
Arrays

Rupesh Nasre.
rupesh@cse.iitm.ac.in

August 2021

Properties
● Simplest data structure

– Acts as aggregate over primitives or other aggregates

– May have multiple dimensions

● Contiguous storage
● Random access in O(1)
● Languages such as C use type system to index

appropriately
– e.g., a[i] and a[i + 1] refer to locations based on type

● Storage space:
– Fixed for arrays

– Dynamically allocatable but fixed on stack and heap

– Variable for vectors (internally, reallocation and copying)

3

Array Expressions

 ERROR: type of formal parameter 1 is incomplete

void fun(int a[][]) {
 a[0][0] = 20;
}
void main() {
 int a[5][10];
 fun(a);
 printf("%d\n", a[0][0]);
}

void fun(int a[][]) {
 a[0][0] = 20;
}
void main() {
 int a[5][10];
 fun(a);
 printf("%d\n", a[0][0]);
}

For declaration int a[w4][w3][w2][w1]:
● What is the address of a[i][j][k][l]?

– (i * w3 * w2 * w1 + j * w2 * w1 + k * w1 + l) * 4
● How to optimize the computation?

– Use Horner's rule: (((i * w3 + j) * w2 + k) * w1 + l) * 4

We view an array to be a D-
dimensional matrix. However, for
the hardware, it is simply single
dimensional.

4

Array Expressions

● In C, C++, Java, we use
row-major storage.
– All elements of a row are

stored together.

● In Fortran, we use
column-major storage.
– each column is

stored together.

0,0 0,2

1,2

3,2

0,3 1,3 2,3

2,00,0

5

Search

● Linear: O(N)
● Binary: O(log N)

– T(N) = T(N/2) + c

int bsearch(int a[], int N, int val) {
 int low = 0, high = N - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 if (a[mid] == val) return 1;
 if (a[mid] > val) high = mid - 1;
 else low = mid + 1;
 }
 return 0;
}

int bsearch(int a[], int N, int val) {
 int low = 0, high = N - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 if (a[mid] == val) return 1;
 if (a[mid] > val) high = mid - 1;
 else low = mid + 1;
 }
 return 0;
}

How about Ternary search?

1 2 ... 40 50 ... 91 95 98 99

mid1 mid2

6

Matrices

● Typically 2D arrays
– Sometimes array of arrays (int *arr[N])

● If a matrix is sorted left-to-right and top-to-
bottom, can we apply binary search?

● Knight’s tour
● Start from a corner.
● Visit all 64 squares without

visiting a square twice.
● The only moves allowed are

2.5 places.
● Cannot wrap-around the board.

Image source: tutorialhorizon.com

7

Search in a Sorted Matrix[M][N]

3 5 9 20 39

4 6 11 21 40

7 10 12 23 45

8 13 22 27 46

19 29 41 43 49

24 30 44 50 52

25 31 47 51 55

28 33 48 53 61

32 42 54 56 66

35 57 60 62 69

For now, let’s assume that all values are unique.

Focus on 44.
Check where all values < 44 appear.
Check where all values > 44 appear.

Classwork: Devise a method
to search for an element in this
matrix.

Classwork: Devise a method
to search for an element in this
matrix.

8

Search in a Sorted Matrix[M][N]
● Approach 1: Divide and Conquer

– < i, 0 and < 0, j → Q1
– < i, 0 and > 0, j → Q1, Q2
– > i, 0 and < 0, j → Q1, Q4
– > i, 0 and > 0, j → Q1, Q2, Q3, Q4

– T(M, N) = 4T(M/2, N/2) + c = O(min(M, N)2)
– This complexity is same as that for the linear

search.
– To improve complexity, we need to reduce at

least one quadrant.
– Note: A number in Q1 is always smaller than

[i,j]. But a number smaller than [i, j] need not
be in Q1.

i

jQ1 Q2

Q3Q4

9

Search in a Sorted Matrix[M][N]
● Approach 2: Divide and Conquer

– Use the corner points of Q1, Q2, Q3, Q4 to decide the
quadrant.

– > y and > z → Q3
– Else → Q1, Q2, Q4
– T(M, N) = 3T(M/2, N/2) + c = O(min(M, N))1.54

● Approach 3: Elimination

– Consider e: [0, N-1].

– If key == e, found the element

– If key < e, eliminate that column

– If key > e, eliminate that row

– O(M + N)
– What other corner points I can start with?

e

x y

z

i

jQ1 Q2

Q3Q4

Surprise Quiz

● What is Triskaidekaphobia?
● What is Paraskevidekatriaphobia?

Stall numbers at Santa Anita Park
progress from 12 to 12A to 14.

Numbers in a lift

Source: wikipedia

11

Arrays: Classwork

● Merge two sorted arrays
– In a third array

– In situ (also check with linked lists)

● For a given data, create a histogram
– Numbers of students in [0..10), [10, 20), ..., [90, 100].

● Given two arrays of sizes N1 and N2, find a
product matrix (P[i][j] = A[i] * B[j]).
– Can this be done in O(N1 + N2) time?

– or O(N1 log N2)?

12

Classwork

● Given an unsorted array of roll numbers, find the
smallest CS18 roll number absent today.
– {2, 3, 7, 6, 8, CH..., 10, 15} outputs 1

– {2, 3, EE..., 6, 8, 1, CH..., 15} outputs 4

– {1, 1, EE..., EE..., EE...} outputs 2

● Can this be done in linear time and constant
additional space?

Source: geeksforgeeks.com

https://www.geeksforgeeks.org/find-the-smallest-positive-number-missing-from-an-unsorted-array/

13

8-Queens Problem

Given a chess-board,

can you place 8 queens

in non-attacking positions?

(no two queens in the same row

or same column or same diagonal)
● Does a solution exist for 2x2, 3x3, 4x4?
● Have you seen similar constraints somewhere?

Image source: leetcode.com

14

Sorting

● A fundamental operation
● Elements need to be stored in increasing order.

– Some methods would work with duplicates.

– Algorithms that maintain relative order of duplicates
from input to output are called stable.

● Comparison-based methods
– Insertion, Shell, Selection, Quick, Merge

● Other methods
– Radix, Bucket, Counting

15

Sorting Algorithms at a Glance

Algorithm Worst case
complexity

Average case
complexity

Bubble O(n2) O(n2)

Insertion O(n2) O(n2)

Shell O(n2) Depends on
increment
sequence

Selection O(n2) O(n2)

Heap O(n log n) O(n log n)

Quick O(n2) O(n log n)
depending on

partitioning

Merge O(n log n) O(n log n)

Bucket O(n α log α) Depends on α

16

Bubble Sort

● Compare adjacent values and swap, if required.
● How many times do we need to do it?
● What is the invariant?

– After ith iteration, i largest numbers are at their final places.

– An element may move away from its final position in the
intermediate stages (e.g., check the 2nd element of a
reverse-sorted array).

● Best case: Sorted sequence
● Worst case: Reverse sorted (n-1 + n-2 + ... + 1 + 0)

● Classwork: Write the code.

https://visualgo.net/en/sorting

17

Bubble Sort
for (ii = 0; ii < N; ++ii)
 for (jj = 0; jj < N - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1);

for (ii = 0; ii < N; ++ii)
 for (jj = 0; jj < N - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1); Not using ii

for (ii = 0; ii < N - 1; ++ii)
 for (jj = 0; jj < N – ii - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1);

for (ii = 0; ii < N - 1; ++ii)
 for (jj = 0; jj < N – ii - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1);

O(n2)

● Best case: Sorted sequence
● Worst case: Reverse sorted (n-1 + n-2 + ... + 1 + 0)

● What do we measure?
– Number of comparisons
– Number of swaps (bounded by comparisons)

● Number of comparisons remains the same!

https://visualgo.net/en/sorting

18

Insertion Sort

● Consider ith element and insert it at its place w.r.t.
the first i elements.
– Resembles insertion of a playing card.

● Invariant: Keep the first i elements sorted.
● Note: Insertion is in a sorted array.
● Complexity: O(n log n)?

– Yes, binary search is O(log n).

But are we doing more work?

– Best case, Worst case?

● Classwork: Write the code.

https://visualgo.net/en/sorting

19

Insertion Sort
 for (ii = 1 ; ii < N; ++ii) {
 int key = arr[ii];
 int jj = ii - 1;

 while (jj >= 0 && key < arr[jj]) {
 arr[jj + 1] = arr[jj];
 --jj;
 }
 arr[jj + 1] = key;
 }

 for (ii = 1 ; ii < N; ++ii) {
 int key = arr[ii];
 int jj = ii - 1;

 while (jj >= 0 && key < arr[jj]) {
 arr[jj + 1] = arr[jj];
 --jj;
 }
 arr[jj + 1] = key;
 }

Shift elements
0 + 1 + 2 + ... n-1

ith element

At its place

● Best case: Sorted: while loop is O(1)
● Worst case: Reverse sorted: O(n2)

https://visualgo.net/en/sorting

20

Shell Sort
● The number of shiftings is too high in insertion sort.

This leads to high inefficiency.
● Can we allow some perturbations initially and fix

them later?
● Approach: Instead of comparing adjacent elements,

compare those that are some distance apart.
– And then reduce the distance.

– This sequence of distances is called increment sequence.

Input 81 94 11 96 12 35 17 95 28 58 41 75 15

gap=5 35 17 11 28 12 41 75 15 96 58 81 94 95

gap=3 28 12 11 35 15 41 58 17 94 75 81 96 95

gap=1 11 12 15 17 28 35 41 58 75 81 94 95 96

21

Shell Sort

for (ii = ... ; ii < N; ++ii) {
 int key = arr[ii];
 int jj = ii - 1;

 while (jj - gap >= 0 && key < arr[jj - gap]) {
 arr[jj + 1] = arr[jj];
 jj -= gap;
 }
 arr[jj + 1] = key;
 }

for (ii = ... ; ii < N; ++ii) {
 int key = arr[ii];
 int jj = ii - 1;

 while (jj - gap >= 0 && key < arr[jj - gap]) {
 arr[jj + 1] = arr[jj];
 jj -= gap;
 }
 arr[jj + 1] = key;
 }

Shift elements

ith element

At its place

for (gap = N/2; gap; gap /= 2)

● Best case: Sorted: while loop is O(1)
● Worst case: O(n2)

22

Selection Sort

● Approach: Choose the minimum element, and
push it to its final place.

● What is the invariant?
– First i elements are at their final places after i

iterations.

● Classwork: Write the code.for (ii = 0 ; ii < N - 1; ++ii) {
 int iimin = ii;

 for (jj = ii + 1; jj < N; ++jj)
 if (arr[jj] < arr[iimin])

iimin = jj;
 swap(iimin, ii);
 }

for (ii = 0 ; ii < N - 1; ++ii) {
 int iimin = ii;

 for (jj = ii + 1; jj < N; ++jj)
 if (arr[jj] < arr[iimin])

iimin = jj;
 swap(iimin, ii);
 }

Find min.

https://visualgo.net/en/sorting

Heapsort

Given N elements,

build a heap and

then perform N deleteMax,

store each element into an array.

N storage

O(N) time

O(N log N) time

O(N) time and N space

O(N log N) time and 2N space

Can we avoid the
second array?

Can we avoid the
second array?

 for (int ii = 0; ii < nelements; ++ii) {
 h.hide_back(h.deleteMax());
 }
 h.printArray(nelements);

 for (int ii = 0; ii < nelements; ++ii) {
 h.hide_back(h.deleteMax());
 }
 h.printArray(nelements);

Source: heap-sort.cpp

24

Quicksort

● Approach:
– Choose an arbitrary element (called pivot).

– Place the pivot at its final place.

– Make sure all the elements smaller than the pivot
are to the left of it, and ... (called partitioning)

– Divide-and-conquer.

void quick(int start, int end) {
 if (start < end) {
 int iipivot = partition(start, end);
 quick(start, iipivot - 1);
 quick(iipivot + 1, end);
 }
}

void quick(int start, int end) {
 if (start < end) {
 int iipivot = partition(start, end);
 quick(start, iipivot - 1);
 quick(iipivot + 1, end);
 }
}

Crucially decides
the complexity.

25

Merge Sort
● Divide-and-Conquer

– Divide the array into two halves

– Sort each array separately

– Merge the two sorted sequences

● Worst case complexity: O(n log n)
– Not efficient in practice due to array copying.

● Classwork: Write the code.void mergeSort(int start, int end) {
 if (start < end) {
 int mid = (start + end) / 2;
 mergeSort(start, mid);
 mergeSort(mid + 1, end);

 merge(start, mid, end);
 }
}

void mergeSort(int start, int end) {
 if (start < end) {
 int mid = (start + end) / 2;
 mergeSort(start, mid);
 mergeSort(mid + 1, end);

 merge(start, mid, end);
 }
}

27

Bucket Sort
● Hash / index each element into a bucket.
● Sort each bucket.

– use other sorting algorithms such as insertion sort.

● Output buckets in increasing order.
● Special case when number of buckets >=

maximum element value.
● Unsuitable for arbitrary types.

28

Counting Sort

● Bucketize elements.
● Find count of elements in each bucket.
● Perform prefix sum.
● Copy elements from buckets to original array.

4 1 4 9 11 7 8 1 3 4

1, 1 3 4, 4, 4 7 8 9 11

2 0 1 3 1 0 1 0 1 1

0 2 2 3 6 7 7 8 8 9

1 1 3 4 4 4 7 8 9 11

Original array

Buckets

Bucket sizes

Starting index

Output array

29

Radix Sort
● Generalization of bucket sort.
● Radix sort sorts using different digits.
● At every step, elements are moved to buckets

based on their ith digits, starting from the least
significant digit.

● Classwork: 33, 453, 124, 225, 1023, 432, 2232
64 8 216 512 27 729 0 1 343 125

0 1 512 343 64 125 216 27 8 729

00, 01,
08

512,
216

125,
27,
729

343 64

000,
001,
008,
027,
064

125 216 343 512 729

O(P * (N + B))
P = passes
N = elements
B = buckets

30

Summary
● Array
● Linked List

– Stack

– Queue

● Tree
– Binary Tree

– Binary Search Tree

– Heap

– …

● Hash Table
● Graph

31

DSAP Usage

● In several applications, arrays (and matrices)
suffice. The data is static.

● Most of our data structures are designed for
other cases: the data is dynamic.

● Properties of the problem dictate both the
algorithm and the associated data structures.

● Algorithms often use data structures as tools.

ID6105: Computational Tools:
Algorithms, Data Structures and Programs

B. S. V. Prasad Patnaik, Rupesh Nasre.

August 2021

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

