointer to the
object of that class.

class Box {

 Public:

 Box(int, int, int); // This is the constructor

 ~Box(); // This is the destructor

};

Box::~Box() {

 cout << "Object is being deleted" << endl;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

