Complexity

Rupesh Nasre. rupesh@iitm.ac.in

July 2019

Algorithms

- We looked at program correctness.
- For the same problem, there could be multiple algorithms.
- An algorithm is a clearly specified sequence of simple instructions that solve a given problem.
 - An algorithm, by definition, terminates.
 - Otherwise, the sequence of instructions constitutes a procedure.
- The algorithm should be so clear to you that you should be able to make a machine understand it.
 - This is called programming.

Algorithm Efficiency

- For the same problem, there could be multiple algorithms.
- We prefer the ones that run fast.
 - I don't want an algorithm that takes a year to sort!
 - By the way, there are computations that run for months!
 - Operating systems on servers may run for years.
- We would like to compare algorithms based on their speed.
 - Mathematical model to capture algorithm efficiency.

Misconceptions

- Program P1 takes 10 seconds, P2 takes 20 seconds, so I would choose P1.
 - Execution time is input-dependent.
 - Execution time is hardware-dependent.
 - Execution time is machine-load dependent.
 - Execution time is run-dependent too!
 - Other factors play a role; for instance:
 whether the program is running in hostel or in DCF
 Or whether in Chennai or Kashmir
 Or whether in May or December!

$$a = a + b;$$

 $b = a - b;$
 $a = a - b;$

for (ii = 0; ii < N; ++ii)
 a[ii] = 0;</pre>

for (ii = 0; ii < N; ++ii)
 for (jj = 0; jj < M; ++jj)
 mat[ii][jj] = ii + jj;</pre>

int fun(int n) {
 return (n == 0 ? 1 : 4 * fun(n / 3));

Irrespective of the values of a and b, this program would take time proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

$$a = a + b;$$

 $b = a - b;$
 $a = a - b;$

$$x = y;$$

if (x > 0)
 $y = x + 1;$
else
 $z = x + 1;$

All of these are equally efficient!

- They all perform constant-time operations.
- We denote those as $O(1)_{6}$.

$$a[0] = 0;$$

 $a[1] = 0;$
 $a[2] = 0;$
...
 $a[n - 1] = 0;$

int fact(int n) {
 return n * fact(n - 1);

for (ii = 0; ii < n; ++ii)
 a[ii] = 0;</pre>

All of these are equally efficient!

- They all perform linear-time operation *(linear in n)*.
- We denote those as O(n).

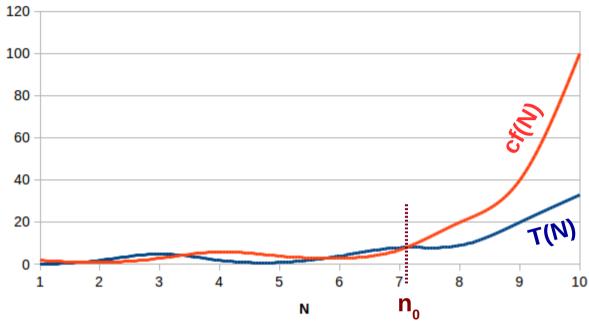
Definition

- T(N) = O(1) if $T(N) \le c$ when $N \ge n_0$, for some positive c and n_0 .
- T(N) = O(N) if $T(N) \le cN$ when $N \ge n_0$, for some positive c and n_0 .
- In general,

T(N) = O(f(N)) if there exist positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

• Complexity captures the rate of growth of a function.

Big O



• In general,

T(N) = O(f(N)) if there exist positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

- The complexity is upper-bounded by c*f(N).
- Thus, big O is the worst-case complexity.

a = a + b; b = a - b;a = a - b;

O(1)

Irrespective of the values of a and b, this program would take time proportional to three instructions.

for (ii = 0; ii < N; ++ii) a[ii] = 0;

Proportional to N.

Proportional to N*M.

for (ii = 0; ii < N; ++ii) for (jj = 0; jj < M; ++jj) mat[ii][jj] = ii + jj;

O(N*M)

O(N)

int fun(int n) {
 return (n == 0 ? 1 : 4 * fun(n / 3));

?

Big O as a Relation

- Recall from Discrete Mathematics
- O is reflexive: T(n) is O(T(n)).
- O is transitive: If $T_1(n)$ is $O(T_2(n))$ and $T_2(n)$ is $O(T_3(n))$, then $T_1(n)$ is $O(T_3(n))$.
- O is not symmetric: T₁(n) being O(T₂(n)) does not imply T₂(n) is O(T₁(n)).

Types of Complexities

Symbol	Name	Bound	Equation
O()	Big O	Upper	T(n) <= cf(n)
Ω()	Big Omega	Lower	T(n) >= cf(n)
Θ()	Theta	Upper and Lower	$c_1 f(n) \le T(n) \le c_2 f(n)$
o()	Little O	Strictly Upper	T(n) < cf(n)
ω()	Little Omega	Strictly Lower	T(n) > cf(n)

Notes

- Θ means O and Ω . It is a stronger guarantee on the complexity.
- If T(n) is O(n), then T(n) is also O(n²), also O(nlogn), also O(n³), O(n¹⁰⁰), O(2ⁿ); but it is <u>not</u> O(logn) or O(1).
- Big O is also called Big Oh.
- $T(n) = T(n/2) = T(1000n) = T(nlog2) = T(2^{logn})$
- Log₂(x), that is, *log to the base 2* is sometimes written as lg(x).
- If T(n) = O(f(n)) then $f(n) = \Omega(T(n))$.

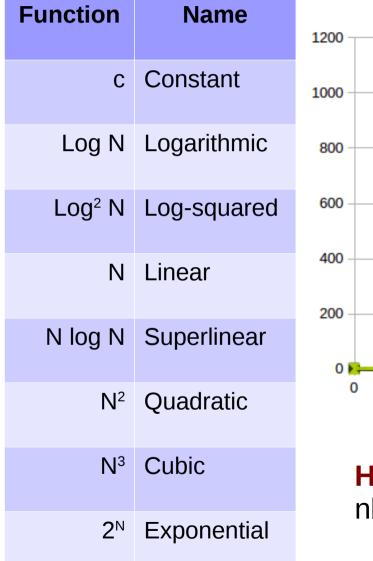
Theta as a Relation

- Recall from Discrete Mathematics
- Θ is reflexive: T(n) is Θ (T(n)).
- Θ is transitive: If $T_1(n)$ is $\Theta(T_2(n))$ and $T_2(n)$ is $\Theta(T_3(n))$, then $T_1(n)$ is $\Theta(T_3(n))$.
- Θ is symmetric: $T_1(n)$ being $\Theta(T_2(n))$ does imply $T_2(n)$ is $\Theta(T_1(n))$.
- Thus, complexity functions can be partitioned based on relation Θ .

Complexity Arithmetic

- If T1(n) = O(f(n)) and T2(n) = O(g(n)), then
 - T1(n) + T2(n) = max(O(f(n), O(g(n))))
 - T1(n) * T2(n) = O(f(n) * g(n))
- Classwork:
 - Write a C code that requires the use of T1(n) + T2(n).
 - Write a C code that requires the use of T1(n) * T2(n).

Typical Complexities





Homework: Find which one grows faster: nlogn or n^{1.5}.

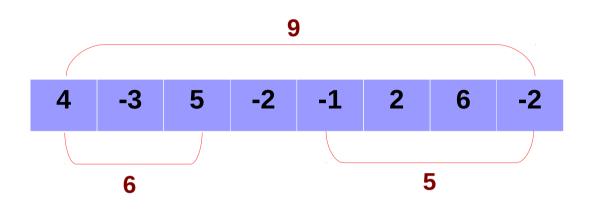
Complexity Comparison

- Given two complexity functions f(n) and g(n), we can determine relative growth rates using $\lim_{n\to\infty} f(n) / g(n)$, using L'Hospital's rule.
- Four possible values:
 - The limit is zero, implies f(n) = o(g(n)).
 - The limit is $c \neq 0$, implies $f(n) = \Theta(g(n))$.
 - The limit is ∞ , implies g(n) = o(f(n)).
 - The limit oscillates, implies there is no relation.

Facets of Efficiency

- An algorithm or its implementation may have various facets towards efficiency.
 - Time complexity (which we usually focus on)
 - Space complexity (considered in memory-critical systems such as embedded devices)
 - Energy complexity (e.g., your smartphones)
 - Security level (e.g., program with less versus more usage of pointers)
 - I/O complexity

Max. Subsequence Sum



Problem Statement

Given an array of (positive, negative, zero) integer values, find the largest subsequence sum.

• A subsequence is a consecutive set of elements. If empty, its sum is zero.

Exhaustive Algorithm

For each possible subsequence

Compute sum

If sum > current maxsum

current maxsum = sum

Return current maxsum

<

How many

subsequences?

What is the complexity of this part?

Algorithm 1 takes O(N³) running time.

Source: mss1.cpp

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} \sum_{k=i}^{j} O(1)$$

i - i + 1

We will assume O(1) to be equal to constant 1. This would affect only the constant in BigOh.

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} (j-i+1)$$
sum of first N-i integers
$$= (N-i)(N-i+1)/2$$

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} (N-i)(N-i+1)/2$$

 $= (N^3 + 3N^2 + 2N) / 6$

 $= O(N^{3})$

The analysis is tight. Is the algorithm tight?

• Observation:

$$\sum_{k=i}^{j} A[k] = A[j] + \sum_{k=i}^{j-1} A[k]$$

For each starting position i For each ending position j Incrementally compute sum If sum > maxsum maxsum = sum Return maxsum

What is the complexity of this algorithm?

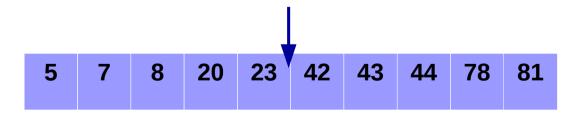
- **Observation**: Discard fruitless subsequences early.
- For each position
 - Add next element to sum
 - *If sum > maxsum*
 - Maxsum = sum
 - Else if sum is negative
 - *sum* = 0

Are you kidding? This shouldn't work. This is linear time algorithm!

It works due to the magic of **greedy algorithms**.

Binary Search

- Go to page number 44.
- Searching in an array takes linear time O(N).
- If the array is sorted already, we can do better.
- We can cut the *search space* by half at every step.



Classwork: Write the code for binary search. **Source: bsearch.cpp**

Binary Search

- Constant amount of time required to
 - Find the mid element.
 - Check if it is the element to be searched.
 - Decide whether to go to the left or the right.
 - Cut the search space by half.
- T(N) = T(N/2) + O(1)
 - Thus, T(N) is O(logN).

Exercises

• Solve exercises at the end of Chapter 2 of Weiss's book.