
Synchronization

Rupesh Nasre.

IIT Madras
January 2024

2

Learning Outcomes

 Data Race, Mutual Exclusion, Deadlocks
 Atomics, Locks, Barriers
 Reduction
 Prefix Sum
 Concurrent List Insertion
 CPU-GPU Synchronization

3

Data Race

● A datarace occurs if all of the following hold:

1. Multiple threads

2. Common memory location

3. At least one write

4. Concurrent execution
● Ways to remove datarace:

1. Execute sequentially

2. Privatization / Data replication

3. Separating reads and writes by a barrier

4. Mutual exclusion

4

Classwork

flag = 1;
while (flag)

;
S1;

flag = 1;
while (flag)

;
S1;

while (!flag)
;

S2;
flag = 0;

while (!flag)
;

S2;
flag = 0;

T1 T2

● Is there a datarace in this code?
● What does the code ensure?
● Can mutual exclusion be generalized for N

threads?

If initially flag == 0, then
S2 executes before S1.

If initially flag == 1, then
S2 executes and after
that S1 may execute or
T1 may hang.

If initially flag == 0, then
S2 executes before S1.
If initially flag == 1, then
S2 executes and after
that S1 may execute or
T1 may hang.

5

Classwork: Grading
● Given roll numbers and marks of 80 students in

GPU Programming, assign grades.
– S = 90, A = 80, B = 70, …, E = 40, and U.
– No W grades (for this classwork).
– Use input arrays and output arrays.

● Compute the histogram.
– Count the number of students with a grade.

6

Let's Compute the Shortest Paths
● You are given an input graph of

India, and you want to compute
the shortest path from Nagpur
to every other city.

● Assume that you are given a
GPU graph library and the
associated routines.

● Each thread operates on a node
and settles distances of the
neighbors (Bellman-Ford style).

aa

cc

bb dd

7
3

4

gg

ff

ee

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist;
} } }

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist;
} } }

What is the error in this code?

7

Synchronization

● Control + data flow
● Atomics
● Barriers
● ...

while (!flag) ;
S1;

while (!flag) ;
S1;

S2;
flag = true;

S2;
flag = true;

Initially, flag == false.

Classwork: Implement mutual
exclusion for two threads.

Classwork: Implement mutual
exclusion for two threads.

Classwork: Can we allow either
S1 or S2 to happen first?

Classwork: Can we allow either
S1 or S2 to happen first?

8

Synchronization

● Control + data flow
● Atomics
● Barriers
● ...

while (!flag) ;
S1;
flag = false;

while (!flag) ;
S1;
flag = false;

while (flag) ;
S2;
flag = true;

while (flag) ;
S2;
flag = true;

Initially, flag could be true or false.

Classwork: Implement mutual
exclusion for two threads.

Classwork: Implement mutual
exclusion for two threads.

Classwork: Can we allow either
S1 or S2 to happen first?

Classwork: Can we allow either
S1 or S2 to happen first?

Assumptions:
● Reading of and writing to flag is atomic (seemingly one step).
● Both the threads execute their codes.
● flag is volatile.

It helps to abstract
this out into an API.

9

Mutual Exclusion: 2 threads

● Let’s implement lock() and unlock() methods.
● The methods should be the same for both the

threads (can have threadid == 0, etc.).
● Should use only control + data flow.

10

Mutual Exclusion: 2 threads

lock:
me = tid;
other = 1 – me;
flag[me] = true;
while (flag[other])

;
unlock():

flag[tid] = false;

lock:
me = tid;
other = 1 – me;
flag[me] = true;
while (flag[other])

;
unlock():

flag[tid] = false;

● Thread ids are 0 and 1.
● Primitive type assignments are atomic.

● Mutual exclusion is
guaranteed (if volatile).

● May lead to deadlock.
● If one thread runs

before the other, all
goes well.

v1v1

11

Mutual Exclusion: 2 threads

lock:
me = tid;
other = 1 – me;
flag[me] = true;
while (flag[other])

;
unlock():

flag[tid] = false;

lock:
me = tid;
other = 1 – me;
flag[me] = true;
while (flag[other])

;
unlock():

flag[tid] = false;

● Thread ids are 0 and 1.
● Primitive type assignments are atomic.

● If flag is not volatile,
then the update (Line 3)
may never reach the
other thread (caching).

● This can lead to both
threads executing CS.

v1v1

12

Mutual Exclusion: 2 threads

volatile int victim;
lock:

me = tid;
victim = me;
while (victim == me)

;
unlock():

victim = me;

volatile int victim;
lock:

me = tid;
victim = me;
while (victim == me)

;
unlock():

victim = me;

● Thread ids are 0 and 1.
● victim needs to be volatile.

● Mutual exclusion is
guaranteed.

● May not guarantee
progress.

● If threads repeatedly
take locks, all goes well.

v2v2

13

Peterson’s Lock v3v3

volatile bool flag[2];
volatile int victim;
lock:

me = tid;
other = 1 – me;
flag[me] = true;
victim = me;
while (flag[other] &&

 victim == me)
;

unlock():
flag[tid] = false;

volatile bool flag[2];
volatile int victim;
lock:

me = tid;
other = 1 – me;
flag[me] = true;
victim = me;
while (flag[other] &&

 victim == me)
;

unlock():
flag[tid] = false;

● Mutual exclusion is
guaranteed.

● Does not lead to
deadlock.

● The algorithm is
starvation-free.

● flag indicates if a thread
is interested.

● victim = me is pehle aap.

What about N threads?What about N threads?

14

Peterson’s Lock

volatile bool flag[2];
volatile int victim;
lock:

me = tid;
other = 1 – me;
flag[me] = true;
victim = me;
while (flag[other] &&

 victim == me)
;

unlock():
flag[tid] = false;

volatile bool flag[2];
volatile int victim;
lock:

me = tid;
other = 1 – me;
flag[me] = true;
victim = me;
while (flag[other] &&

 victim == me)
;

unlock():
flag[tid] = false;

flag[me] = true;
victim = me;
while (flag[other] &&

 victim == me)

victim = me;
flag[me] = true;
while (flag[other] &&

 victim == me)

victim = me;
flag[me] = true;
while (victim == me &&

flag[other])

flag[me] = true;
victim = me;
while (victim == me &&

flag[other])

✓

15

Peterson’s Lock

flag[me] = true;
victim = me;
while (flag[other] &&

 victim == me)

victim = me;
flag[me] = true;
while (flag[other] &&

 victim == me)

victim = me;
flag[me] = true;
while (victim == me &&

flag[other])

flag[me] = true;
victim = me;
while (victim == me &&

flag[other])

✓Thread 0 Thread 1

victim = 1

victim = 0

flag[0] = true

while (flag[1] ...

… enters CS

flag[1] = true

while (flag[0] &&

victim == 1)

… enters CS

✗

✗

✓

T
im

e

16

Bakery Algorithm
● Devised by Lamport
● Works with N threads.
● Maintains FCFS using ever-increasing numbers.

bool flag[N]; // false
int label[N]; // 0

lock: unlock():
me = tid; flag[tid] = false;
flag[me] = true;
label[me] = 1 + max(label);
while (∃k != me: flag[k] &&

 (label[k], k) < (label[me], me))
;

bool flag[N]; // false
int label[N]; // 0

lock: unlock():
me = tid; flag[tid] = false;
flag[me] = true;
label[me] = 1 + max(label);
while (∃k != me: flag[k] &&

 (label[k], k) < (label[me], me))
;

max is not atomic.max is not atomic.

● The code works in absence of caches.
● In presence of caches, mutual exclusion

is not guaranteed.
● There are variants to address the issue.

● The code works in absence of caches.
● In presence of caches, mutual exclusion

is not guaranteed.
● There are variants to address the issue.

17

Bakery Algorithm: GPU?
● Across warps is similar to CPU.
● What happens within warp-threads?
● Threads get the same label, < prioritizes.

bool flag[N]; // false
int label[N]; // 0

lock: unlock():
me = tid; flag[tid] = false;
flag[me] = true;
label[me] = 1 + max(label);
while (∃k != me: flag[k] &&

 (label[k], k) < (label[me], me))
;

bool flag[N]; // false
int label[N]; // 0

lock: unlock():
me = tid; flag[tid] = false;
flag[me] = true;
label[me] = 1 + max(label);
while (∃k != me: flag[k] &&

 (label[k], k) < (label[me], me))
;

max is not atomic.max is not atomic.

18

Bakery Algorithm: GPU?
● Across warps is similar to CPU.
● What happens within warp-threads?
● Threads get the same label, < prioritizes.

● On GPUs, locks are usually prohibited.
● High spinning cost at large scale.
● But locks are feasible!
● Locks can also be implemented using atomics.

19

Synchronization

● Control + data flow
● Atomics
● Barriers
● ...

20

atomics

● Atomics are primitive operations whose effects
are visible either none or fully (never partially).

● Need hardware support.
● Several variants: atomicCAS, atomicMin,

atomicAdd, ...
● Work with both global and shared memory.

21

atomics

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<2, 1>>>(x);

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<2, 1>>>(x);

After dkernel completes,
what is the value of x[0]?

++x[0] is equivalent
to:

Load x[0], R1
Increment R1
Store R1, x[0]

++x[0] is equivalent
to:

Load x[0], R1
Increment R1
Store R1, x[0]

Load x[0], R1 Load x[0], R2

Increment R1 Increment R2

Store R2, x[0]

Store R1, x[0]

Load x[0], R1 Load x[0], R2

Increment R1 Increment R2

Store R2, x[0]

Store R1, x[0]T
im

e

Final value stored in x[0] could be 1 (rather than 2).
What if x[0] is split into multiple instructions? What if there are more threads?

Classwork: What if the kernel
configuration is <<<1, 2>>>?

22

Atomics in ATMs

Twins at ATMs
Twin withdraws 1000 rupees.
System executes the steps:
 Check if balance is >= 1000.
 If yes, reduce balance by

1000 and give cash to the
user.

 Otherwise, issue error.

Twins at ATMs
Twin withdraws 1000 rupees.
System executes the steps:
 Check if balance is >= 1000.
 If yes, reduce balance by

1000 and give cash to the
user.

 Otherwise, issue error.
Load x[0], R1 Load x[0], R2

Increment R1 Increment R2

Store R2, x[0]

Store R1, x[0]

Load x[0], R1 Load x[0], R2

Increment R1 Increment R2

Store R2, x[0]

Store R1, x[0]T
im

e

Twins may be able to
get 2000 rupees!

The balance can be negative!

Twins may be able to
get 2000 rupees!

The balance can be negative!

23

atomics

● Ensure all-or-none behavior.

– e.g., atomicInc(&x[0], ...);

● dkernel<<<K1, K2>>> would ensure x[0] to be
incremented by exactly K1*K2 – irrespective of the
thread execution order.

– When would this effect be visible?

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<2, 1>>>(x);

__global__ void dkernel(int *x) {
++x[0];

}
…
dkernel<<<2, 1>>>(x);

24

Let's Compute the Shortest Paths
● You are given an input graph of

India, and you want to compute
the shortest path from Nagpur to
every other city.

● Assume that you are given a
GPU graph library and the
associated routines.

● Each thread operates on a node
and settles distances of the
neighbors (Bellman-Ford style).

aa

cc

bb dd

7
3

4

gg

ff

ee

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist; atomicMin(&dist[n], altdist);
} } }

__global__ void dsssp(Graph g, unsigned *dist) {
unsigned id = …
for each n in g.allneighbors(id) { // pseudo-code.

unsigned altdist = dist[id] + weight(id, n);
if (altdist < dist[n]) {

dist[n] = altdist; atomicMin(&dist[n], altdist);
} } }

25

AtomicCAS

● Syntax: oldval = atomicCAS(&var, x, y);

● Typical usecases:
● Locks: critical section processing
● Single: Only one arbitrary thread executes the block.
● Other atomic variants

Classwork: Implement lock with atomicCAS.

26

Lock using atomicCAS

Does this work?

 atomicCAS(&lockvar, 0, 1);

Then how about

if (atomicCAS(&lockvar, 0, 1) == 0)
 // critical section

Make the above code blocking.

do {
 old = atomicCAS(&lockvar, 0, 1);
} while (old != 0);

Does not ensure
mutual exclusion.
Does not ensure
mutual exclusion.

Correct code?Correct code?

Does not block
other threads.

Does not block
other threads.

27

Lock using atomicCAS

● The code works on CPU.

● It also works on GPU across warps.

● But it hangs for threads belonging to the same warp.

– When one warp-thread acquires the lock, it waits for other warp-
threads to reach the instruction just after the do-while.

– Other warp-threads await this successful thread in the do-while.

do {
 old = atomicCAS(&lockvar, 0, 1);
} while (old != 0);

Correct code?Correct code?

28

Lock using atomicCAS

do {
 old = atomicCAS(&lockvar, 0, 1);
} while (old != 0);

// critical section

lockvar = 0; // unlock

Classwork: Implement single with atomicCAS.

do {
 old = atomicCAS(&lockvar, 0, 1);
 if (old == 0) {
 // critical section
 lockvar = 0; // unlock
 }
} while (old != 0);

On CPUOn CPU On GPUOn GPU

29

Single using atomicCAS

if (atomicCAS(&lockvar, 0, 1) == 0)
 // single section

Important not to set lockvar to 0 at the end of the single section.

30

What is the output?
#include <stdio.h>
#include <cuda.h>

__global__ void k1(int *gg) {
 int old = atomicCAS(gg, 0, threadIdx.x + 1);
 if (old == 0) {
 printf("Thread %d succeeded 1.\n", threadIdx.x);
 }
 old = atomicCAS(gg, 0, threadIdx.x + 1);
 if (old == 0) {
 printf("Thread %d succeeded 2.\n", threadIdx.x);
 }
 old = atomicCAS(gg, threadIdx.x, -1);
 if (old == threadIdx.x) {
 printf("Thread %d succeeded 3.\n", threadIdx.x);
 }
}
int main() {
 int *gg;
 cudaMalloc(&gg, sizeof(int));
 cudaMemset(&gg, 0, sizeof(int));
 k1<<<2, 32>>>(gg);
 cudaDeviceSynchronize();

 return 0;
}

#include <stdio.h>
#include <cuda.h>

__global__ void k1(int *gg) {
 int old = atomicCAS(gg, 0, threadIdx.x + 1);
 if (old == 0) {
 printf("Thread %d succeeded 1.\n", threadIdx.x);
 }
 old = atomicCAS(gg, 0, threadIdx.x + 1);
 if (old == 0) {
 printf("Thread %d succeeded 2.\n", threadIdx.x);
 }
 old = atomicCAS(gg, threadIdx.x, -1);
 if (old == threadIdx.x) {
 printf("Thread %d succeeded 3.\n", threadIdx.x);
 }
}
int main() {
 int *gg;
 cudaMalloc(&gg, sizeof(int));
 cudaMemset(&gg, 0, sizeof(int));
 k1<<<2, 32>>>(gg);
 cudaDeviceSynchronize();

 return 0;
}

● Some thread out of 64 updates
gg to its threadid+1.

● Warp threads do not execute
atomics together! That is also
done sequentially.

● Irrespective of which thread
executes the first atomicCAS,
no thread would see gg to be 0.
Hence second printf is not
executed at all.

● If gg was updated by some
thread 0..30, then the
corresponding thread with id
1..31 from either of the blocks
would update gg to -1, and
execute the third printf.

● Otherwise, no one would
update gg to -1, and no one
would execute the third printf.

● On most executions, you would
see the output to be that thread
0 would execute the first printf,
and thread 1 would execute the
third printf.

31

Classwork

● Each thread adds elements to a worklist.
● e.g., next set of nodes to be processed in SSSP.
● worklist is implemented as an array.

● Initially, assume that each thread adds exactly
K elements.

● Later, relax the constraint.

atomic-worklist.cu

32

Convolution Filter

● Each output cell contains weighted sum of input data
element and its neighbors. The weights are specified
as a filter (array).

● The idea can be applied in multiple dimensions.

● We will work with 1D convolution and odd filter size.

Source: Prof. Marco Bertini’s slides

1 2 3 4 5 6 7 8

3 4 5 4 3

9 16 25 24 21

22 38 57 76 95 114 106 86

input

filter

filter output

output

1 2 3 4 5 6 7 8

3 4 5 4 3

6 12 20 20 18

1 2 3 76 5 6 7 8

Implement convolution.Implement convolution.convolution.cu

33

Synchronization

● Control + data flow
● Atomics
● Barriers
● ...

34

Barriers

● A barrier is a program point where all threads
need to reach before any thread can proceed.

● End of kernel is an implicit barrier for all GPU
threads (global barrier).

● There is no explicit global barrier supported in
CUDA. grid.sync() is now supported (from CUDA 9).

● Threads in a thread-block can synchronize
using __syncthreads().

● How about barrier within warp-threads?

35

Barriers

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;

 vector[id] = id;

 __syncthreads();

 if (id < vectorsize - 1 && vector[id + 1] != id + 1)

 printf("syncthreads does not work.\n");

}

S1

S2

S1 S1 S1 S1

S2 S2 S2 S2 S1 S1 S1 S1

S2 S2 S2 S2

T
im

e

Thread block

Thread block

36

Barriers
● __syncthreads() is not only about control synchronization, it

also has data synchronization mechanism.
● It performs a memory fence operation.

– A memory fence ensures that the writes from a thread are
made visible to other threads.

– __syncthreads() executes a fence for all the block-threads.
● There is a separate __threadfence_block() instruction also.

Then, there is __threadfence().
● [In general] A fence does not ensure that other thread will read

the updated value.

– This can happen due to caching.

– The other thread needs to use volatile data.
● [In CUDA] a fence applies to both read and write.

37

Classwork

● Write a CUDA kernel to find maximum over a
set of elements, and then let thread 0 print the
value in the same kernel.

● Each thread is given work[id] amount of work.
Find average work per thread and if a thread's
work is above average + K, push extra work to
a worklist.
– This is useful for load-balancing.
– Also called work-donation.

38

Taxonomy of
Synchronization Primitives
Primitive Control-sync Data-sync

__syncthreads Block Block

atomic -- Block for shared
All for global

__threadfence_block -- block

__threadfence -- All

Global barrier All All

while loop Customizable –
(but not useful without
data-synchronization)

volatile -- All

39

Reductions

● Converting a set of values to few values (typically 1)
● Computation must be reducible.

– Must satisfy associativity property (a.(b.c) = (a.b).c).
– Min, Max, Sum, XOR, ...

● Can be often implemented using atomics

– atomicAdd(&sum, a[i]);
– atomicMin(&min, a[i]);
– But adds sequentiality.

● Reductions allow improving parallelism.

– Different from reductions in OpenMP and MPI.

40

Reductions

● Converting a set of values to few values (typically 1)
● Computation must be reducible.

– Must satisfy associativity property (a.(b.c) = (a.b).c).
– Min, Max, Sum, XOR, ...

● Complexity measures
Input: 4 3 9 3 5 7 3 2

 7 12 12 5

19 17

36

barrier
log(n) steps

n numbers

Output:

Classwork: Write the reduction code.

41

Reductions

Input: 4 3 9 3 5 7 3 2

 7 12 12 5

19 17

36

barrier
log(n) steps

n numbers

Output:

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

42

Reductions

Input: 4 3 9 3 5 7 3 2

 9 10 12 5 5 7 3 2

21 15 12 5 5 7 3 2

36 17 12 5 5 7 3 2

n/2 threads

log(n) steps

Output:

...

n numbers

1 thread

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

n must be a
power of 2

n must be a
power of 2

43

Reductions

Write the reduction as:

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 4 3 9 3 5 7 3 2

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[2 * off - threadIdx.x - 1];
 }
 __syncthreads();
 }

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[2 * off - threadIdx.x - 1];
 }
 __syncthreads();
 }

44

Reductions

● Let’s go back to our first diagram.

● This can be implemented as

Input: 4 3 9 3 5 7 3 2

 7 12 12 5

19 17

36

barrier
log(n) steps

n numbers

Output:

Input: 4 3 9 3 5 7 3 2

 7 12 12 5 5 7 3 2

19 17 12 5 5 7 3 2

36 17 12 5 5 7 3 2

n/2 threads

log(n) steps

Output:

...

n numbers

1 thread

Implement this.Implement this.

45

Reductions

● A challenge in the implementation is:
– a[1] is read by thread 0 and written by thread 1.
– This is a data-race.
– Can be resolved by separating R and W.
– This requires another barrier and a temporary.

Input: 4 3 9 3 5 7 3 2

 7 12 12 5 5 7 3 2

19 17 12 5 5 7 3 2

36 17 12 5 5 7 3 2

n/2 threads

log(n) steps

Output:

...

n numbers

1 thread

Homework: Try this out.Homework: Try this out.

46

Classwork

● Assuming each a[i] is a character, find a concatenated
string using reduction.

● String concatenation cannot be done using a[i] and
a[i + n/2], but computing sum was possible; why?

● What other operations can be cast as reductions?

47

Prefix Sum

Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 34 36
OR
Output: 0 4 7 16 19 24 31 34

● Imagine threads wanting to push work-items to
a central worklist.

● Each thread pushes different number of work-
items.

● This can be computed using atomics or prefix
sum (also called as scan).

Classwork: Write the prefix-sum code.

48

Prefix Sum

Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 34 36
OR
Output: 0 4 7 16 19 24 31 34

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 for (int off = n; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

 for (int off = n; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + off];
 }
 __syncthreads();
 }

v1v1

v2v2

This is reduction.

Number of threads
should be initially O(n).

Array index
is incorrect.

49

Prefix Sum

Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 34 36
OR
Output: 0 4 7 16 19 24 31 34

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + (n - off)];
 }
 __syncthreads();
 }

 for (int off = n/2; off; off /= 2) {
 if (threadIdx.x < off) {
 a[threadIdx.x] += a[threadIdx.x + (n - off)];
 }
 __syncthreads();
 }

 for (int off = 0; off < n; off *= 2) {
 if (threadIdx.x > off) {
 a[threadIdx.x] += a[threadIdx.x - off];
 }
 __syncthreads();
 }

 for (int off = 0; off < n; off *= 2) {
 if (threadIdx.x > off) {
 a[threadIdx.x] += a[threadIdx.x - off];
 }
 __syncthreads();
 }

v4v4

v3v3

Smaller indices are
written to

more frequently.

Infinite loop?

50

Prefix Sum

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

Σ(x
0
..x

0
) Σ(x

0
..x

1
) Σ(x

0
..x

2
) Σ(x

0
..x

3
) Σ(x

0
..x

4
) Σ(x

0
..x

5
) Σ(x

0
..x

6
) Σ(x

0
..x

7
)

Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 34 36
OR
Output: 0 4 7 16 19 24 31 34

51

Prefix Sum

x
0

x
1

x
2

Σ(x
0
..x

0
) Σ(x

0
..x

1
) Σ(x

1
..x

2
)

Σ(x
0
..x

0
) Σ(x

0
..x

1
) Σ(x

0
..x

2
)

Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 34 36
OR
Output: 0 4 7 16 19 24 31 34

52

Prefix Sum

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

Σ(x
0
..x

0
) Σ(x

0
..x

1
) Σ(x

0
..x

2
) Σ(x

0
..x

3
) Σ(x

0
..x

4
) Σ(x

0
..x

5
) Σ(x

0
..x

6
) Σ(x

0
..x

7
)

Σ(x
0
..x

0
) Σ(x

0
..x

1
) Σ(x

1
..x

2
) Σ(x

2
..x

3
) Σ(x

3
..x

4
) Σ(x

4
..x

5
) Σ(x

5
..x

6
) Σ(x

6
..x

7
)

It
er

at
io
ns

1
2

3

Σ(x
0
..x

0
) Σ(x

0
..x

1
) Σ(x

0
..x

2
) Σ(x

0
..x

3
) Σ(x

1
..x

4
) Σ(x

2
..x

5
) Σ(x

3
..x

6
) Σ(x

4
..x

7
)

Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 34 36
OR
Output: 0 4 7 16 19 24 31 34

53

Prefix Sum
 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x > off) {
 a[threadIdx.x] += a[threadIdx.x - off];
 }
 __syncthreads();
 }

 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x > off) {
 a[threadIdx.x] += a[threadIdx.x - off];
 }
 __syncthreads();
 }

 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x > off) {
 tmp = a[threadIdx.x – off];

__syncthreads();
a[threadIdx.x] += tmp;

 }
 __syncthreads();
 }

 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x > off) {
 tmp = a[threadIdx.x – off];

__syncthreads();
a[threadIdx.x] += tmp;

 }
 __syncthreads();
 }

Datarace

Separating
R and W
in time

v5v5

v6v6

54

Prefix Sum
 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x >= off) {
 tmp = a[threadIdx.x - off];
 }
 __syncthreads();

 if (threadIdx.x >= off) {
 a[threadIdx.x] += tmp;
 }
 __syncthreads();
 }

 for (int off = 1; off < n; off *= 2) {
 if (threadIdx.x >= off) {
 tmp = a[threadIdx.x - off];
 }
 __syncthreads();

 if (threadIdx.x >= off) {
 a[threadIdx.x] += tmp;
 }
 __syncthreads();
 }

v7v7

Can this be done with single syncthreads()?

55

Prefix Sum with One Barrier
for (int off = 1; off < n; off *= 2) {

if (tid >= off) {
int val = tid % (2 * off);
if (val >= off)

a[tid] += a[tid – val + off - 1];
}
__syncthreads();

}

for (int off = 1; off < n; off *= 2) {
if (tid >= off) {

int val = tid % (2 * off);
if (val >= off)

a[tid] += a[tid – val + off - 1];
}
__syncthreads();

}

__global__ void prefixSum(int *a){
int tid = threadIdx.x; int tmpId = tid; int idx = 0;

 if (tid < N) {
for (int off = 1; off < N; off *= 2) {

 int bit = tmpId & 1;
tmpId = tmpId >> 1;

 if (bit){
 int step = tid / off;
 a[tid] += a[step * off + ((1<<idx) & (1<<idx + 1)) - 1];

 }
 idx += 1;
 __syncthreads();
 } } }

__global__ void prefixSum(int *a){
int tid = threadIdx.x; int tmpId = tid; int idx = 0;

 if (tid < N) {
for (int off = 1; off < N; off *= 2) {

 int bit = tmpId & 1;
tmpId = tmpId >> 1;

 if (bit){
 int step = tid / off;
 a[tid] += a[step * off + ((1<<idx) & (1<<idx + 1)) - 1];

 }
 idx += 1;
 __syncthreads();
 } } }

by Surya

by Prasanna

56
Start offset

Application of Prefix Sum

● Assuming that you have the prefix sum kernel,
insert elements into the worklist.
– Each thread inserts nelem[tid] many elements.
– The order of elements is not important.
– You are forbidden to use atomics.

● Computing cumulative sum
– Histogramming
– Area under the curve
– Fenwick Tree (Binary Indexed Tree)

Input: 4 3 9 3 5 7 3 2

Output: 0 4 7 16 19 24 31 33

nelem

57

Global Barrier

● Barrier across all the GPU threads.
● Useful to store transient data, partial computations,

shared memory usage, etc.
● Can be readily implemented using atomics.
● Can use hierarchical synchronization for efficiency.

– __syncthreads() within each thread block.
– Representative from each block then synchronizes

using atomics.

Classwork: Implement global barrier with atomics.

58

Concurrent Data Structures

● Array
– atomics for index update
– prefix sum for coarse insertion

● Singly linked list
– insertion
– deletion [marking, actual removal]

GG PP PP UU

GG

59

Concurrent Data Structures

GG PP PP UU

GG

struct node {
char item;
struct node *next;

};

struct node {
char item;
struct node *next;

};

G->next = P2;
P1->next = G;

G->next = P2;
P1->next = G;

Ty
pe

 d
ef

in
it

io
n

Se
qu

en
ti

al
 in

se
rt

● In the concurrent setting, the exact order of insertions is not
expected.

● Elements can be inserted in any order.
● So, w.l.o.g. we assume elements being added at the head.

head

Classwork: Write the code
to insert G2 at head. G2->next = head;

head = G2;

G2->next = head;
head = G2;

60

Concurrent Linked List

GG PP PP UU

GG

Solution 1: Keep a lock with the list.
– Coarse-grained synchronization
– Low concurrency / sequential access
– Easy to implement
– Easy to argue about correctness

head

61

Concurrent Linked List

GG PP PP UU

GG

Solution 2: Keep a lock with each node.
– Fine-grained synchronization
– Better concurrency
– Moderately difficult to implement,

need to finalize the supported operations
– Difficult to argue about correctness

when multiple nodes are involved

Classwork: Implement
insert().

Classwork: Implement
insert().

Classwork: Check if
two concurrent
inserts work.

Classwork: Check if
two concurrent
inserts work.

head

62

Concurrent Linked List

GG PP PP UU

GG

void insert(Node *naya) {
head→lock();
naya next = head;→
head = naya;
head→unlock();

}

void insert(Node *naya) {
head→lock();
naya next = head;→
head = naya;
head→unlock();

}

HH T2

T1

Danger

void insert(Node *naya) {
ptr = head;
ptr→lock();
naya next = head;→
head = naya;
ptr→unlock();

}

void insert(Node *naya) {
ptr = head;
ptr→lock();
naya next = head;→
head = naya;
ptr→unlock();

}

head changes. By the time, ptr→lock happens,
head may have changed!

Danger

63

Concurrent Linked List

GG PP PP UU

GG

void insert(Node *naya) {
head→lock();
ptr = head;
naya next = head;→
head = naya;
ptr→unlock();

}

void insert(Node *naya) {
head→lock();
ptr = head;
naya next = head;→
head = naya;
ptr→unlock();

}

HH T2

T1

void insert(Node *naya) {
ptr = head;
ptr→lock();
naya next = head;→
head = naya;
ptr→unlock();

}

void insert(Node *naya) {
ptr = head;
ptr→lock();
naya next = head;→
head = naya;
ptr→unlock();

}

By the time, ptr→lock happens,
head may have changed!

Danger

Classwork: Implement this
with atomics.

Lock head first, then copy.

64

Concurrent Linked List

GG PP PP UU

GG

void insert(Node *naya) {
head→lock();
ptr = head;
naya next = head;→
head = naya;
ptr→unlock();

}

void insert(Node *naya) {
head→lock();
ptr = head;
naya next = head;→
head = naya;
ptr→unlock();

}

HH T2

T1

void insert(Node *naya) {
head→lock();
naya next = head next;→ →
head next = naya;→
head→unlock();

}

void insert(Node *naya) {
head→lock();
naya next = head next;→ →
head next = naya;→
head→unlock();

}

Insert naya as the second node.

Classwork: Implement this
with atomics.

Lock head first, then copy.
(It is important to reload head in
head→lock.)

Source: linkedlist-add.cu

65

CPU-GPU Synchronization

● While GPU is busy doing work, CPU may
perform useful work.

● If CPU-GPU collaborate, they require
synchronization.

Classwork: Implement
a functionality to print sequence 0..10.

CPU prints even numbers,
GPU prints odd.

Classwork: Implement
a functionality to print sequence 0..10.

CPU prints even numbers,
GPU prints odd.

66

CPU-GPU Synchronization
#include <cuda.h>
#include <stdio.h>

__global__ void printk(int *counter) {
 ++*counter; // in general, this can be arbitrary processing
 printf("\t%d\n", *counter);
}
int main() {
 int hcounter = 0, *counter;

 cudaMalloc(&counter, sizeof(int));

 do {
 printf("%d\n", hcounter);
 cudaMemcpy(counter, &hcounter, sizeof(int), cudaMemcpyHostToDevice);
 printk <<<1, 1>>>(counter);
 cudaMemcpy(&hcounter, counter, sizeof(int), cudaMemcpyDeviceToHost);
 } while (++hcounter < 10); // in general, this can be arbitrary processing

 return 0;
}

#include <cuda.h>
#include <stdio.h>

__global__ void printk(int *counter) {
 ++*counter; // in general, this can be arbitrary processing
 printf("\t%d\n", *counter);
}
int main() {
 int hcounter = 0, *counter;

 cudaMalloc(&counter, sizeof(int));

 do {
 printf("%d\n", hcounter);
 cudaMemcpy(counter, &hcounter, sizeof(int), cudaMemcpyHostToDevice);
 printk <<<1, 1>>>(counter);
 cudaMemcpy(&hcounter, counter, sizeof(int), cudaMemcpyDeviceToHost);
 } while (++hcounter < 10); // in general, this can be arbitrary processing

 return 0;
}

67

Pinned Memory

● Typically, memories are pageable (swappable).
● CUDA allows to make host memory pinned.
● CUDA allows direct access to pinned host

memory from device.

● cudaHostAlloc(&pointer, size, 0);

Classwork: Implement
the same functionality to print sequence 0..10.

CPU prints even numbers,
GPU prints odd.

Classwork: Implement
the same functionality to print sequence 0..10.

CPU prints even numbers,
GPU prints odd.

Last parameter is flag.
Memory is initialized to

zero by default.

68

Pinned Memory
#include <cuda.h>
#include <stdio.h>

__global__ void printk(int *counter) {
 ++*counter;
 printf("\t%d\n", *counter);
}
int main() {
 int *counter;

 cudaHostAlloc(&counter, sizeof(int), 0);

 do {
 printf("%d\n", *counter);
 printk <<<1, 1>>>(counter);
 cudaDeviceSynchronize();
 ++*counter;
 } while (*counter < 10);

 cudaFreeHost(counter);
 return 0;
}

#include <cuda.h>
#include <stdio.h>

__global__ void printk(int *counter) {
 ++*counter;
 printf("\t%d\n", *counter);
}
int main() {
 int *counter;

 cudaHostAlloc(&counter, sizeof(int), 0);

 do {
 printf("%d\n", *counter);
 printk <<<1, 1>>>(counter);
 cudaDeviceSynchronize();
 ++*counter;
 } while (*counter < 10);

 cudaFreeHost(counter);
 return 0;
}

No cudaMempcy!

Classwork: Can we avoid
repeated kernel calls?

Classwork: Can we avoid
repeated kernel calls?

69

Persistent Kernels
__global__ void printk(int *counter) {
 do {
 while (*counter % 2 == 0) ; // Line 2
 printf("\t%d\n", *counter); // Line 3
 ++*counter; // Line 4
 } while (*counter < 10); // Line 5
}
int main() {
 int *counter;

 cudaHostAlloc(&counter, sizeof(int), 0);
 printk <<<1, 1>>>(counter);

 do {
 while (*counter % 2 == 1) ;
 printf("%d\n", *counter);
 ++*counter; // Line 1
 } while (*counter < 10); // Line 6

 cudaFreeHost(counter);
 return 0;
}

__global__ void printk(int *counter) {
 do {
 while (*counter % 2 == 0) ; // Line 2
 printf("\t%d\n", *counter); // Line 3
 ++*counter; // Line 4
 } while (*counter < 10); // Line 5
}
int main() {
 int *counter;

 cudaHostAlloc(&counter, sizeof(int), 0);
 printk <<<1, 1>>>(counter);

 do {
 while (*counter % 2 == 1) ;
 printf("%d\n", *counter);
 ++*counter; // Line 1
 } while (*counter < 10); // Line 6

 cudaFreeHost(counter);
 return 0;
}

Is it possible that this program
does not print 10?

Is it possible that this program
does not print 10?

Consider Line 1 (increments to 9)
then Lines 2, 3, 4, 5, then Line 6.

Consider Line 1 (increments to 9)
then Lines 2, 3, 4, 5, then Line 6.

70

Hierarchy of Barriers

● Warp: SIMD
● Block: __syncthreads
● Grid: Global Barrier
● CPU-GPU: cudaDeviceSynchronize

71

Who will use CPU-GPU for printing
odd-even numbers?

● Increment is replaceable by arbitrary computation.
– A matrix needs three computation steps. Each step can

be parallelized on CPU and GPU. The matrix can be
divided accordingly.

– A graph can be partitioned. CPU and GPU compute
shortest paths on different partitions. Their results are
merged. Then iterate similarly.

– …
● Very useful when data does not fit in GPU memory

(e.g., billions of data items, twitter graph, …)
● Useful when CPU prepares data for the next GPU

iteration.

72

Synchronization Patterns

● Common situations that demand the same way
of synchronizing

● Useful in applications from various domains
● Can be optimized, and applied to all
● Can be further optimized by customizing to an

application

73

Barrier-based Synchronization

 Disjoint accesses
 Overlapping accesses
 Benign overlaps

O(e) atomics

O(t) atomics

O(log t) barriers

atomic per element

atomic per thread

prefix-sum

...

Consider threads pushing
elements into a worklist

74

Barrier-based Synchronization

 Disjoint accesses
 Overlapping accesses
 Benign overlaps

...

atomic per element

non-atomic mark

prioritized mark

check

Race
and
resolve

Race
and
resolve

AND

OR
non-atomic mark

check

e.g., for owning cavities in
Delaunay mesh refinement

e.g., for inserting unique
elements into a worklist

Consider threads trying to
own a set of elements

75

Barrier-based Synchronization

 Disjoint accesses
 Overlapping accesses
 Benign overlaps

...

with atomics

without atomics

e.g., level-by-level
breadth-first search

Consider threads updating shared
variables to the same value

76

Exploiting Algebraic Properties

 Monotonicity
 Idempotency
 Associativity

1010

33 44

2 3

tfive tseven

77

33 44

2 3

tfive tseven

55

33 44

2 3

tfive tseven

Atomic-free update Lost-update problem Correction by topology-driven
processing, exploiting monotonicity

Consider threads updating distances in
shortest paths computation

77

Exploiting Algebraic Properties

 Monotonicity
 Idempotency
 Associativity

zz

bb cc

t2 t3

aa dd

t1 t4 zz zz zz zz

worklist zz

pp

qq
rr

t5, t6, t7,t8

Consider threads updating distances in
shortest paths computation

Update by multiple threads Multiple instances of a node
in the worklist

Same node processed by
multiple threads

78

Exploiting Algebraic Properties

 Monotonicity
 Idempotency
 Associativity

zz

bb cc

t2 t3

aa dd

t1 t4
x

y z,v

m,n

x,y,z,v,m,n

Consider threads pushing
information to a node

Associativity helps push
information using prefix-sum

79

Scatter-Gather

O(e) atomics

O(t) atomics

O(log t) barriers

atomic per element

atomic per thread

prefix-sum

...

scatter

gather

Consider threads pushing
elements into a worklist

80

Learning Outcomes

✔ Data Race, Mutual Exclusion, Deadlocks
✔ Atomics, Locks, Barriers
✔ Reduction
✔ Prefix Sum
✔ Concurrent List Insertion
✔ CPU-GPU Synchronization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

