
Complexity

Rupesh Nasre.
rupesh@iitm.ac.in

July 2019

 2

Algorithms

● We looked at program correctness.
● For the same problem, there could be multiple

algorithms.
● An algorithm is a clearly specified sequence of

simple instructions that solve a given problem.
– An algorithm, by definition, terminates.
– Otherwise, the sequence of instructions constitutes a

procedure.

● The algorithm should be so clear to you that you
should be able to make a machine understand it.
– This is called programming.

 3

Algorithm Efficiency

● For the same problem, there could be multiple
algorithms.

● We prefer the ones that run fast.
– I don’t want an algorithm that takes a year to sort!

– By the way, there are computations that run for
months!

– Operating systems on servers may run for years.

● We would like to compare algorithms based on
their speed.
– Mathematical model to capture algorithm efficiency.

 4

Misconceptions

● Program P1 takes 10 seconds, P2 takes 20
seconds, so I would choose P1.
– Execution time is input-dependent.

– Execution time is hardware-dependent.

– Execution time is machine-load dependent.

– Execution time is run-dependent too!

– Other factors play a role; for instance:

whether the program is running in hostel or in DCF

Or whether in Chennai or Kashmir

Or whether in May or December!

 5

Examples

a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

Irrespective of the values of a and
b, this program would take time
proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

 6

Examples

a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

a[ii] = 0;a[ii] = 0;

x = y;
if (x > 0)

y = x + 1;
else

z = x + 1;

x = y;
if (x > 0)

y = x + 1;
else

z = x + 1;

for (ii = 0; ii < 1000; ++ii)
a[ii] = 0;

for (ii = 0; ii < 1000; ++ii)
a[ii] = 0;

All of these are
equally
efficient!

● They all perform
constant-time
operations.

● We denote
those as O(1).

 7

Examples

a[0] = 0;
a[1] = 0;
a[2] = 0;
...
a[n – 1] = 0;

a[0] = 0;
a[1] = 0;
a[2] = 0;
...
a[n – 1] = 0;

int fact(int n) {
return n * fact(n – 1);

}

int fact(int n) {
return n * fact(n – 1);

}

for (ii = 0; ii < n; ++ii)
a[ii] = 0;

for (ii = 0; ii < n; ++ii)
a[ii] = 0;

 All of these are
 equally efficient!

● They all perform
linear-time operation
(linear in n).

● We denote those as
O(n).

 8

Definition

● T(N) = O(1) if T(N) ≤ c when N ≥ n0, for some
positive c and n0.

● T(N) = O(N) if T(N) ≤ cN when N ≥ n0, for some
positive c and n0.

● In general,

T(N) = O(f(N)) if there exist positive constants
c and n0 such that T(N) ≤ cf(N) when N ≥ n0.

● Complexity captures the rate of growth of a
function.

 9

Big O

● In general,

T(N) = O(f(N)) if there exist positive constants
c and n0 such that T(N) ≤ cf(N) when N ≥ n0.

● The complexity is upper-bounded by c*f(N).
● Thus, big O is the worst-case complexity.

n
0

cf
(N

)

T(N)

 10

Examples

a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

Irrespective of the values of a and
b, this program would take time
proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

O(1)

O(N)

O(N*M)

 11

Big O as a Relation

● Recall from Discrete Mathematics
● O is reflexive: T(n) is O(T(n)).

● O is transitive: If T1(n) is O(T2(n)) and T2(n) is
O(T3(n)), then T1(n) is O(T3(n)).

● O is not symmetric: T1(n) being O(T2(n)) does
not imply T2(n) is O(T1(n)).

 12

Types of Complexities
Symbol Name Bound Equation

O(...) Big O Upper T(n) <= cf(n)

Ω(...) Big Omega Lower T(n) >= cf(n)

Θ(...) Theta Upper and Lower c
1
f(n) <= T(n) <= c

2
f(n)

o(...) Little O Strictly Upper T(n) < cf(n)

ω(...) Little Omega Strictly Lower T(n) > cf(n)

 13

Notes

● Θ means O and Ω. It is a stronger guarantee on
the complexity.

● If T(n) is O(n), then T(n) is also O(n2), also
O(nlogn), also O(n3), O(n100), O(2n); but it is not
O(logn) or O(1).

● Big O is also called Big Oh.
● T(n) = T(n/2) = T(1000n) = T(nlog2) = T(2logn)

● Log2(x), that is, log to the base 2 is sometimes
written as lg(x).

● If T(n) = O(f(n)) then f(n) = Ω(T(n)).

 14

Theta as a Relation

● Recall from Discrete Mathematics
● Θ is reflexive: T(n) is Θ(T(n)).

● Θ is transitive: If T1(n) is Θ(T2(n)) and T2(n) is
Θ(T3(n)), then T1(n) is Θ(T3(n)).

● Θ is symmetric: T1(n) being Θ(T2(n)) does imply
T2(n) is Θ(T1(n)).

● Thus, complexity functions can be partitioned
based on relation Θ.

 15

Complexity Arithmetic

● If T1(n) = O(f(n)) and T2(n) = O(g(n)), then
– T1(n) + T2(n) =

– T1(n) * T2(n) =

● Classwork:
– Write a C code that requires the use of T1(n) + T2(n).

– Write a C code that requires the use of T1(n) * T2(n).

max(O(f(n), O(g(n)))
O(f(n) * g(n))

 16

Typical Complexities
Function Name

c Constant

Log N Logarithmic

Log2 N Log-squared

N Linear

N log N Superlinear

N2 Quadratic

N3 Cubic

2N Exponential

Homework: Find which one grows faster:
nlogn or n1.5.

 17

Complexity Comparison

● Given two complexity functions f(n) and g(n),
we can determine relative growth rates using
limn→∞ f(n) / g(n), using L’Hospital’s rule.

● Four possible values:
– The limit is zero, implies f(n) = o(g(n)).

– The limit is c ≠ 0, implies f(n) = Θ(g(n)).

– The limit is ∞, implies g(n) = o(f(n)).

– The limit oscillates, implies there is no relation.

 18

Facets of Efficiency

● An algorithm or its implementation may have
various facets towards efficiency.
– Time complexity (which we usually focus on)

– Space complexity (considered in memory-critical
systems such as embedded devices)

– Energy complexity (e.g., your smartphones)

– Security level (e.g., program with less versus more
usage of pointers)

– I/O complexity

– ...

 19

Max. Subsequence Sum

4 -3 5 -2 -1 2 6 -2

6 5

9

● Problem Statement

Given an array of (positive, negative, zero)
integer values, find the largest subsequence
sum.

● A subsequence is a consecutive set of
elements. If empty, its sum is zero.

 20

MSS: Algorithm 1

Exhaustive Algorithm

For each possible subsequence

 Compute sum

 If sum > current maxsum

 current maxsum = sum

Return current maxsum

How many
subsequences?

What is the complexity
of this part?

Source: mss1.cpp

Algorithm 1 takes O(N3) running time.

 21

MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of

operations:

∑ ∑ ∑ O(1)
N-1

i=0 j=i

N-1 j

k=i

We will assume O(1) to be
equal to constant 1. This
would affect only the
constant in BigOh.

j – i + 1

 22

MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of

operations:

∑ ∑ (j – i + 1)
N-1

i=0 j=i

N-1

sum of first N-i integers
=

(N – i)(N – i + 1) / 2

 23

MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of

operations:

∑ (N – i)(N – i + 1) / 2
N-1

i=0

 = (N3 + 3N2 + 2N) / 6
 = O(N3)

The analysis is tight.
Is the algorithm tight?

 24

MSS: Algorithm 2

● Observation:

∑ ∑
k=i

j
A[k] = A[j] +

k=i

j-1

A[k]

For each starting position i
 For each ending position j
 Incrementally compute sum

If sum > maxsum
maxsum = sum

Return maxsum
Source: mss2.cpp

What is the complexity
of this algorithm?

 25

MSS: Algorithm 3

● Observation: Discard fruitless subsequences early.

For each position

 Add next element to sum

 If sum > maxsum

 Maxsum = sum

 Else if sum is negative

 sum = 0

Are you kidding?
This shouldn’t work.

This is linear time algorithm!

Source: mss3.cpp

It works due to the magic of
greedy algorithms.

 26

Binary Search

● Go to page number 44.
● Searching in an array takes linear time O(N).
● If the array is sorted already, we can do better.
● We can cut the search space by half at every

step.

5 7 8 20 23 42 43 44 78 81

Classwork: Write the code for binary search.
Source: bsearch.cpp

 27

Binary Search

● Constant amount of time required to
– Find the mid element.

– Check if it is the element to be searched.

– Decide whether to go to the left or the right.

– Cut the search space by half.

● T(N) = T(N/2) + O(1)
– Thus, T(N) is O(logN).

 28

Exercises

● Solve exercises at the end of Chapter 2 of
Weiss’s book.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

