Arrays

Rupesh Nasre.
rupesh@cse.iitm.ac.in

Properties

- Simplest data structure
- Acts as aggregate over primitives or other aggregates
- May have multiple dimensions
- Contiguous storage
- Random access in O(1)
- Languages such as C use type system to index appropriately
- e.g., a[i] and a[i + 1] refer to locations based on type
- Storage space:
- Fixed for arrays
- Dynamically allocatable but fixed on stack and heap
- Variable for vectors (internally, reallocation and copying)

Array Expressions

```
```

void fun(int a[][]) {

```
```

void fun(int a[][]) {
a[0][0] = 20;
a[0][0] = 20;
}
}
void main() {
void main() {
int a[5][10];
int a[5][10];
fun(a);
fun(a);
printf("%d\n", a[0][0]);
printf("%d\n", a[0][0]);
}

```
```

}

```
```

ERROR: type of formal parameter 1 is incomplete

We view an array to be a Ddimensional matrix. However, for the hardware, it is simply single dimensional.

For declaration int a[w4][w3][w2][w1]:

- What is the address of $\mathrm{a}[\mathrm{i}][j][\mathrm{k}][1]$?
$-(\mathrm{i} * \mathrm{w} 3 * \mathrm{w} 2 * \mathrm{w} 1+\mathrm{j} * \mathrm{w} 2 * \mathrm{w} 1+\mathrm{k} * \mathrm{w} 1+\mathrm{l}) * 4$
- How to optimize the computation?
- Use Horner's rule: (((i * w3 + j) * w2 + k) * w1 + l) $* 4$

Array Expressions

- In C, C++, Java, we use row-major storage.
- All elements of a row are stored together.

- In Fortran, we use column-major storage.
- each column is stored together.

Search

- Linear: $\mathrm{O}(\mathrm{N})$

How about Ternary search?

- Binary: $\mathrm{O}(\log \mathrm{N})$

1	2	...	40	50	\ldots	91	95	98	99

$-\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N} / 2)+\mathrm{c}$
mid1 mid2

```
int bsearch(int a\], int N, int val) {
    int low = 0, high = N-1;
    while (low <= high) {
        int mid = (low + high) / 2;
        if (a[mid] == val) return 1;
        if (a[mid] > val) high = mid - 1;
        else low = mid + 1;
    }
    return 0;

\section*{Matrices}
- Typically 2D arrays
- Sometimes array of arrays (int *arr[N])
- If a matrix is sorted left-to-right and top-tobottom, can we apply binary search?
- Knight's tour
- Start from a corner.
- Visit all 64 squares without visiting a square twice.
- The only moves allowed are 2.5 places.
- Cannot wrap-around the board.


Image source: tutorialhorizon.com

\section*{Search in a Sorted Matrix[M][N]}
\begin{tabular}{|c|c|c|c|}
\hline 3 & 5 & 9 & 20 \\
39 \\
\hline 4 & 6 & 11 & 21
\end{tabular} 40

Focus on 44.
Check where all values < 44 appear. Check where all values > 44 appear.

Classwork: Devise a method to search for an element in this matrix.

\section*{Search in a Sorted Matrix[M][N]}
- Approach 1: Divide and Conquer
\(-<i, 0\) and \(<0, j \rightarrow\) Q1
\(-<i, 0\) and \(>0, j \rightarrow\) Q1, Q2
\(->\mathrm{i}, 0\) and \(<0, \mathrm{j} \rightarrow\) Q1, Q4
\(->\mathrm{i}, 0\) and \(>0, \mathrm{j} \rightarrow \mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3, \mathrm{Q} 4\)
Q1 j
Q2
\(-\mathrm{T}(\mathrm{M}, \mathrm{N})=4 \mathrm{~T}(\mathrm{M} / 2, \mathrm{~N} / 2)+\mathrm{c}=\mathrm{O}\left(\min (\mathrm{M}, \mathrm{N})^{2}\right)\)
- This complexity is same as that for the linear search.
- To improve complexity, we need to reduce at i least one quadrant.
- Note: A number in Q1 is always smaller than [i,j]. But a number smaller than [i, j] need not be in Q1.

\section*{Search in a Sorted Matrix[M][N]}
- Approach 2: Divide and Conquer
- Use the corner points of Q1, Q2, Q3, Q4 to decide the quadrant.
- > y and > z \(\rightarrow\) Q3
- Else \(\quad \rightarrow\) Q1, Q2, Q4
\(-\mathrm{T}(\mathrm{M}, \mathrm{N})=3 \mathrm{~T}(\mathrm{M} / 2, \mathrm{~N} / 2)+\mathrm{c}=\mathrm{O}(\min (\mathrm{M}, \mathrm{N}))^{1.54}\)
- Approach 3: Elimination
- Consider e: [0, N-1].
- If key \(==\mathrm{e}\), found the element
- If key < e, eliminate that column
- If key >e, eliminate that row
- \(\mathrm{O}(\mathrm{M}+\mathrm{N})\)
- What other corner points I can start with?

\section*{Surprise Quiz}
- What is Triskaidekaphobia?
- What is Paraskevidekatriaphobia?


Stall numbers at Santa Anita Park progress from 12 to 12A to 14 .


Numbers in a lift

\section*{Arrays: Classwork}
- Merge two sorted arrays
- In a third array
- In situ (also check with linked lists)
- For a given data, create a histogram
- Numbers of students in [0..10), [10, 20), ..., [90, 100].
- Given two arrays of sizes N1 and N2, find a product matrix ( \(\mathrm{P}[\mathrm{i}][\mathrm{j}]=\mathrm{A}[\mathrm{i}]\) * \(\mathrm{B}[j]\) ).
- Can this be done in \(\mathrm{O}(\mathrm{N} 1+\mathrm{N} 2)\) time?
- or \(\mathrm{O}(\mathrm{N} 1 \log \mathrm{~N} 2)\) ?

\section*{Classwork}
- Given an unsorted array of roll numbers, find the smallest CS18 roll number absent today.
- \(\{2,3,7,6,8\), CH..., 10, 15\} outputs 1
- \{2, 3, EE..., 6, 8, 1, CH..., 15\} outputs 4
- \(\{1,1\), EE..., EE..., EE...\} outputs 2
- Can this be done in linear time and constant additional space?

\section*{8-Queens Problem}

Given a chess-board, can you place 8 queens in non-attacking positions?
(no two queens in the same row or same column or same diagonal)

- Does a solution exist for \(2 \times 2,3 \times 3,4 \times 4\) ?
- Have you seen similar constraints somewhere?

\section*{Sorting}
- A fundamental operation
- Elements need to be stored in increasing order.
- Some methods would work with duplicates.
- Algorithms that maintain relative order of duplicates from input to output are called stable.
- Comparison-based methods
- Insertion, Shell, Selection, Quick, Merge
- Other methods
- Radix, Bucket, Counting

\section*{Sorting Algorithms at a Glance}
\begin{tabular}{|l|c|c|}
\hline Algorithm & \begin{tabular}{c} 
Worst case \\
complexity
\end{tabular} & \begin{tabular}{c} 
Average case \\
complexity
\end{tabular} \\
\hline Bubble & \(O\left(n^{2}\right)\) & \(O\left(n^{2}\right)\) \\
\hline Insertion & \(O\left(n^{2}\right)\) & \(O\left(n^{2}\right)\) \\
\hline Shell & \(O\left(n^{2}\right)\) & \begin{tabular}{c} 
Depends on \\
increment \\
sequence
\end{tabular} \\
\hline Selection & \(O\left(n^{2}\right)\) & \(O\left(n^{2}\right)\) \\
\hline Heap & \(O(n \log n)\) & \(O(n \log n)\) \\
\hline Quick & \(O\left(n^{2}\right)\) & \begin{tabular}{c}
\(O(n \log n)\) \\
depending on \\
partitioning \\
\\
Merge
\end{tabular} \\
\hline Bucket & \(O(n \log n)\) & \(O(n \alpha \log n)\) \\
\hline
\end{tabular}

\section*{Bubble Sort}
- Compare adjacent values and swap, if required.
- How many times do we need to do it?
- What is the invariant?
- After ith iteration, i largest numbers are at their final places.
- An element may move away from its final position in the intermediate stages (e.g., check the \(2^{\text {nd }}\) element of a reverse-sorted array).
- Best case: Sorted sequence
- Worst case: Reverse sorted (n-1 + n-2 + ... + \(1+0\) )
- Classwork: Write the code.

\section*{Bubble Sort}
\[
\begin{aligned}
& \text { for (ii }=0 ; \mathrm{ii}<\mathrm{N} ;++\mathrm{ii}) \\
& \quad \text { for }(\mathrm{jj}=0 ; \mathrm{jj}<\mathrm{N}-1 ;++\mathrm{jj}) \\
& \quad \text { if }(\operatorname{arr}[\mathrm{jj}]>\operatorname{arr}[\mathrm{jj}+1]) \operatorname{swap}(\mathrm{jj}, \mathrm{jj}+1) \text {; }
\end{aligned}
\]
```

for (ii = 0; ii < N - 1; ++ii)
for (jj = 0; jj < N - ii - 1; ++jj)
if (arr[j]] > arr[jj + 1]) swap(jj, jj + 1);

```
- Best case: Sorted sequence
- Worst case: Reverse sorted (n-1 + n-2 + ... \(+1+0\) )
- What do we measure?
- Number of comparisons
- Number of swaps (bounded by comparisons)
- Number of comparisons remains the same!

\section*{Insertion Sort}
- Consider ith element and insert it at its place w.r.t. the first i elements.
- Resembles insertion of a playing card.
- Invariant: Keep the first i elements sorted.
- Note: Insertion is in a sorted array.
- Complexity: O(n log n)?
- Yes, binary search is \(O(\log n)\).

But are we doing more work?
- Best case, Worst case?
- Classwork: Write the code.

\section*{Insertion Sort}
```

for (ii = 1 ; ii < N; ++ii) {
int key = arr[ii];
int jj = ii - 1;
while (jj >= 0 \&\& key < arr[jj]) {
arr[jj + 1] = arr[jj];
Shift elements
--j;;
}
arr[jj + 1] = key;
}

```
- Best case: Sorted: while loop is \(O(1)\)
- Worst case: Reverse sorted: O(n²)

\section*{Shell Sort}
- The number of shiftings is too high in insertion sort. This leads to high inefficiency.
- Can we allow some perturbations initially and fix them later?
- Approach: Instead of comparing adjacent elements, compare those that are some distance apart.
- And then reduce the distance.
- This sequence of distances is called increment sequence.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline Input & 81 & 94 & 11 & 96 & 12 & 35 & 17 & 95 & 28 & 58 \\
41 & 75 & 15 \\
\hline gap=5 & 35 & 17 & 11 & 28 & 12 & 41 & 75 & 15 & 96 & 58 \\
81 & 94 & 95 \\
\hline gap=3 & 28 & 12 & 11 & 35 & 15 & 41 & 58 & 17 & 94 & 75 \\
gap=1 & 11 & 12 & 15 & 17 & 28 & 35 & 41 & 58 & 75 & 81 \\
\hline & 94 & 95 & 96 \\
\hline
\end{tabular}

\section*{Shell Sort}
```

for (gap = N/2; gap; gap I= 2)
for (ii = .. ; ii < N; ++ii) { - ith element
int key = arr[ii];
int jj = ii - 1;
while (jj - gap >= 0 \&\& key < arr[jj - gap]) s
arr[jj + 1] = arr[j];
jj -= gap;
}
arr[jj+1] = key;
}

```
- Best case: Sorted: while loop is O(1)
- Worst case: \(O\left(n^{2}\right)\)

\section*{Selection Sort}
- Approach: Choose the minimum element, and push it to its final place.
- What is the invariant?
- First i elements are at their final places after i iterations.
- Classwork:
\[
\begin{aligned}
& \text { for (ii }=0 ; i i<N-1 ;++i i)\{ \\
& \text { int iimin = ii; } \\
& \text { for ( } \mathrm{j} \mathrm{j}=\mathrm{ii}+1 \text {; } \mathrm{jj} \text { < } \mathrm{N} \text {; }+\mathrm{ij} \text { ) } \\
& \text { if (arr[ji] < arr[iimin]) } \\
& \text { iimin = ij; } \\
& \text { swap(iimin, ii); }
\end{aligned}
\]

\section*{Heapsort}

\section*{Given N elements, \\ build a heap and \\ then perform N deleteMax,}

N storage
\(\mathrm{O}(\mathrm{N})\) time
\(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) time
store each element into an array. o(N) time and N space
\(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) time and 2 N space
```

for (int ii = 0; ii < nelements; ++ii) {
h.hide_back(h.deleteMax());
}
h.printArray(nelements);

```

Can we avoid the second array?

Source: heap-sort.cpp

\section*{Quicksort}
- Approach:
- Choose an arbitrary element (called pivot).
- Place the pivot at its final place.
- Make sure all the elements smaller than the pivot are to the left of it, and ... (called partitioning)
- Divide-and-conquer.
```

void quick(int start, int end) {
if (start < end) {
int iipivot = partition(start, end);
quick(start, iipivot - 1);
quick(iipivot + 1, end);
}
}

```

\section*{Merge Sort}
- Divide-and-Conquer
- Divide the array into two halves
- Sort each array separately
- Merge the two sorted sequences
- Worst case complexity: O(n log n)
- Not efficient in practice due to array copying.
- Classwork: void mergeSort(int start, int end) \{
if (start < end) \{
int mid \(=(\) start + end \() / 2\);
mergeSort(start, mid); mergeSort(mid + 1, end); merge(start, mid, end);

\section*{Bucket Sort}
- Hash / index each element into a bucket.
- Sort each bucket.
- use other sorting algorithms such as insertion sort.
- Output buckets in increasing order.
- Special case when number of buckets >= maximum element value.
- Unsuitable for arbitrary types.


\section*{Counting Sort}
- Bucketize elements.
- Find count of elements in each bucket.
- Perform prefix sum.
- Copy elements from buckets to original array.
\begin{tabular}{|c|cccccccccc|}
\hline Original array & 4 & 1 & 4 & 9 & 11 & 7 & 8 & 1 & 3 & 4 \\
\hline Buckets & 1,1 & & 3 & \(4,4,4\) & 7 & & 8 & & 9 & 11 \\
\hline Bucket sizes & 2 & 0 & 1 & 3 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline Starting index & 0 & 2 & 2 & 3 & 6 & 7 & 7 & 8 & 8 & 9 \\
\hline Output array & 1 & 1 & 3 & 4 & 4 & 4 & 7 & 8 & 9 & 11 \\
\hline
\end{tabular}

\section*{Radix Sort}
- Generalization of bucket sort.
- Radix sort sorts using different digits.
- At every step, elements are moved to buckets based on their ith digits, starting from the least significant digit.
- Classwork: 33, 453, 124, 225, 1023, 432, 2232
\begin{tabular}{ccccccccccc}
64 & 8 & 216 & 512 & 27 & 729 & 0 & 1 & 343 & 125 \\
\hline 0 & 1 & 512 & 343 & 64 & 125 & 216 & 27 & 8 & 729 \\
\hline \begin{tabular}{c}
00,01, \\
08
\end{tabular} & \begin{tabular}{c}
512, \\
216
\end{tabular} & \begin{tabular}{c}
125, \\
27, \\
729
\end{tabular} & & 343 & & 64 & & & \\
\hline \begin{tabular}{c}
000,
\end{tabular} & 125 & 216 & 343 & & 512 & & 729 & & \\
001, & & & & & & & & & \\
\begin{tabular}{c}
008, \\
027, \\
064
\end{tabular} & & & & & & & & & \\
\hline
\end{tabular}

\section*{Summary}
- Array
- Linked List
- Stack
- Queue
- Tree
- Binary Tree
- Binary Search Tree
- Heap
- ...
- Hash Table
- Graph


\section*{DSAP Usage}
- In several applications, arrays (and matrices) suffice. The data is static.
- Most of our data structures are designed for other cases: the data is dynamic.
- Properties of the problem dictate both the algorithm and the associated data structures.
- Algorithms often use data structures as tools.

\title{
ID6105: Computational Tools: \\ Algorithms, Data Structures and Programs
}
B. S. V. Prasad Patnaik, Rupesh Nasre.```

