Priority Queues

Rupesh Nasre.

Applications

Ambulance In traffic

Customer buying one chocolate amid others
ouying loads of grocery

Processes in OS
Physically disabled person in lift / bus / aeroplane
JEE admissions

If all priorities are the same, a queue suffices. \
When priorities differ, we need a priority queue.

Priority Queue

Data structure contains <key, value> pairs.

Key is the priority, value is the associated data.

Sometimes, only <key> is inserted.

At any point, an application should be able to retrieve

the element with the maximum priority.

Multiple ways:

Linked list (queue): insert = O(1), findMax = O(N)
Sorted list: insert = O(N), findMax = O(1)

BST: Insert = O(N), findMax = O(1)

AVL: insert = O(log N), findMax = O(1)

Heap: insert = O(log N), findMax = O(1), efficient

Heap

By default, a binary heap.

Structural Property: Complete tree

- Only the last level may not be full

- The last level must have elements pushed to the left
- Has O(log N) height for N elements

Heap Order Property: Child-key < Parent-key
- Assumes unique elements

- Opposite property in MinHeap

NOT implemented using pointers!

Implemented using arrays

MaxHeap Example

=
Ca /5239 6 30 5 11 3 1 29
M/‘\/Q

® 96

@ Stores elements level-wise, left-to-right.

For element at index i
« Parentis present ati/ 2 (floor)
@ e Children are present at 2iand 2i + 1
\A
Elements can be ordered only if one is reachable from the other.

/ ’\ / >\ 7 » Otherwise, they cannot be ordered (e.g., 30 and 5).

< Need to depend upon a fixed array length.
EIRYES

X

MaxHeap ADT

class MaxHeap {
public:
Insert(e);
deleteMax();

IncreaseKey(e);
decreaseKey(e);
remove(e),
buildHeap();

Insert

* |nsert at the first empty leaf.
* Percolate the element upward

£ a insert(40) 4 a N /< S

deleteMax

e Remove the root.

 Percolate the hole down.

TN deIeteMax & \

06 @ @
R &

@@‘@

)

M

/@\@

Classwork

e deleteMax

Classwork

e DeleteMax
- Remove the root.

- Percolate the hole down, and finally replace it with
the last element.

}\ Pl 2

deleteMax x /1@ /12
@a@z>?@@@@ IR

/

1 \ 3 @
j@é@éﬁ
O "

/ 3

Classwork

e DeleteMax
- Remove the root.

- Percolate the hole down, and finally replace it with
the last element.

2 S 9
%

@x@@@ @‘%@Q\@ @.\t@%
@
@

a A C |

© @@@\ b e /@\ /Q
3 Q@ @ @@ 3

Other Operations

* IncreaseKey, decreaseKey

* remove
* build

- N elements with max-height as log N leads to the
complexity of O(N log N)

- Atighter analysis reflects this is O(N).

Heap contains max. 1 node at height h (root), 2 nodes at height (h — 1), 22 nodes at height
(h — 2), 2" nodes at height (h —1).
h
Sum of the heights S=) 2/ (h —i)
i=0
S=h+2Mh-1)+4h-2)+8h-3)+..+2"1(1)
2S=2h+4h-1)+8(h-2)+...2"

2S—-S=-h+2+4+8+ ... +2"h-1+2N
S=(2"**-1)-(h+1). Since h =log N, build takes time O(N).

Applications

Process scheduling: Next lab assignment

—inding kth maximum
- Sort and return kih element: O(N log N)
- Build heap and k deleteMax: O(N + k log N)

h.build(elements, nelements);

for (intii=0; i <k-1; ++ii)
h.deleteMax();

cout << k << "'th largest element is " << h.deleteMax() << endl;

Source: heap-kmax.cpp

How would you find 75" largest element in a 100-element array?

Application: Huffman Coding

Character Frequency Code Code 2 Code 3
e 12.02 0 0 00
t 9.10 1 10 10
a 8.12 00 110 11
o) 7.68 01 1110 010
i 7.31 10 1111 011
0 <\1 o (D1 0//\)\1
0 w/e 1 G) /;/ k\ 0 < é
e . 24 PR S
~ U O e Q o a
Encoding is easy (e.g., eat = 0001). /QA}l /(5 #1>
Decoding is tough (e.g., 0001 = ?). & 0% ;D .
This happens because interior nodes P >

also represent data.
We need data only at the leaves.

° \D Called prefix codes.
We can 001110 easily now.

Application: Huffman Coding

Character Frequency Code Code 2 Code 3
e 12.02 0 0 00
t 9.10 1 10 10
a 8.12 00 110 11
o) /.68 01 1110 010
i 7.31 10 1111 011
-
O/\)\lk
e Characters with smaller depths have shorter codes. 0 (5 . |
« Characters with higher frequencies should be near PN /g
the root. e Y
« Common subcode for characters indicates joint] O><}1
frequency (e.g., 01 indicates both o and i) (oj \D

The above observations give us the algorithm.

Huffman Coding Algorithm

(1) Consider the lowest two frequencies.

(2) Combine to form a new frequency equal to the sum
of the two.

(3) Remove the two frequencies, add the summed
frequency.

(4) Repeat step (1) until a single frequency remains.

 The processing leads to a binary tree (called Huffman Tree).

* Finding the lowest frequency can be nicely done using Heaps.

e Huffman coding is used in compression algorithms (such as
gzip and winzip) and stream formats (such as jpeg and mp3).

Source: heap-huffman.cpp

Heapsort

Given N elements,

build a heap and

then perform N deleteMax,

store each element into an array.

for (int ii = 0; il < nelements; ++ii) {

h.hide_back(h.deleteMax()); " Can we avoid the
} ~ second array?
h.printArray(nelements);

Source: heap-sort.cpp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

