
Lists

Rupesh Nasre.
rupesh@cse.iitm.ac.in

August 2021

2

ADT

● Abstract Data Type
● Defines the interface of the functionality

provided by the data structure.
● Hides implementation details.

– Defines what and hides how.

● Makes software modular.
● Allows easy change of implementation.

3

List as an ADT

class List {

public:

 List();

 void insert(Element e);

 void find(Element e);

 void remove(Element e);

 void print();

 int size();

};

What are the complexities
of these operations?

4

Other ADTs

● Fan regulator
– IncSpeed, decSpeed, getSpeed, getCompanyName

● Integer
– size, isSigned, getValue, setValue, add, sub

● Student
– getRollNo, getHostel, getFavGame, setHostel,

getSlots, setCGPA

5

List using Array

class List {

public:

 List();

 void insert(Element e);

 void find(Element e);

 void remove(Element e);

 void print();

 int size();

};

4 2 7 2 9

Design decisions
● Size of the array?
● Maintain size separately or use a

sentinel?
● On overflow: error or realloc?
● On underflow: error message or exit or

silent?
● Printing order?
● Duplicates allowed?
● For duplicates, what does remove do?
● ...

6

List using Array

class List {

public:

 List();

 void insert(Element e);

 void find(Element e);

 void remove(Element e);

 void print();

 int size();

};

4 2 7 2 9

O(1)

O(N)

O(N)

O(N)

O(1)

With certain design decisions:

7

List using Linked List

class List {

public:

 List();

 void insert(Element e);

 void find(Element e);

 void remove(Element e);

 void print();

 int size();

};

4 2 7 2 9
head

O(N) without tail pointer, else O(1)

O(N)

O(N)

O(N)

O(1)

If the complexities of array-
based versus linked-list-based
implementations are the same,
why use linked lists?

8

Arrays versus Linked Lists

● Need to copy the existing
array on reallocation.

● Removal of ith element
needs element-shifting
from i+1 to end.

● Same with insertion.
● Array concatenation is

linear time.

● Only a link needs to be
established (O(1)).

● Removal of an element
using pointers can be
done in O(1).

● Same with insertion.
● List concatenation is

O(1).

9

Linked List Implementation

● Source: sll.cpp

10

List insert

● insert(5) 4 2 7 2 9
head

4 2 7 2 9
head

5

Setup node:
 Node *newptr = new Node();
 newptr->val = 5;
 newptr->next = NULL;

End case:
if (head == NULL) head = newptr;

Regular case:
for (Node *ptr = head; ptr->next; ptr = ptr->next)

;
ptr->next = newptr;

13

List print

● print() 4 2 7 2 9
head

5

For each element in the list
Print the element

for (Node *ptr = head; ptr; ptr = ptr->next)
printf(“%c “, ptr->val);

printf(“\n”);

Output: 4 2 7 2 9 5

14

List find

● find(9) 4 2 7 2 9
head

5

For each element in the list
If the element is same as that to be searched

Found the element
Element not present

for (Node *ptr = head; ptr; ptr = ptr->next)
if (ptr->val == val) return true;

return false;

15

List remove

● remove(2)
● remove(5)
● remove(4)

4 2 7 2 9
head

5

Special case:
if (head == NULL) return false;

General case:
 Node *previous = NULL;
 for (Node *ptr = head; ptr;) {
 if (ptr->val == val) {
 Node *toberemoved = ptr;
 if (previous) {
 previous->next = ptr->next;
 } else head = ptr->next;
 ptr = ptr->next;
 delete toberemoved;
 removed = true;
 } else {
 previous = ptr;
 ptr = ptr->next;
 }
 }

We want to
remove all
occurrences of the
value.

16

Pitfalls

● ptr = head->next; // segfault. Check if head is NULL.

● Node *ptr = &node1; return; // local variable node1.

● ptr = malloc(sizeof(Node*)); // insufficient memory.

Wrong deleteList program

for (ptr = head; ptr; ptr = ptr->next)
free(ptr); // invalid memory on free.

// may work but wrong.

17

Doubly Linked List

● Links in both the directions.
● Node structure contains two pointers: next and

previous.
● Deletion now becomes simpler.
● Two pointers: head and tail maintain list ends.
● Classwork: Write a function to remove a node.

4 2 7 2 9
head

5
tail

18

Circular Doubly Linked List

4 2 7 2 9
head

5

● Last element points to the first, and first
element’s previous is the last node.

● Node structure continues to contain two
pointers: next and previous.

● Tail pointer is not required.
● A singly linked list can also be circular.
● Classwork: Write a function to print all the node

values in a CDLL.

19

Polynomial ADT

● F(X) = ∑ AiXi

● Example: x4 – 4x3 + 7x - 6
● Member functions

– Initialize

– Set a coefficient (for a power)

– Add polynomials

– Multiply polynomials

– ...

N

i=0

● Implementation
● Could be using arrays
● Could be using linked lists

● Classwork: Create a
struct / class to implement
polynomials.

● Are there disadvantages of
using arrays?
● 2x1000 – x
● What are the design

decisions for using lists?

20

Polynomial ADT

class Polynomial {

 int coeff[MaxDegree + 1];

};

void Polynomial::initialize(int coeff[]) {

 // Classwork: implement this.

}

void Polynomial::add(Polynomial p2, Polynomial psum) {

 // Classwork: implement this.

}

21

List Reversal

● Given a list (SLL, DLL, CSLL, CDLL), reverse it.
● The traversal from head should result in the opposite

order.
● Typically need three pointers: previous, current and

next.
● Classwork: Write a list reversal for SLL (sll.cpp).
● Classwork: Write a recursive list reversal.

4 2 7 2 9
head

5

4 2 7 2 9 5
head

22

Recursive Methods

● Sometimes natural to model.
● Sometimes inefficient to implement.
● Classwork: find an element recursively.
● Classwork: print a list recursively.

– How to print in reverse?

– sll.cpp

23

Stack ADT

● Special List
● Operations restricted to one end.
● Insert --> Push
● Remove --> Pop
● LIFO
● Cannot access arbitrary element.
● Important: Since this is ADT, we do not care about

the implementation yet.

24

List versus Stack

class List {

 void insert(Element);

 void remove(Element);

 void search(Element);

 int size();

 void print();

 ...

};

class Stack {

 void push(Element);

 void pop(Element);

 void search(Element);

 int size(); bool isEmpty();

 void print();

 ...

};

25

Stack Implementation

● Design decisions
– Array versus Linked List

– Allow traversing through the stack?

– Allow querying stack size?

– Allow peeking at the stack top?

– IsEmpty is user’s responsibility or
library implementation’s?

– Stack Top points to the last
element, or the entry next to that?

printf

Node::print

List::printRecursive

List::printRecursive

List::printRecursive

main

Stack top

Source: stack.cpp

26

Balanced Parentheses

● We want to check if parentheses are balanced or
not.

● Three types of parentheses: (), [] and { }
● Valid inputs:

– ([] [{ }])

– [] { } [] () [[[]]]

● Invalid inputs:
– ((())

– ([)] { }

– } }) ({ {

Classwork: Use stack to design an
algorithm to check for balanced
parentheses.

Question: Can we design an
application of stack from its ADT
without knowing its implementation?

27

Balanced Parentheses

for each input symbol c

 if (c is an open parenthesis) stack.push(c)

 else if (c is a close parenthesis) {

 if stack.top contains the matching open parenthesis

 pop the element from stack

 else error

 }

if (stack is empty)

 // all good.

else error

Find a string to match
this error.

Find a string to match
this error.

Source: parentheses.cpp

28

Stack Implementation

● stackimpl.c

29

Expressions

● 1 + 2 * 3 – 4
– Binary operators appear between the operands

– Ambiguous without extra knowledge

(1 + 2) * (3 – 4) OR

1 + (2 * (3 – 4)) OR

(1 + (2 * 3)) – 4 OR

((1 + 2) * 3) – 4 ?

– Parentheses help disambiguate; domain knowledge
helps disambiguate (operator precedence).

– Won’t it be nice if expressions can be written in
unambiguous manner?

xx @@

yy zz

##

xx

##

yy

zz

@@

30

Prefix and Postfix Forms

● 1 + 2 * 3 – 4
– Binary operators appear between the operands.

– Called as infix form.

● 1 2 3 * + 4 -
– Binary operators appear after the operands.

– Called as postfix form.

● - + 1 * 2 3 4
– Binary operators appear before the operands.

– Called as prefix form.

How do these forms
help resolve ambiguity?

31

Prefix, Postfix and Non-ambiguity

Infix Prefix Postfix

(1 + 2) * (3 – 4)

1 + (2 * (3 – 4))

(1 + (2 * 3)) – 4

((1 + 2) * 3) – 4

1 + ((2 * 3) - 4)

32

Prefix, Postfix and Non-ambiguity

Infix Prefix Postfix

(1 + 2) * (3 – 4) * + 1 2 – 3 4 1 2 + 3 4 - *

1 + (2 * (3 – 4)) + 1 * 2 – 3 4 1 2 3 4 - * +

(1 + (2 * 3)) – 4 - + 1 * 2 3 4 1 2 3 * + 4 -

((1 + 2) * 3) – 4 - * + 1 2 3 4 1 2 + 3 * 4 -

1 + ((2 * 3) - 4) + 1 - * 2 3 4 1 2 3 * 4 - +

● No parentheses in prefix and postfix forms.
● Infix is ambiguous; prefix and postfix are not.
● Unique prefix and postfix forms for different orders of operator evaluation.

33

Postfix Evaluation

● Find the value of 5 1 2 3 * – 4 + 6 * –.
● Write a program to evaluate a postfix expression.

– Assume digits, +, –, *, /.

For each symbol in the expression
If the symbol is an operand

Push its value to a stack
Else if the symbol is an operator

Pop two nodes from the stack
Apply the operator on them
Push result to the stack

For each symbol in the expression
If the symbol is an operand

Push its value to a stack
Else if the symbol is an operator

Pop two nodes from the stack
Apply the operator on them
Push result to the stack

Source: postfixeval.cpp

34

Prefix Evaluation
For each symbol in the expression right-to-left

If the symbol is an operand
Push its value to the stack

Else if the symbol is an operator
Pop two symbols from the stack
Apply the operator on them
Push result to the stack

For each symbol in the expression right-to-left
If the symbol is an operand

Push its value to the stack
Else if the symbol is an operator

Pop two symbols from the stack
Apply the operator on them
Push result to the stack

Prefix

* + 1 2 – 3 4

+ 1 * 2 – 3 4

- + 1 * 2 3 4

- * + 1 2 3 4

+ 1 - * 2 3 4

Homework: Code this up.

35

Infix to Posfix

● Given an infix expression (with parentheses),
convert it to a postfix form (without parentheses).

Infix Prefix Postfix

(1 + 2) * (3 – 4) * + 1 2 – 3 4 1 2 + 3 4 - *

1 + (2 * (3 – 4)) + 1 * 2 – 3 4 1 2 3 4 - * +

(1 + (2 * 3)) – 4 - + 1 * 2 3 4 1 2 3 * + 4 -

((1 + 2) * 3) – 4 - * + 1 2 3 4 1 2 + 3 * 4 -

1 + ((2 * 3) - 4) + 1 - * 2 3 4 1 2 3 * 4 - +

36

For each symbol in the expression
If the symbol is an operand

Print the symbol
Else if the symbol is an opening parenthesis

Push the symbol on stack
Else if the symbol is a closing parenthesis

Do {
Pop symbol from the stack
If symbol is not opening parenthesis

Print the symbol
} while symbol is not opening parenthesis

Else { // symbol c is an operator
Pop symbol d from the stack
While symbol d has higher or equal priority than c

Print the symbol d
Pop symbol d from the stack

Push the symbol on stack
}

}
While stack is not empty {

Pop symbol from the stack
Print the symbol

}
Return postfix

For each symbol in the expression
If the symbol is an operand

Print the symbol
Else if the symbol is an opening parenthesis

Push the symbol on stack
Else if the symbol is a closing parenthesis

Do {
Pop symbol from the stack
If symbol is not opening parenthesis

Print the symbol
} while symbol is not opening parenthesis

Else { // symbol c is an operator
Pop symbol d from the stack
While symbol d has higher or equal priority than c

Print the symbol d
Pop symbol d from the stack

Push the symbol on stack
}

}
While stack is not empty {

Pop symbol from the stack
Print the symbol

}
Return postfix

Source: Infix2postfix.cpp

37

Queue

● Special list
● Insertions at one end, deletions at the other
● Tracked using two pointers: head and tail
● FIFO (what is FCFS?)
● Cannot access arbitrary element
● Insert → push / enqueue

remove → pop / dequeue

4 2 7 2 9

head

5

tail

38

Queue ADT

● Classwork: Write down the Queue ADT.

struct Queue {
void push(Element); // enqueue
Element pop(); // dequeue
bool isEmpty();
...

};

class Queue {
void push(Element);
void pop();
Element front();
Element back();
bool isEmpty();
...

};

struct Queue {
void push(Element); // enqueue
Element pop(); // dequeue
bool isEmpty();
...

};

class Queue {
void push(Element);
void pop();
Element front();
Element back();
bool isEmpty();
...

};

Source: q.cpp

39

Call Center

● Multiple users call a call-center.
● Multiple operators answer the call.
● Each call takes an unknown amount of time.
● When all the operators are busy

– Calling users need to wait.

● When an operator becomes available
– Which waiting user is answered?

● Can we use Queue ADT to implement this?

40

Call Center: Data Structures

● User (id, call time)
● Operator (id)
● Queue of waiting users
● List of busy operators
● Queue of free operators

41

Call Center: Simulation

● Simulation is often based on time.
● At each time unit, various actions occur.

– A new user arrives.

– A free operator needs to be assigned to a user.

– No operator is free, so the user needs to wait.

– A busy operator becomes free.

– Nothing happens, call time of engaged users
reduces.

● Simulation ties these actions together logically.

Source: callcenter.cpp

42

Queue Implementation

● This time, we will use arrays.

● Insert 3

● Remove

● Remove, Remove, Remove, Insert 1, 2, 3, 4

4 2 7 2 9 5 3

back

4 2 7 2 9 5

back

4 2 7 2 9 5 3

front

front back

4 2 7 2 9 5 3 1 2 3

front back

qimpl.c

Recall
circular list

43

Wrap-around

● Insert 4

● Remove five elements, Insert 2

● Remove

● Remove

● Remove

4 2

frontback

4 9 5 3 1 2 3

front

back 4 2 3

back

front

2

front

back

back

front

qimpl2.c

44

Queue Conditions
● Queue is empty:

– when front > back (in previous slide)

– That is also initialization: front = 0, back = ­1
– Our implementation qimpl.c uses front = 0, back = 0

● Whichever you use, follow invariants:
– qimpl.c: front points to the first element in the queue.

back points to the place where next element should be
inserted.

– Previous slide: front points to the first element in the queue.

back points to the last element in the queue.

● Classwork: Write conditions for when queue is full.

45

Empty versus Full

● Empty queue

● Full queue

● Possible solutions
– Leave one space unused (N-1 elements).

– Track size separately (used in qimpl.c).

front

back

6 7 8 9 0 1 2 3 4 5

front

back

46

Practice problems

● Implement a stack using two queues.
– push/pop should be implemented using enqueue /

dequeue.

● Implement a queue using two stacks.
● Implement three stacks using an array (without

space wastage).
● Solve problems at the end of Chapter 3.

47

Learning Outcomes

● Use List, Stack, Queue ADTs in applications.
● Implement these ADTs using C/C++ with

pointers or arrays.
● Study various applications using these data

structures.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

