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Algorithms

● We looked at program correctness.
● For the same problem, there could be multiple 

algorithms.
● An algorithm is a clearly specified sequence of 

simple instructions that solve a given problem.
– An algorithm, by definition, terminates.
– Otherwise, the sequence of instructions constitutes a 

procedure.

● The algorithm should be so clear to you that you 
should be able to make a machine understand it.
– This is called programming.
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Algorithm Efficiency

● For the same problem, there could be multiple 
algorithms.

● We prefer the ones that run fast.
– I don’t want an algorithm that takes a year to sort!

– By the way, there are computations that run for 
months!

– Operating systems on servers may run for years.

● We would like to compare algorithms based on 
their speed.
– Mathematical model to capture algorithm efficiency.
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Misconceptions

● Program P1 takes 10 seconds, P2 takes 20 
seconds, so I would choose P1.
– Execution time is input-dependent.

– Execution time is hardware-dependent.

– Execution time is machine-load dependent.

– Execution time is run-dependent too!

– Other factors play a role; for instance:

whether the program is running in hostel or in DCF

Or whether in Chennai or Kashmir

Or whether in May or December!
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Examples

a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

Irrespective of the values of a and 
b, this program would take time 
proportional to three instructions.

Proportional to N.

Proportional to N*M.

?
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Examples

a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

a[ii] = 0;a[ii] = 0;

x = y;
if (x > 0)

y = x + 1;
else

z = x + 1;

x = y;
if (x > 0)

y = x + 1;
else

z = x + 1;

for (ii = 0; ii < 1000; ++ii)
a[ii] = 0;

for (ii = 0; ii < 1000; ++ii)
a[ii] = 0;

All of these are 
equally 
efficient!

● They all perform 
constant-time 
operations.

● We denote 
those as O(1).
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Examples

a[0] = 0;
a[1] = 0;
a[2] = 0;
...
a[n – 1] = 0;

a[0] = 0;
a[1] = 0;
a[2] = 0;
...
a[n – 1] = 0;

int fact(int n) {
return n * fact(n – 1);

}

int fact(int n) {
return n * fact(n – 1);

}

for (ii = 0; ii < n; ++ii)
a[ii] = 0;

for (ii = 0; ii < n; ++ii)
a[ii] = 0;

  All of these are   
  equally efficient!

● They all perform 
linear-time operation 
(linear in n).

● We denote those as 
O(n).
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Definition

● T(N) = O(1) if T(N) ≤ c when N ≥ n0, for some 
positive c and n0.

● T(N) = O(N) if T(N) ≤ cN when N ≥ n0, for some 
positive c and n0. 

● In general,

T(N) = O(f(N)) if there exist positive constants 
c and n0 such that T(N) ≤ cf(N) when N ≥ n0.

● Complexity captures the rate of growth of a 
function.
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Big O

● In general,

T(N) = O(f(N)) if there exist positive constants 
c and n0 such that T(N) ≤ cf(N) when N ≥ n0.

● The complexity is upper-bounded by c*f(N).
● Thus, big O is the worst-case complexity.

n
0

cf
(N

)

T(N)
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Examples

a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

Irrespective of the values of a and 
b, this program would take time 
proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

O(1)

O(N)

O(N*M)
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Big O as a Relation

● Recall from Discrete Mathematics
● O is reflexive: T(n) is O(T(n)).

● O is transitive: If T1(n) is O(T2(n)) and T2(n) is   
O(T3(n)), then T1(n) is O(T3(n)).

● O is not symmetric: T1(n) being O(T2(n)) does 
not imply T2(n) is O(T1(n)).
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Types of Complexities
Symbol Name Bound Equation

O(...) Big O Upper T(n) <= cf(n)

Ω(...) Big Omega Lower T(n) >= cf(n)

Θ(...) Theta Upper and Lower c
1
f(n) <= T(n) <= c

2
f(n)

o(...) Little O Strictly Upper T(n) < cf(n)

ω(...) Little Omega Strictly Lower T(n) > cf(n)
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Notes

● Θ means O and Ω. It is a stronger guarantee on 
the complexity.

● If T(n) is O(n), then T(n) is also O(n2), also 
O(nlogn), also O(n3), O(n100), O(2n); but it is not 
O(logn) or O(1).

● Big O is also called Big Oh.
● T(n) = T(n/2) = T(1000n) = T(nlog2) = T(2logn)

● Log2(x), that is, log to the base 2 is sometimes 
written as lg(x).

● If T(n) = O(f(n)) then f(n) = Ω(T(n)).
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Theta as a Relation

● Recall from Discrete Mathematics
● Θ is reflexive: T(n) is Θ(T(n)).

● Θ is transitive: If T1(n) is Θ(T2(n)) and T2(n) is   
Θ(T3(n)), then T1(n) is Θ(T3(n)).

● Θ is symmetric: T1(n) being Θ(T2(n)) does imply 
T2(n) is Θ(T1(n)).

● Thus, complexity functions can be partitioned 
based on relation Θ.
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Complexity Arithmetic

● If T1(n) = O(f(n)) and T2(n) = O(g(n)), then
– T1(n) + T2(n) =  

– T1(n) * T2(n) = 

● Classwork:
– Write a C code that requires the use of T1(n) + T2(n).

– Write a C code that requires the use of T1(n) * T2(n).

max(O(f(n), O(g(n)))
O(f(n) * g(n))
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Typical Complexities
Function Name

c Constant

Log N Logarithmic

Log2 N Log-squared

N Linear

N log N Superlinear

N2 Quadratic

N3 Cubic

2N Exponential

Homework: Find which one grows faster: 
nlogn or n1.5.
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Complexity Comparison

● Given two complexity functions f(n) and g(n), 
we can determine relative growth rates using 
limn→∞ f(n) / g(n), using L’Hospital’s rule.

● Four possible values:
– The limit is zero, implies f(n) = o(g(n)).

– The limit is c ≠ 0, implies f(n) = Θ(g(n)).

– The limit is ∞, implies g(n) = o(f(n)).

– The limit oscillates, implies there is no relation.
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Facets of Efficiency

● An algorithm or its implementation may have 
various facets towards efficiency.
– Time complexity (which we usually focus on)

– Space complexity (considered in memory-critical 
systems such as embedded devices)

– Energy complexity (e.g., your smartphones)

– Security level (e.g., program with less versus more 
usage of pointers)

– I/O complexity

– ...
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Max. Subsequence Sum

4 -3 5 -2 -1 2 6 -2

6 5

9

● Problem Statement

Given an array of (positive, negative, zero) 
integer values, find the largest subsequence 
sum.

● A subsequence is a consecutive set of 
elements. If empty, its sum is zero.
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MSS: Algorithm 1

Exhaustive Algorithm

For each possible subsequence

    Compute sum

    If sum > current maxsum

        current maxsum = sum

Return current maxsum

How many 
subsequences?

What is the complexity
of this part?

Source: mss1.cpp

Algorithm 1 takes O(N3) running time.
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MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of 

operations:

∑    ∑    ∑ O(1)
N-1

i=0 j=i

N-1 j

k=i

We will assume O(1) to be 
equal to constant 1. This 
would affect only the 
constant in BigOh.

j – i + 1
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MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of 

operations:

∑    ∑    (j – i + 1)
N-1

i=0 j=i

N-1

sum of first N-i integers
=

(N – i)(N – i + 1) / 2
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MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of 

operations:

∑   (N – i)(N – i + 1) / 2
N-1

i=0

 = (N3 + 3N2 + 2N) / 6
 = O(N3)

The analysis is tight.
Is the algorithm tight?
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MSS: Algorithm 2

● Observation:

∑ ∑
k=i

j
A[k]   =     A[j] +  

k=i

j-1

A[k]

For each starting position i
    For each ending position j
        Incrementally compute sum

If sum > maxsum
maxsum = sum

Return maxsum
Source: mss2.cpp

What is the complexity
of this algorithm?
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MSS: Algorithm 3

● Observation: Discard fruitless subsequences early.

For each position

    Add next element to sum

    If sum > maxsum

        Maxsum = sum

    Else if sum is negative

        sum = 0

Are you kidding?
This shouldn’t work.

This is linear time algorithm!

Source: mss3.cpp

It works due to the magic of 
greedy algorithms.
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Binary Search

● Go to page number 44.
● Searching in an array takes linear time O(N).
● If the array is sorted already, we can do better.
● We can cut the search space by half at every 

step.

5 7 8 20 23 42 43 44 78 81

Classwork: Write the code for binary search.
Source: bsearch.cpp
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Binary Search

● Constant amount of time required to
– Find the mid element.

– Check if it is the element to be searched.

– Decide whether to go to the left or the right.

– Cut the search space by half.

● T(N) = T(N/2) + O(1)
– Thus, T(N) is O(logN).
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Exercises

● Solve exercises at the end of Chapter 2 of 
Weiss’s book.
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