Complexity

Rupesh Nasre.
rupesh@iitm.ac.in

Algorithms

- We looked at program correctness.
- For the same problem, there could be multiple algorithms.
- An algorithm is a clearly specified sequence of simple instructions that solve a given problem.
- An algorithm, by definition, terminates.
- Otherwise, the sequence of instructions constitutes a procedure.
- The algorithm should be so clear to you that you should be able to make a machine understand it.
- This is called programming.

Algorithm Efficiency

- For the same problem, there could be multiple algorithms.
- We prefer the ones that run fast.
- I don't want an algorithm that takes a year to sort!
- By the way, there are computations that run for months!
- Operating systems on servers may run for years.
- We would like to compare algorithms based on their speed.
- Mathematical model to capture algorithm efficiency. ${ }_{3}$

Misconceptions

- Program P1 takes 10 seconds, P2 takes 20 seconds, so I would choose P1.
- Execution time is input-dependent.
- Execution time is hardware-dependent.
- Execution time is machine-load dependent.
- Execution time is run-dependent too!
- Other factors play a role; for instance: whether the program is running in hostel or in DCF Or whether in Chennai or Kashmir Or whether in May or December!

Examples

$$
\begin{aligned}
& \mathrm{a}=\mathrm{a}+\mathrm{b} \\
& \mathrm{~b}=\mathrm{a}-\mathrm{b} \\
& \mathrm{a}=\mathrm{a}-\mathrm{b}
\end{aligned}
$$

Irrespective of the values of a and b, this program would take time proportional to three instructions.

Proportional to N .

Proportional to $\mathrm{N} * \mathrm{M}$.

```
int fun(int n) {
    return (n == 0 ? 1:4* fun(n / 3));
```

?
\}

Examples

$$
\begin{aligned}
& \mathrm{a}=\mathrm{a}+\mathrm{b} \\
& \mathrm{~b}=\mathrm{a}-\mathrm{b} \\
& \mathrm{a}=\mathrm{a}-\mathrm{b}
\end{aligned}
$$

$$
\mathrm{a}[\mathrm{ii}]=0 ;
$$

$$
x=y ;
$$

$$
\text { if }(x>0)
$$

$$
\mathrm{y}=\mathrm{x}+1
$$

else

$$
\mathrm{z}=\mathrm{x}+1
$$

$$
\begin{aligned}
& \text { for (ii }=0 ; \text { ii }<1000 ;++i i) \\
& \quad a[i i]=0 ;
\end{aligned}
$$

All of these are equally efficient!

- They all perform constant-time operations.
- We denote those as $\mathrm{O}(1)$.

Examples

$$
\begin{aligned}
& \mathrm{a}[0]=0 ; \\
& \mathrm{a}[1]=0 ; \\
& \mathrm{a}[2]=0 ; \\
& \ldots \\
& \mathrm{a}[\mathrm{n}-1]=0 ;
\end{aligned}
$$

$$
\text { int fact(int } n)\{
$$

$$
\text { return } n * \operatorname{fact}(\mathrm{n}-1)
$$

$$
\begin{aligned}
& \text { for (ii }=0 ; \text { ii }<n ;++i i) \\
& \quad \text { a[ii] }=0 ;
\end{aligned}
$$

All of these are equally efficient!

- They all perform linear-time operation (linear in n).
- We denote those as $\mathrm{O}(\mathrm{n})$.

Definition

- $T(N)=O(1)$ if $T(N) \leq c$ when $N \geq n_{0}$, for some positive c and n_{0}.
- $T(N)=O(N)$ if $T(N) \leq c N$ when $N \geq n_{0}$, for some positive c and n_{0}.
- In general,
$\mathbf{T}(\mathbf{N})=\mathbf{O}(\mathbf{f}(\mathbf{N}))$ if there exist positive constants c and n_{0} such that $T(N) \leq \operatorname{cf}(N)$ when $N \geq n_{0}$.
- Complexity captures the rate of growth of a function.

Big O

- In general,
$\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$ if there exist positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ when $\mathrm{N} \geq \mathrm{n}_{0}$.
- The complexity is upper-bounded by $\mathrm{c}^{* f}(\mathrm{~N})$.
- Thus, big O is the worst-case complexity.

Examples

$$
\begin{align*}
& \mathrm{a}=\mathrm{a}+\mathrm{b} \\
& \mathrm{~b}=\mathrm{a}-\mathrm{b} \tag{1}\\
& \mathrm{a}=\mathrm{a}-\mathrm{b}
\end{align*}
$$

Irrespective of the values of a and b, this program would take time proportional to three instructions.

Proportional to N .
for (ii $=0 ; \mathrm{ii}<\mathrm{N} ;++\mathrm{ii}$)

$$
\begin{gathered}
\text { for }(\mathrm{jj}=0 ; \mathrm{jj}<\mathrm{M} ;++\mathrm{jj}) \\
\quad \operatorname{mat}[\mathrm{ii}][\mathrm{jj}]=\mathrm{ii}+\mathrm{jj} ;
\end{gathered}
$$

int fun(int n) \{
$?$
return ($\mathrm{n}==0$? $1: 4^{*} \boldsymbol{f u n}(\mathrm{n} / 3)$);

Big O as a Relation

- Recall from Discrete Mathematics
- O is reflexive: $T(n)$ is $O(T(n))$.
- O is transitive: If $T_{1}(n)$ is $O\left(T_{2}(n)\right)$ and $T_{2}(n)$ is $\mathrm{O}\left(\mathrm{T}_{3}(\mathrm{n})\right)$, then $\mathrm{T}_{1}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{T}_{3}(\mathrm{n})\right)$.
- O is not symmetric: $T_{1}(n)$ being $O\left(T_{2}(n)\right)$ does not imply $T_{2}(n)$ is $O\left(T_{1}(n)\right)$.

Types of Complexities

Symbol	Name	Bound	Equation
$\mathrm{O}(\ldots)$	Big O	Upper	$\mathrm{T}(\mathrm{n})<=\operatorname{cf}(\mathrm{n})$
$\Omega(\ldots)$	Big Omega	Lower	$\mathrm{T}(\mathrm{n})>=\mathrm{cf}(\mathrm{n})$
$\boldsymbol{O}(\ldots)$	Theta	Upper and Lower	$\mathrm{c}_{1} \mathrm{f}(\mathrm{n})<=\mathrm{T}(\mathrm{n})<=\mathrm{c}_{2} \mathrm{f}(\mathrm{n})$
$\mathbf{O}(\ldots)$	Little O	Strictly Upper	$\mathrm{T}(\mathrm{n})<\mathrm{cf}(\mathrm{n})$
$\boldsymbol{\omega (\ldots)}$	Little Omega	Strictly Lower	$\mathrm{T}(\mathrm{n})>\mathrm{cf}(\mathrm{n})$

Notes

- Θ means O and Ω. It is a stronger guarantee on the complexity.
- If $T(n)$ is $O(n)$, then $T(n)$ is also $O\left(n^{2}\right)$, also O (nlogn), also $\mathrm{O}\left(\mathrm{n}^{3}\right), \mathrm{O}\left(\mathrm{n}^{100}\right), \mathrm{O}\left(2^{n}\right)$; but it is not $\mathrm{O}(\operatorname{logn})$ or $\mathrm{O}(1)$.
- Big O is also called Big Oh.
- $T(n)=T(n / 2)=T(1000 n)=T(n \log 2)=T\left(2^{\log n}\right)$
- $\log _{2}(x)$, that is, log to the base 2 is sometimes written as $\lg (x)$.
- If $T(n)=O(f(n))$ then $f(n)=\Omega(T(n))$.

Theta as a Relation

- Recall from Discrete Mathematics
- Θ is reflexive: $T(n)$ is $\Theta(T(n))$.
- Θ is transitive: If $T_{1}(n)$ is $\Theta\left(T_{2}(n)\right)$ and $T_{2}(n)$ is $\Theta\left(T_{3}(n)\right)$, then $T_{1}(n)$ is $\Theta\left(T_{3}(n)\right)$.
- Θ is symmetric: $T_{1}(n)$ being $\Theta\left(T_{2}(n)\right)$ does imply $T_{2}(n)$ is $\Theta\left(T_{1}(n)\right)$.
- Thus, complexity functions can be partitioned based on relation Θ.

Complexity Arithmetic

- If $T 1(n)=O(f(n))$ and $T 2(n)=O(g(n))$, then
$-T 1(n)+T 2(n)=\max (O(f(n), O(g(n)))$
$-T 1(n) * T 2(n)=O(f(n) * g(n))$
- Classwork:
- Write a C code that requires the use of $\mathrm{T} 1(\mathrm{n})+\mathrm{T} 2(\mathrm{n})$.
- Write a C code that requires the use of $T 1(n) * T 2(n)$.

Typical Complexities

Function	Name
Log N	Logarithmic
Log $^{2} \mathrm{~N}$	Log-squared
N	Linear
$\mathrm{N} \log \mathrm{N}$	Superlinear
N^{2}	Quadratic
N^{3}	Cubic
2^{N}	Exponential

Homework: Find which one grows faster: nlogn or $\mathrm{n}^{1.5}$.

Complexity Comparison

- Given two complexity functions $f(n)$ and $g(n)$, we can determine relative growth rates using $\lim _{n \rightarrow \infty} f(n) / g(n)$, using L'Hospital's rule.
- Four possible values:
- The limit is zero, implies $f(n)=o(g(n))$.
- The limit is $c \neq 0$, implies $f(n)=\Theta(g(n))$.
- The limit is ∞, implies $g(n)=o(f(n))$.
- The limit oscillates, implies there is no relation.

Facets of Efficiency

- An algorithm or its implementation may have various facets towards efficiency.
- Time complexity (which we usually focus on)
- Space complexity (considered in memory-critical systems such as embedded devices)
- Energy complexity (e.g., your smartphones)
- Security level (e.g., program with less versus more usage of pointers)
- I/O complexity
- ...

Max. Subsequence Sum

- Problem Statement

Given an array of (positive, negative, zero) integer values, find the largest subsequence sum.

- A subsequence is a consecutive set of elements. If empty, its sum is zero.

MSS: Algorithm 1

Exhaustive Algorithm

For each possible subsequence
Compute sum
If sum > current maxsum current maxsum = sum

What is the complexity of this part?

Return current maxsum

Algorithm 1 takes $\mathrm{O}\left(\mathrm{N}^{3}\right)$ running time.

MSS: Algorithm 1

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$
\begin{gathered}
\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} \sum_{k=i}^{j} O(1) \\
\begin{array}{l}
\text { We will assume } O(1) \text { to be } \\
\text { equal to constant 1. This } \\
\text { would affect only the } \\
\text { constant in BigOh. }
\end{array} \\
j-i+1
\end{gathered}
$$

MSS: Algorithm 1

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$
\sum_{i=0}^{N-1} \sum_{j=i}^{N-1}(j-i+1)
$$

sum of first N -i integers

$$
(N-i)(N-i+1) / 2
$$

MSS: Algorithm 1

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$\sum_{i}^{N-1}(N-i)(N-i+1) / 2$

$=\left(\mathrm{N}^{3}+3 \mathrm{~N}^{2}+2 \mathrm{~N}\right) / 6$
$=O\left(N^{3}\right)$

The analysis is tight. Is the algorithm tight?

MSS: Algorithm 2

- Observation:

$$
\sum_{k=i}^{j} A[k]=A[j]+\sum_{k=i}^{j-1} A[k]
$$

For each starting position i
For each ending position j
Incrementally compute sum
If sum > maxsum
maxsum = sum

What is the complexity of this algorithm?

Return maxsum

MSS: Algorithm 3

- Observation: Discard fruitless subsequences early.

For each position
Add next element to sum
If sum > maxsum
Maxsum = sum
Else if sum is negative

$$
\text { sum }=0
$$

It works due to the magic of greedy algorithms.

Binary Search

- Go to page number 44.
- Searching in an array takes linear time $O(N)$.
- If the array is sorted already, we can do better.
- We can cut the search space by half at every step.

Classwork: Write the code for binary search. Source: bsearch.cpp

Binary Search

- Constant amount of time required to
- Find the mid element.
- Check if it is the element to be searched.
- Decide whether to go to the left or the right.
- Cut the search space by half.
- $T(N)=T(N / 2)+O(1)$
- Thus, $T(N)$ is $O(\log N)$.

Exercises

- Solve exercises at the end of Chapter 2 of Weiss's book.

