
Dictionaries

Rupesh Nasre.
rupesh@iitm.ac.in

July 2019

22

11 44

66

33 55

88

mailto:rupesh@iitm.ac.in

2

Dictionary Instances

● Binary Search Trees
– Balanced BST

● Hash Tables

3

Definition

● A BST is a binary tree.

● If it is non-empty, the value at the root is larger than any
value in the left-subtree, and

● the value at the root is smaller than any value in the right-
subtree.

● The left and the right subtrees are BSTs.

● Assumption: All values are unique.
22

11 44

66

33 55

8822

11 33

66

44 55

88

Not a BST BST

4

BST ADT

class BST {
...

public:
…
PtrToNode search(DataType element);
PtrToNode findMin();
PtrToNode findMax();
PtrToNode insert(DataType element);
void remove();

};

class BST {
...

public:
…
PtrToNode search(DataType element);
PtrToNode findMin();
PtrToNode findMax();
PtrToNode insert(DataType element);
void remove();

};

5

Search

22

11 44

66

33 55

88
bool Tree::search(DataType data, PtrToNode rr) {
 if (rr == NULL) return false;
 if (data == rr­>data) return true;
 if (data < rr­>data) return search(data, rr­>left);
 return search(data, rr­>right);
}
bool Tree::search(DataType data) {
 bool present = search(data, root);
 if (present)
 std::cout << data << " present." << std::endl;
 else
 std::cout << data << " NOT present." << std::endl;
 return present;
}

bool Tree::search(DataType data, PtrToNode rr) {
 if (rr == NULL) return false;
 if (data == rr­>data) return true;
 if (data < rr­>data) return search(data, rr­>left);
 return search(data, rr­>right);
}
bool Tree::search(DataType data) {
 bool present = search(data, root);
 if (present)
 std::cout << data << " present." << std::endl;
 else
 std::cout << data << " NOT present." << std::endl;
 return present;
}

Switch to bst.cpp.

6

FindMin

22

11 44

66

33 55

88

DataType Tree::findminiterative() {
 PtrToNode ptr = root;
 if (ptr) {
 while (ptr­>left) ptr = ptr­>left;
 return ptr­>data;
 }
 return ­1;
}

DataType Tree::findminiterative() {
 PtrToNode ptr = root;
 if (ptr) {
 while (ptr­>left) ptr = ptr­>left;
 return ptr­>data;
 }
 return ­1;
}

DataType Tree::findmin(PtrToNode rr) {
 if (rr) {
 if (rr­>left) return findmin(rr­>left);
 return rr­>data;
 }
 return ­1;
}
DataType Tree::findmin() {
 return findmin(root);
}

DataType Tree::findmin(PtrToNode rr) {
 if (rr) {
 if (rr­>left) return findmin(rr­>left);
 return rr­>data;
 }
 return ­1;
}
DataType Tree::findmin() {
 return findmin(root);
}

Write iterative
findMax.

7

Insert

22

11 44

66

33 55

88

66 66

88 22

66

88 22

44

66

88

22

44

66

55

88 22

11 44

66

55

88

Insert 6, 8, 2, 4, 5, 1, 3

8

22

11 44

66

33 55

88

Insert 6, 8, 2, 4, 5, 1, 3 Insert 4, 8, 2, 6, 5, 1, 3

22

44

88

66

55

11 33

Insert 1, 2, 3, 4, 5, 6, 8 Insert 8, 6, 5, 4, 3, 2, 1

11

22

33

44

55

66

88

88

66

55

44

33

22

11

Perform
inorder
traversal on
the last BST.

9

Insert
● Insertion order may change the tree structure.

– Different insertion orders may form the same tree.

● Inorder traversal prints the values in exactly the
same order, irrespective of the BST structure.
– This is also the sorted order.

● The first insertion forms the root.
● Insertions always happen at leaves.

– New node cannot be added as an intermediate node.

● Insertion order decides the tree height.
– Tree height affects efficiency/complexity of operations.

10

Insertion Orders

● For this BST, find three different insertion
orders.
– 4, 2, 8, 1, 3, 6, 5

– 4, 8, 2, 6, 1, 3, 5

– 4, 2, 1, 3, 8, 6, 5

– ...

22

44

88

66

55

11 33

11

Remove(value)

● Search for the node n to be removed.
● If n is a leaf, remove n from its parent.
● If n has one child c, make c the child of n’s parent.
● If n has two children, scratch your head.

22

44

88

66

55

11 33

22

44

88

66

55

11

22

44

66

55

11

Remove(3) Remove(8) Remove(4)

12

Remove(value)

● We would like to convert this complicated remove
into another simpler remove.
– That is, convert this case of two children into a case of

one child or zero children.

– For instance, remove(4) can be converted to remove(5)
or remove(6) or remove(2) or remove(1).

– Which one would be the best, in general?

● General strategy:
– Copy the smallest value from the

right subtree here.

– Recursively delete that smallest value.

22

44

66

55

11

Remove(4)

13

Guarantees on the smallest value

● If x is the value to be deleted, and y is the
smallest value in its right subtree,
– There are no values in the BST between x and y.

– The node with y value cannot have two children.

– In fact, y cannot have a left child.

– When y replaces x, after removing original y
node, the BST structure is not affected.

– Removal of a node with two children
does not result in further removal of
another node with two children.

22

55

66

55

11

14

Remove(value)

● General strategy:
– Copy the smallest value in the

right subtree here.

– Recursively delete that smallest value.

22

44

66

55

11

Remove(4)

22

55

66

55

11

Remove(5)

22

55

6611

15

Remove(value)

22

66

88

44

33

11 55

33

66

88

44

33

11 55

33

66

88

44

11 55

16

Classwork

2020

6060

8787

4444

3131

1010 5252

insert(50) insert(40)

remove(20)

insert(46)remove(31)

2020

6060

8787

4444

3131

1010 5252

5050

2020

6060

8787

4444

3131

1010 5252

50504040

3131

6060

8787

4444

1010 5252

50504040

3131

6060

8787

4444

1010 5252

50504040

4646

4040

6060

8787

4444

1010 5252

5050

4646

17

Time Complexity
● Search

– One may get tempted to conclude it to be O(log n).

– But it is O(tree height), which could be O(n).

● Insert
– Same as that of search.

● Remove
– There may be two remove calls.

– Still the complexity does not change. It is same as
that of search.

● All the complexities improve if the BST is
height-balanced (AVL trees, Splay Trees, red-
black trees, B trees, …).

18

Average Case Analysis

● Let’s calculate the average height of the BST
when elements are inserted in random order.

● Let h(n1) denote height of a node n1.

● Let H(N) denote the sum of the heights of all the
nodes in the N-node BST.

– H(N) = Σ h(i)

● H(N) = H(i) + H(N – i – 1) + N – 1
– For each node in left and right subtrees, height

increases by 1. Hence N – 1.

i=0

N - 1

NN

i
N – i – 1

19

Average Case Analysis

● H(N) = H(i) + H(N – i – 1) + N – 1
● If the trees are random, each subtree height is

equally likely.
● Thus, average value of H(i) and H(N – i – 1) is

 1/N Σ H(j)

● H(N) = N – 1 + 2/N Σ H(j)

NN

i
N – i – 1

N - 1

j = 0

N - 1

j = 0

20

Average Case Analysis

H(N) = N – 1 + 2/N Σ H(j)

N H(N) = N (N – 1) + 2 Σ H(j) ……….. (1)

Replacing N by N – 1

(N-1) H(N-1) = (N-1) (N – 2) + 2 Σ H(j) ...….. (2)

(1) – (2) gives

N H(N) – (N-1) H(N-1) = 2N – 2 + 2H(N-1)

Rearranging and ignoring 2

N H(N) = (N + 1)H(N – 1) + 2N

N - 1

j = 0
N - 1

j = 0

N - 2

j = 0

21

Average Case Analysis
N H(N) = (N + 1)H(N – 1) + 2N

Dividing by N(N+1)

H(N) / (N+1) = H(N-1) / N + 2 / (N + 1) …... (3)

H(N-1) / N = H(N-2) / (N-1) + 2 / N …… (4)

…

H(2) / 3 = H(1) / 2 + 2 / 3 …… (5)

Adding (3), (4), …, (5)

H(N) / (N+1) = H(1) / 2 + 2 Σ 1/i
N + 1

i = 3

22

Average Case Analysis
H(N) / (N + 1) = H(1) / 2 + 2 Σ 1/i

H(N) / (N + 1) = O(log N)

Thus, H(N) = O(N log N)

– This indicates that sum of the heights of the nodes is
O(N log N) in an N-node random BST.

– Thus, average height of each node (in random BST)
is O(log N).

– The worst case is still O(N).

N + 1

i = 3

23

Some Questions?

● What if a BST has duplicates?
● Can a BST node contain strings? Other types?
● Can I store more pointers in a node?

24

Exercises
● Given a binary tree, find out if it is BST.
● Given an insertion sequence, how would you

permute it to achieve the minimum height of the
resultant BST?
– See if your answer has a resemblance with binary

search in a sorted array.

● Count the number of leaves in a BST.
● Print a BST in a level-order (breadth-first)

manner.
● Write a program to print values in a BST in

reverse-sorted order.

25

AVL Trees

● Normal BSTs may have height O(N).
● As long as BST property is satisfied, the BST

can be restructured to maintain O(log N) height.

● Invented by two researchers Georgy Adelson-
Velsky and Evgenii Landis from Russia in 1962.

● Often called height-balanced trees or self-
balancing BSTs.

26

What Doesn’t Work

● Ensure that at the root, the left
and the right subtrees have the
same heights.
– Doesn’t guarantee height balance.

● Ensure the above at every node
in the BST.
– Allows only a few BSTs (number of

nodes 2K - 1)

27

AVL Property

● At every node, the height-difference must not
exceed 1.

Zero level One level Two levels

Three levels

✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ X X X X

...

28

AVL Property

● At every node, the height-difference must not
exceed 1.

● Classwork: Which of these have AVL structure?

✔ X ✔

29

AVL Property

● Classwork: Find the an AVL tree having four
levels and fewest number of nodes.

● Classwork: Find the maximal AVL tree having
four levels (such that addition of any edge
makes it a height-imbalanced BST).

...

Minimum number of nodes in
an h-height AVL tree:
S(h) = S(h-1) + S(h-2) + 1

30

Insertion may violate AVL property
● Originally, the BST is height-balanced.

● Insert(6) violates AVL property

– at node 8

● This is handled using rotations.
– Exploits BST property which allows multiple

structures for the same set of keys.

● Observation: Only nodes along the path from
root to the new node have their subtrees altered.
– Only these nodes may be checked for imbalance.

– This means O(log N) rotations may be required.

– We will show that only 2 rotations are sufficient.

22

55

88

11

33

44 77

66

31

AVL insert

● Four cases:

1.insert into left subtree of left child

2.Insert into right subtree of left child

3.Insert into left subtree of right child

4.Insert into right subtree of right child

Single
rotation

Double
rotation

32

AVL insert: Case 1

● Insert into left subtree of left child
– Before insertion into X, AVL property was satisfied.

– Let k2 be the first node upward with imbalance.

– Height(k2→left) – Height(k2→right) > 1

– k1 continues to be height-balanced.

– Can Y and Z be at the same level?
k2k2

k1k1
ZZ

YY

XX

k2k2

k1k1

ZZYY
XX

X ✔

33

AVL insert: Case 1

● Insert into left subtree of left child
– Original order: X k1 Y k2 Z

– New order: X k1 Y k2 Z

– X moves up one level, Y stays at the same level,
and Z moves down one level.

– k1 and k2 satisfy AVL property.
● In fact, they have subtrees with exactly the same height.

k2k2

k1k1
ZZ

YY

XX

k2k2

k1k1

ZZYY
XX

X ✔

34

AVL insert: Case 1

k2k2

k1k1
ZZ

YY

XX

k2k2

k1k1

ZZYY
XX

X ✔

22

55

88

11

33

44 77

66

RR
22

55

77

11

33

44 66 88

K1 == 7, k2 == 8, X is subtree rooted at 6, Y is empty, Z is empty.

35

AVL insert: Case 4

k2k2

k1k1
ZZ

YY

XX

k2k2

k1k1

ZZ YY
XXLL

X ✔

● Scenario is symmetric to Case 1.
● Case 1 had a right rotation.
● Case 4 needs a left rotation.

36

Example

● Start with an empty AVL tree.
● Insert 3, 2, 1, 4, 5, 6, 7.
● Then insert 16, 15, 14, 13, 12, 11, 10, 8, 9.

33

22

11

RR
22

11 33

44

55

LL

22

11 44

33 55

66

LL
44

22 55

11 33 66

77

LL

44

22 66

11 33 7755

37

Example

● Start with an empty AVL tree.
● Insert 3, 2, 1, 4, 5, 6, 7.
● Then insert 16, 15, 14, 13, 12, 11, 10, 8, 9.

LL

44

22 66

11 33 7755

1616

1515

44

22 66

11 33 161655

151577X
Not a BST, let
alone being AVL

The case is neither Case 1 (left-left)
nor Case 4 (right-right).
It is Case 3 (right-left).

38

Example

● Start with an empty AVL tree.
● Insert 3, 2, 1, 4, 5, 6, 7.
● Then insert 16, 15, 14, 13, 12, 11, 10, 8, 9.

RR

44

22 66

11 33 7755

1616

1515

44

22 66

11 33 7755

1515

1616

LL

44

22 66

11 33 151555

161677

Right-left double rotation

✔

39

Example

● Start with an empty AVL tree.
● Insert 3, 2, 1, 4, 5, 6, 7.
● Then insert 16, 15, 14, 13, 12, 11, 10, 8, 9.

k1k1

k3k3
AA

DD
k2k2

CCBB

RLRL

k2k2

k3k3k1k1

AA BB CC DD

BST Sequence: A k1 B k2 C k3 D

40

Example

● Start with an empty AVL tree.
● Insert 3, 2, 1, 4, 5, 6, 7.
● Then insert 16, 15, 14, 13, 12, 11, 10, 8, 9.

44

22 66

11 33 151555

161677

1414

RLRL

44

22 77

11 33 66 1515

55 1414 1616

1313

LL

77

22

44

11 33

66

1515

55

1414 1616

1313

77

22

44

11 33

66

1515

55

1313 1616

1212

1212

RR

1414

41

Example

● Start with an empty AVL tree.
● Insert 3, 2, 1, 4, 5, 6, 7.
● Then insert 16, 15, 14, 13, 12, 11, 10, 8, 9.

77

22

44

11 33

66

1515

55

1313 1616

1212

RR

1414

1111

77

22

44

11 33

66 1515

55

1313

1616

1212

14141111

1010

RR

77

22

44

11 33

66 1515

55

1313

1616

1111

14141010 1212

42

Example

● Start with an empty AVL tree.
● Insert 3, 2, 1, 4, 5, 6, 7.
● Then insert 16, 15, 14, 13, 12, 11, 10, 8, 9.

LRLR

77

22

44

11 33

66 1515

55

1313

1616

1111

14141010 1212

88

99

77

22

44

11 33

66 1515

55

1313

1616

1111

141499 1212

88 1010

✔

Source: avl.cpp

43

Classwork

● In an empty AVL tree,

insert 4, 10, 1, 2, 5, 7, 3, 6, 8, 9.

44

Deletion in AVL

● Can be implemented lazily (marking).
– Does not maintain AVL property.

● Inverse of insertion, so need to think backwards.
● But rotations would help us rebalance.

– The four rotations can be called as primitives.

– Deletion at internal node starts similar to as in BST.
Gets converted to deletion at the leaf.

● Need to find taller of the two subtrees (left or right).
– We can then rotate that subtree to rebalance.

● Unlike insertion, deletion may need to be repeated
for all the ancestors.

45

Deletion Example

http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Trees/AVL-delete.html

5050

1010

2525

55 1515

3030 8080

2727

7575

6060

5555

11
Delete 80
● Remove the node as in BST.
● Update heights of ancestors upward along the path.
● Find the first (deepest / lowest) imbalanced node x (75).
● Find x’s tallest child y (60). Find y’s tallest child z (55).
● Rotate x, y, z.

5050

1010

2525

55 1515

3030 8080

2727

7575

6060

5555

11

46

Deletion Example

http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Trees/AVL-delete.html

Delete 80
● Remove the node as in BST.
● Update heights of ancestors upward along the path.
● Find the first (deepest / lowest) imbalanced node x (75).
● Find x’s tallest child y (60). Find y’s tallest child z (55).
● Rotate x, y, z.

5050

1010

2525

55 1515

3030 8080

2727

7575

6060

5555

11

5050

1010

2525

55 1515

3030 7575

2727

6060

5555

11 Is this height-balanced?
 - Yes at 60, No at 50.

RR

47

Deletion Example

http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Trees/AVL-delete.html

Delete 80
● Remove the node as in BST.
● Update heights of ancestors upward along the path.
● Find the first (deepest / lowest) imbalanced node x (50).
● Find x’s tallest child y (25). Find y’s tallest child z (10).
● Rotate x, y, z.

5050

1010

2525

55 1515

3030 8080

2727

7575

6060

5555

11

5050

1010

2525

55 1515

3030 7575

2727

6060

5555

11 Is this height-balanced?
 - Yes at 60, No at 50.

RR

48

Deletion Example

http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/Trees/AVL-delete.html

Delete 80
● Remove the node as in BST.
● Update heights of ancestors upward along the path.
● Find the first (deepest / lowest) imbalanced node x (50).
● Find x’s tallest child y (25). Find y’s tallest child z (10).
● Rotate x, y, z.

5050

1010

2525

55 1515

3030 8080

2727

7575

6060

5555

11

5050

1010

2525

55 1515

3030 7575

2727

6060

5555

11

50501010

2525

55 1515 3030

75752727

6060

555511

✔

Classwork: Delete
75, 55, 60, 50, 27.

Source: avl.cpp

Classwork: Delete
75, 55, 60, 50, 27.

Source: avl.cpp

RR RR

49

Splay Trees

● BSTs provide O(N) search.
● AVLs provide O(log N) search.

– Too strict about height-balancing.

– Can be expensive in practice.

● Can we construct a lightweight mechanism?
– Splay Trees provide O(log N) amortized search.

– Splaying is widening of the road at junctions to
improve visibility. In this case, we improve visibility
of accessed nodes.

– The BST need not be height-balanced.

50

Splay Trees

● Worst-case time to find an element is still O(N).
– Amortization: Over a set of M operations, the

execution time is O(M log N).

● This means, a deep node cannot retain its
position after access.
– Else, an adversary can come up with a sequence of

M accesses requiring O(M N) time.

● On an access, the element is pushed to the root.
– This uses a series of rotations.

– In the process, some other nodes also change their
heights (resulting in some balancing).

51

Moving k1 up on search(k1)

k3k3

k4k4

k2k2

k1k1

k5k5

AA

BB CC

DD

EE

FF

k3k3

k4k4

k2k2

k1k1

k5k5

AA BB

CC

DD

EE

FF

LL
k3k3

k4k4

k2k2

k1k1

k5k5

AA BB CC DD

EE

FF

RR RR
k3k3

k4k4k2k2

k1k1

k5k5

AA BB

CC DD

EE

FF

k3k3

k4k4

k2k2

k1k1

k5k5

AA BB

CC DD

EE

FF

52

Moving k1 up on search(k1)

k3k3

k4k4

k2k2

k1k1

k5k5

AA

BB CC

DD

EE

FF

LRRRLRRR
k3k3

k4k4

k2k2 k5k5

AA BB

CC DD

EE

FF

k1k1 What did this move achieve?
● Next access to k1 is fast.
● Next access to k2 is also faster.
● Next accesses to k3, k4, k5 are

slower.
● Overall tree height has reduced.

Let’s play adversarial:
● Construct a left-skewed BST with insertion order N..1.
● Access 1 (traverses N-1 links). Pushes 1 to root.
● Access 2 (traverses N-2 links). Pushes 2 to root.
● Access 3 (traverses N-3 links). Pushes 3 to root.
● …
● Access N (traverses 1 link). Pushes N to root.
● We get the original left-skewed BST. Repeat.

Ω(N2)

53

Splaying

● Splaying on node X
– X must be a non-root; else no splaying is required.

● If X’s parent is the root, rotate X and root.
● Otherwise, X has a parent P and grandparent G.

– Again, four cases.

– Transform each of the cases as on the next slide.

54

Splaying

PP

GG

DD

XX

CC

AA

BB

zig-zagzig-zag
PP

XX

BB

GG

DDAA CC

PP

GG

XX

AA BB

CC

DD zig-zigzig-zig

XX

AA

BB

PP

GG

CC DD

Same as LR

Same as ?

55

Splaying Example: find(k1)

k2k2

k3k3

DD

k1k1

CC

AA

BB

zig-zagzig-zag

k2k2

k1k1

BB

k3k3

DDAA CC

k4k4

k5k5

EE

FF k4k4

k5k5

EE

FF

k3k3

k4k4

DD

k5k5

FFCC EE

k2k2

BBAA

k1k1

56

Splaying on Adversary

Let’s play adversarial:
● Construct a left-skewed BST with insertion order N..1.
● Access 1 (traverses N-1 links). Pushes 1 to root.
● Access 2 (traverses N-2 links). Pushes 2 to root.
● Access 3 (traverses N-3 links). Pushes 3 to root.
● …
● Access N (traverses 1 link). Pushes N to root.
● We get the original left-skewed BST. Repeat.

Ω(N2)

11

22

33

44

55

66

77

find(1)find(1)

57

Splaying on Adversary

Let’s play adversarial:
● Construct a left-skewed BST with insertion order N..1.
● Access 1 (traverses N-1 links). Pushes 1 to root.
● Access 2 (traverses N-2 links). Pushes 2 to root.
● Access 3 (traverses N-3 links). Pushes 3 to root.
● …
● Access N (traverses 1 link). Pushes N to root.
● We get the original left-skewed BST. Repeat.

Ω(N2)

11

22

33

44

55

66

77

find(1)find(1)

11

44

55

66

77

33

22

Notice that no
nodes are as
deep as before.

58

Splaying on Adversary

Let’s play adversarial:
● Construct a left-skewed BST with insertion order N..1.
● Access 1 (traverses N-1 links). Pushes 1 to root.
● Access 2 (traverses N-2 links). Pushes 2 to root.
● Access 3 (traverses N-3 links). Pushes 3 to root.
● …
● Access N (traverses 1 link). Pushes N to root.
● We get the original left-skewed BST. Repeat.

Ω(N2)

11

22

33

44

55

66

77

11

44

55

66

77

33

22

find(1)

11

44

55

33

22

66

77

44

55

33

22

11

66

77

59

Splaying on Adversary
find(2)

44

55

33

22

11

66

77

55

11

22

44

66

77
33

55

11

22

44

66

77
33

60

Splaying Analysis

● Many of you noted that
– Left-skewed may not be the worst-case sequence.

– Height of a node may be above log(N) for every
step in splaying.

● How can we guarantee O(M log N) complexity
for M operations?

● Need to depend upon amortized analysis.
– Will use potential function.

61

Potential Function
● We intelligently guess a potential, and

– Show that it is maintained across operations.

● In case of splaying, since we want an amortized
bound of O(log N) per operation, the potential
function is naturally O(log N).
– This means, potential of the data structure (splay

tree here) increases by at max. O(log N).

● A good potential function:
– Clearly, node height doesn’t help.

– Thus, sum of the node heights also does not help.

– We will use sum of log(S
i
) where S

i
 is the subtree

size rooted at node i.

62

Potential Function

● PF(i) = Σ
i
 R(i) where R(i) = log(S

i
) for node i.

– R(i) is often called the rank of node i.

– Root has a rank of log(N).

– We need to show that PF is bounded for zig-zig and zig-
zag rotations.

– Important: rotation may change heights of many nodes,
but only X, P, G may change their ranks.

PP
GG

DD

XX

CC
AA

BB

zig-zagzig-zag
PP

XX

BB
GG

DDAA CC

PP
GG

XX

AA BB
CC

DD zig-zigzig-zig
XX

AA

BB

PP

GG

CC DD

63

Zig-zag Step’s Analysis

● Let R
i
 be initial rank and R

f
 be the rank after

each step of splaying.
● Cost of only zig-zag = 2
● Potential change =

 R
f
(X) + R

f
(P) + R

f
(G) – (R

i
(X) + R

i
(P) + R

i
(G))

● Now, S
f
(X) = S

i
(G), so R

f
(X) = R

i
(G).

● Also, S
i
(P) >= S

i
(X). Thus, R

i
(P) >= R

i
(X).

PP
GG

DD

XX

CC
AA

BB

zig-zagzig-zag
PP

XX

BB
GG

DDAA CC

64

Zig-zag Step’s Analysis

AT
zig-zag

<= 2 + R
f
(P) + R

f
(G) – 2R

i
(X) ………..(1)

Now, S
f
(P) + S

f
(G) <= S

f
(X).

Hence, log S
f
(P) + log S

f
(G) <= 2 log S

f
(X) – 2

Thus, R
f
(P) + R

f
(G) <= 2R

f
(X) – 2

Substituting in (1)

AT
zig-zag

<= 2R
f
(X) – 2R

i
(X) <= 3R

f
(X) - 3R

i
(X)

PP
GG

DD

XX

CC
AA

BB

zig-zagzig-zag
PP

XX

BB
GG

DDAA CC

65

Zig-zig Step’s Analysis

● Similar to zig-zag, left as a homework.

– R
f
(X) = R

i
(G)

– R
f
(X) >= R

f
(P)

– R
i
(X) <= R

i
(P)

– S
i
(X) + S

f
(G) <= S

f
(X)

PP
GG

XX

AA BB
CC

DD zig-zigzig-zig
XX

AA

BB

PP

GG

CC DD

66

Splaying Analysis

● AT
zig-zag

<= 3R
f
(X) – 3R

i
(X)

– This is for one step of splaying.

– For the next step, R
f
(X) would be the initial rank.

● Summing up across steps:

– Total cost <= 3 R
final

(X) – 3R
initial

(X) + 1 (last 1 for zig)

– But finally, X becomes the root.

– Total cost <= 3 R(root) – 3 R
initial

(X) + 1

– Total cost <= O(log N) (root has a rank of log N)

● Thus, splaying is amortized O(log N).

67

Hash Tables
● Hashtable is also a dictionary.

– Dictionaries map keys to values.

– Hashtables also do the same in a specific way.

● Hashing is indexing elements in a (typically)
fixed length array.

● Element’s pattern (name, bit-pattern, …) is
used for computing the index.

Pavan Monisha Akshat Naveen Krishna

Akshat Krishna Monisha Naveen PavanSorted
Array

Hash
Table

68

Hash Functions

● Identity function: f(x) = x
– simple

– needs space equal to the maximum value of x

– may leave large set of holes

– applicable only to integral keys

● General function
– may use space judiciously

– array size not dependent on the element values

– may result in collisions

– Applicable to arbitrary types

int hashfun(char *key, int H) {
int val = 0;
while (*key) val += *key++;
return val % H;

}

int hashfun(char *key, int H) {
int val = 0;
while (*key) val += *key++;
return val % H;

}

69

Hash Functions

● Various hash functions
– Integral value % H (H is the hash table size)

– Sum of all the characters / bytes

– ExOR of odd-indexed bits

– Integral value / M (similar values in nearby buckets)

– …
● Several hash functions are implemented at

Arash Partow’s webpage.

– Bitwise (! | & ^ << >>)

– Mathematical (+ *)

– Lookup (prime numbers, magic numbers)

https://www.partow.net/programming/hashfunctions/

70

Hash Functions

● Application needs to choose the right functions.
– using last two bits of a pointer’s address

– using % 10 for values with least count of 10

– using % 123456789 for student’s roll-number

– using first character of a name to choose the bucket

– …

● Index values must distribute across the array.
– reduces number of conflicts

– improves overall execution time

● But, hash functions should also be fast.

71

Index Distribution

● For equitable distribution, H is often a prime.
● Consider the following hash function:

– return (key[0] + 27 * key[1] + 729 * key[2]) % H;
● Assumes at least two characters in the key
● Works well for several strings
● Skewed by first three characters
● Skewed if characters are not random

72

A Better Hash Function

● Uses all the characters
● Distributes better
● Exploits Horner’s rule for faster computation
● Is no longer O(1), but proportional to key length.

int hashfun(char *key, int H) {
int val = 0;
while (*key) val = (val << 5) + *key++;
return val % H;

}

int hashfun(char *key, int H) {
int val = 0;
while (*key) val = (val << 5) + *key++;
return val % H;

}

73

Hash Table ADT

struct Hashtable {

 void insert(KeyType key, ElementType value);

 void remove(KeyType key);

 ElementType find(KeyType key);

};

If you get a deja vu feeling by looking at the ADT, don’t worry; that’s natural.

In some applications, value may not be required.

74

Pitfalls

● Prime numbers provide equitable distribution.
● Data distribution does not matter for hashing.
● Hashing is O(1).
● There exists a hash function which works well

across all applications.
● It is always possible to increase the hash table

size to reduce collisions.
● Hash function must contain modulus operator.

75

Collisions

● Without collisions, key need not be stored.
● A good distribution reduces collisions.
● Multiple ways to handle collision:

– Chaining

– Open Addressing (linear probing, quadratic probing,
double hashing)

– Rehashing

76

Chaining

44 1010

3333 00 22 1212

1919

0

H-1

● Allows arbitrary number of elements
● Can be used to cluster elements
● Can use List ADT
● List can actually be replaced by

other data structures such as trees,
or even hash tables!

Source: hash.cpp

77

Chaining: Operations

44 1010

3333 00 22 1212

1919

0

H-1

● Insert: hash, then list insert.
● May have to apply find.

● Remove: hash, then list remove.
● Find: hash, then list search.

78

Load Factor

● Load factor indicates fullness of a
hashtable.

● LF = number of elements inserted / table size

– In our example, LF = 7/7

● In case of chaining, load factor is the
average chain-length.
– Useful for calculating the average

hashtable search complexity.

● Table size should be chosen to have LF
close to 1.
– But LF alone is not the precise measure.

44 1010

3333 00 22 1212

1919

79

Issues with Chaining

● Has low cache efficiency
● Uses pointers (makes code complicated)
● Need to maintain two data structures

Can we maintain elements in the array itself?

80

Open Addressing

● Has only the hashtable array.
● On collision, try some other position in the

hashtable array.

● Formally, positions (hash(X) + F(i)) % H are
tried in succession.
– F(0) = 0

● Function F is the collision resolution strategy.
– F(i) = i is linear probing

– F(i) = i2 is quadratic probing

– F(i) = i * hash
2
(i) is double hashing

81

Linear Probing
● (hash(X) + F(i)) % H and F(i) = i
● One may have a different linear function of i.

– Identity function is the most common.

● Let H = 7, hash(X) = X % 7
● Elements: 4, 12, 70, 11, 20
● Elements: 20, 11, 4, 12, 70
● Elements: 11, 20, 12, 70, 4

– Check number of elements colliding.

– Check total number of collisions

12

70

11

4

20

70

20

4

12

11

70

4

11

12

20
Classwork: Write codes for insert, remove and find.

82

Linear Probing: Operations

● insert

 int index = hash(e);
 for (int ii = 0; ii < H; ++ii) {
 if (arr[index] == emptycell) {
 arr[index] = e;
 return true;
 }

 index = (index + 1) % H;
 }
 std::cerr << "Hashtable is full.” << std::endl;
 return false;

 int index = hash(e);
 for (int ii = 0; ii < H; ++ii) {
 if (arr[index] == emptycell) {
 arr[index] = e;
 return true;
 }

 index = (index + 1) % H;
 }
 std::cerr << "Hashtable is full.” << std::endl;
 return false;

O(H)O(H)

83

Linear Probing: Operations

● remove

 int index = hash(e);
 for (int ii = 0; ii < H; ++ii) {
 if (arr[index] == e) {
 arr[index] = deletedcell;
 return true;
 } else if (arr[index] == emptycell) {
 std::cout << e << " not present.\n";
 return false;
 }
 index = (index + 1) % H;
 }
 std::cerr << e << " not present.\n";
 return false;

 int index = hash(e);
 for (int ii = 0; ii < H; ++ii) {
 if (arr[index] == e) {
 arr[index] = deletedcell;
 return true;
 } else if (arr[index] == emptycell) {
 std::cout << e << " not present.\n";
 return false;
 }
 index = (index + 1) % H;
 }
 std::cerr << e << " not present.\n";
 return false;

O(H)O(H)

84

Linear Probing: Operations

● find

 int index = hash(e);
 for (int ii = 0; ii < H; ++ii) {
 if (arr[index] == e) {
 std::cout << e << " is found” << std::endl;
 return true;
 } else if (arr[index] == emptycell) {
 std::cout << e << " not present.\n";
 return false;
 }
 index = (index + 1) % H;
 }
 std::cerr << e << " not present.\n";
 return false;

 int index = hash(e);
 for (int ii = 0; ii < H; ++ii) {
 if (arr[index] == e) {
 std::cout << e << " is found” << std::endl;
 return true;
 } else if (arr[index] == emptycell) {
 std::cout << e << " not present.\n";
 return false;
 }
 index = (index + 1) % H;
 }
 std::cerr << e << " not present.\n";
 return false;

O(H)O(H)

85

Primary Clustering

● Due to linear probing, groups of elements
may get formed in the array.

● This phenomenon is called clustering.
● Clustering increases the number of

collisions.
– in turn, the execution time.

● Intuitively, this works against uniform
distribution.

● Deletions are useful in such a scenario.
● Alternatively, probing should leave holes.

86

Quadratic Probing

● (hash(X) + F(i)) % H and F(i) = i2

● Distributes the indices better
– Needs H to be prime

– Practically needs load factor to be at max. 0.5

● Avoids primary clustering issue
– Leaves holes

● Not guaranteed to cover all the indices

87

Quadratic Probing Guarantee
Theorem: If table size is prime, then using
quadratic probing, a new element can always be
inserted if the table is at least half empty.

Theorem: If table size is prime, then using
quadratic probing, a new element can always be
inserted if the table is at least half empty.

Proof: The theorem means that when tried for indices hash(X) + i2, we get at least H/2
different indices. At least one index is guaranteed to be empty since the hashtable is at
least half empty.

Consider the first H/2 probes (0 < i, j). Let two arbitrary indices for different probes be
hash(X) + i2 and hash(X) + j2, both (% H).
For the sake of contradiction, assume that two locations are the same.
Thus, i != j and hash(X) + i2 == hash(X) + j2 (% H)

i2 == j2 (% H)
(i – j)(i + j) == 0 (% H)

Thus, (i – j) == 0 or (i + j) == 0 (% H)
(i – j) == 0 is not possible since i != j.
(i + j) == 0 is not possible since 0 < i, j < H/2.
Thus, first H/2 locations are distinct; and pigeon-hole principle allows the insertion.

88

Secondary Clustering

● Does quadratic probing avoid
primary clustering?

● Does it lead to any issue?
– Two elements mapping to the same

initial index continue to conflict.

– This is called secondary clustering

● Can be resolved using double
hashing

89

Double Hashing

● (hash(X) + F(i)) % H and F(i) = i * hash2(i)

● Distributes elements further
● Avoids primary as well as secondary clustering

● hash
2
 must not evaluate to zero

● H being prime becomes more important from
linear to quadratic, and from quadratic to double.

● Needs another hash function

Source: hash-open.h and .cpp

90

Learning Outcomes

● BST: add, remove, find
– Implementation, complexity

● AVL: add, remove, find
● Splay Trees: splaying
● Hash Tables

– Chaining

– Linear probing

– Quadratic probing

– Double hashing
Homework: Exercises in Chapter 5.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

