
Graphs

Rupesh Nasre.
rupesh@cse.iitm.ac.in

July 2022

2

Graphs are Everywhere!

Source: Google images

3

Graphs

● Most general data structure
– list, stack, queue, tree, ... are special cases.

● Hence, less guarantees, more freedom
● Various types

– (un)weighted, (un)directed, bipartite, (a)cyclic, ...

● A graph G consists of:
– A set of nodes / vertices V
– A set of edges E: V → V

00 11 22

33 44 55

4

Nomenclature

● Real graph may contain arbitrary data type
(such as person name in a social network).

● It is often mapped to a unique integer while
representing the graph in memory.

● A vertex may have attributes (such as email id)
● An edge may have attributes (such as road

length). It may be weighted.
● An edge may be directed.

– e.g., twitter’s follow, guide-mentee relation.

00 11 22

33 44 55

5

Relationship

● Graphs are formed due to relationships
– Guide-mentee relation forms academic geneology
– Molecular interactions form a biological network
– Planetary forces form a galactic network
– Friendship relation forms facebook
– Follow relation forms twitter
– In-the-same-iit relation forms alumni network
– Inherits-from relation forms class hierarchy
– City-connected-to relation forms a road network
– ...

6

Connection with Discrete Maths

● A symmetric relation can be modeled using
undirected graphs.

● A transitive relation translates to a path.
● An equivalence relation leads to a connected

component.
– Every vertex has a path to every other (directly or

indirectly) related vertex.

● An equivalence relation leads to forest of
connected components.

● A poset can be modeled as a DAG (directed
acyclic graph).

7

By Willie Nelson

I was married to a widow, who was
pretty as can be

This widow had a grown-up
daughter

Who had hair of red

My father fell in love with her, and
soon they too were wed

This made my dad my son-in-law

And really changed my life

Now my daughter was my mother

Cause she was my father's wife

And to complicate the matter

Even though it brought me joy

I soon became the father of a bouncing baby boy

My little baby then became a brother-in-law to dad

And so became my uncle, though it made me very sad

For if, if he were my uncle, then that also made him brother

Of the widow's grown up daughter, who was of course, my
stepmother

Uh huh

Father's wife then had a son who kept them on the run

And he became my grandchild, for he was my daughter's son

My wife is now my mother's mother, and it makes me blue

Because although she is my wife, she's my grandmother too

God

Now, if my wife is my grandmother, I am her grandchild, yeah

And every time I think of it, heh! Nearly drives me wild

'Cause now I have become the strangest case you ever saw

As husband of my grandmother, I am my own grandpaw

8

● Republican Chronicle of Ithaca, New York on April 24,
1822
“There was a widow and her daughter-in-law, and a
man and his son. The widow married the son, and
the daughter the old man; the widow was,
therefore, mother to her husband's father,
consequently grandmother to her own husband.
They had a son, to whom she was great-
grandmother; now, as the son of a great-
grandmother must be either a grandfather or great-
uncle, this boy was therefore his own grandfather.”

Only graphs can help us model such relationships!

9

 Graph Representation

1. Adjacency matrix
– |V|x|V| matrix

– Each entry [i, j] denotes if edge (i,j) is
present in G

– Useful for dense graph
– Finding neighbors is O(|V|)

2. Adjacency list
– |V| + |E| size
– Each vertex i has a list of its neighbors
– Useful for sparse graphs
– Finding neighbors is O(max. degree)

1 1

1 1

1

1 1

1 1

1 1

00 11 22

33 44 55

33 44

44
33 55

00 11

00 22

11 44

10

 Graph Representation

3. Edge list / Coordinate list (COO)
– |E| pairs
– Useful for edge-based algorithms
– Typically sorted on vertex id

4. Compressed sparse row (CSR)
– Concatenated adjacency lists
– Useful for sparse graphs
– Useful for data transfer

00 11 22

33 44 55

3

4

3

5

4

0

1

0

2

1

4

0

2

4

5

7

9

0 3

0 4

1 3

1 5

2 4

3 0

3 1

4 2

5 1

5 4

11

Classwork

● Represent the graph using
– Adjacency matrix
– Adjacency list
– COO format
– CSR format

00 11 22

33 44 55

5

2

-3
4

4

9

12

Primitive Operations

● isEdge(e) or hasNeighbor(u, v)
● getDegree(u)
● findNeighbors(u)

● updateAttribute(e, attr)
● updateAttribute(u, attr)

● addVertex(u)
● addEdge(u, v)

Read-only

Read-Write

Dynamic graphs

Classwork: Implement read-
only operations in C/C++ for
our graph representations.
Classwork: How would you
implement dynamic graphs using
our graph representations?

13

High-level Operations

● Use primitives to:
– Find if a directed path exists from u to v
– Find if all the vertices of an undirected graph are

connected
– Find if (u, v, w) form a cycle
– Check if a graph is bipartite given two partitions of

vertices P1 and P2
– Count all the triangles in the graph

14

Traversals

● Repeated application of findNeighbors()
● Strategies:

– Level-by-level: breadth-first search (BFS)
– Explore a neighbor completely before moving to the

other: depth-first search (DFS)
– Cost based exploration: A* (used in AI / games)
– ...

15

BFS

● Start from a given vertex
– Then visit each neighbor of the vertex (without exploring

the neighbor’s neighbors)
– Then visit the first neighbor’s neighbors
– Followed by second neighbor’s neighbors
– And so on.

● Classwork
– Show the order of BFS traversal from 5 on the example.
– What edges are present in the BFS?
– What data structure does it form?
– What is the complexity of BFS?

00 11 22

33 44 55

16

BFS Implementation

● Classwork: Let’s implement BFS.
– Source: bfs.cpp
– Implement BFS without a queue. What is the

complexity?

● Applications of BFS:
– Finding connectivity
– Finding cycles
– Finding strongly connected components (forward-

backward method)
– Checking bipartiteness
– ...

17

DFS

● Start from a given vertex
– Then visit the first neighbor of the vertex
– Then visit the first neighbor’s neighbors, without

exploring the second neighbor. Go deep.
– Followed by second neighbor’s neighbors. Go deep.
– And so on.

● Classwork
– Show the order of DFS traversal from node 1.
– What edges are present in the DFS?
– What data structure does it form?
– What is the complexity of DFS?

00 11 22

33 44 55

18

DFS Implementation

● Classwork: Let’s implement DFS.
– Source: dfs.cpp

● Applications of DFS:
– Finding connectivity
– Finding cycles
– Finding strongly connected components (forward-

backward method)
– Checking bipartiteness
– ...

19

Directory Listing
/

home

somesh saurabh jk

acad intern test.c cv.pdf cs1100 spw

1.c 2.c 3.c ibm

first second third

readme readme readme

bintree searchtree

1.cpp 2.cpp trees.pdf 1.cpp 2.cpp bst.pdf

20

● Given an arbitrary, directed graph,

collapse cycles.

This leads to a DAG (directed acyclic graph).
● Each DAG exhibits a topological ordering.

– All ancestors of a node precede the node.

●

● Applications:
– OS task dependences
– Course prerequisites
– Job scheduling (in companies, check gantt charts)
– ...

Topological Sort Source: topo.cpp
Uses Kahn’s algorithm.

https://www.google.com/search?client=ubuntu&channel=fs&q=gantt+chart&ie=utf-8&oe=utf-8

21

Shortest Paths
● Given a designated source vertex, find the

shortest path from source to every vertex.
– e.g., from Nagpur, find the shortest path to every

other city in the country.

● Considerations
– Check directed or undirected
– If unweighted, what can we do?
– Initialization?

3 5

9

2
7

3
4 4

8
3

5

2

22

Bellman-Ford Algorithm

● Initialization

● SSSP
sssp(G, src) {
 for (n – 1) number of times

Relax all edges
}

sssp(G, src) {
 for (n – 1) number of times

Relax all edges
}

sssp(G, src) {
 for (n – 1) number of times

for each edge u-v
 altdist = dist[u] + wt[u-v]

 if altdist < dist[v]
dist[v] = altdist

}

sssp(G, src) {
 for (n – 1) number of times

for each edge u-v
 altdist = dist[u] + wt[u-v]

 if altdist < dist[v]
dist[v] = altdist

}

sssp(G, src) {
 while change

change = false

for each edge u-v
 altdist = dist[u] + wt[u-v]

 if altdist < dist[v]
dist[v] = altdist
change = true

}

sssp(G, src) {
 while change

change = false

for each edge u-v
 altdist = dist[u] + wt[u-v]

 if altdist < dist[v]
dist[v] = altdist
change = true

}

init(G, src) {
 for each vertex v

dist[v] = ∞

 dist[src] = 0
}

init(G, src) {
 for each vertex v

dist[v] = ∞

 dist[src] = 0
}

3 5

9

2
7

3
4 4

8
3

5

2

23

Dijkstra’s Algorithm

● Initialization

● SSSP

sssp(G, src) {
 while heap is not empty

u = extractMin from heap

// relax outgoing edges of u.
for each edge u-v

 altdist = dist[u] + wt[u-v]
 if altdist < dist[v]

dist[v] = altdist
decrease dist of v in heap

}

sssp(G, src) {
 while heap is not empty

u = extractMin from heap

// relax outgoing edges of u.
for each edge u-v

 altdist = dist[u] + wt[u-v]
 if altdist < dist[v]

dist[v] = altdist
decrease dist of v in heap

}

init(G, src) {
 for each vertex v

dist[v] = ∞

 dist[src] = 0

 makeHeap(G.V, dist)
}

init(G, src) {
 for each vertex v

dist[v] = ∞

 dist[src] = 0

 makeHeap(G.V, dist)
}

3 5

9

2
7

3
4 4

8
3

5

2

24

● Find a tree that spans every vertex (ST)
– Assumes connected graph
– Useful for laying out networks (fibres, pipes, ...)

● Find an ST with minimum total weight (MST)
– Assumes undirected weighted edges

● Care needs to be taken NOT to create cycles.

Minimum Spanning Tree

Image source: wikipedia

25

Prim’s

● Maintains a connected tree in every iteration

Image source: wikipedia

Prim(G) {
 u = some vertex in G
 MST = minimum weight edge out of u

 for (n - 2) times {
 find the minimum weight edge e out of MST
 such that it does not create a cycle

MST.add(e)
 }
}

Prim(G) {
 u = some vertex in G
 MST = minimum weight edge out of u

 for (n - 2) times {
 find the minimum weight edge e out of MST
 such that it does not create a cycle

MST.add(e)
 }
}

26

Kruskal’s

● Maintains a forest of min-wt edges

Image source: wikipedia

Kruskal(G) {
 sort(G.E based on weights)
 MST = empty

 for edge e in G.E { // increasing weights
 if e does not create a cycle
 MST.add(e)
 }
}

Kruskal(G) {
 sort(G.E based on weights)
 MST = empty

 for edge e in G.E { // increasing weights
 if e does not create a cycle
 MST.add(e)
 }
}

27

Euler Tour

● Draw the following diagrams in your copies
without retracing and without lifting the pen.
– Can you come back to the original point?

● Once we enter a vertex via one edge, we need
to leave the vertex via another edge.
– Hence, each node degree must be even.

28

Euler Tour
● It is proven that even degree is both necessary

and sufficient criterion for Euler tour.
– Also called Eulerian circuit
– Considered to be start of Graph Theory

The city of Königsberg in Prussia
(now Kaliningrad, Russia)

The problem was to devise a walk
through the city that would cross each
of the seven bridges exactly once.

In 1736, Euler proved that it was not
possible.
Considered to be the first theorem of
graph theory, and first true proof in the
theory of networks.

Currently, there are five bridges (and
Euler path is possible, not tour).

Source: wikipedia

29

Finding Euler Tour

● Find a cycle, remove it. Splice the path.
● Continue with the vertex having unvisited edge

in the path.
– The remaining graph must be Eulerian.

22

88

66

33

99

44

1010

55

1111

11

77

1212

30

Finding Euler Tour

● Cycle: 5 4 10 5
● Path = 5 4 10 5
● First vertex with unvisited edges = 4
● Cycle: 4 1 3 7 4 11 10 7 9 3 4
● Path: 5 4 1 3 7 4 11 10 7 9 3 4 10 5

22

88

66

33

99

44

1010

55

1111

11

77

1212

31

Finding Euler Tour

● Path: 5 4 1 3 7 4 11 10 7 9 3 4 10 5
● First vertex with unvisited edges = 3
● Cycle: 3 2 8 9 6 3
● Path: 5 4 1 3 2 8 9 6 3 7 4 11 10 7 9 3 4 10 5

22

88

66

33

99

44

1010

55

1111

11

77

1212

32

Finding Euler Tour

● Path: 5 4 1 3 2 8 9 6 3 7 4 11 10 7 9 3 4 10 5
● First vertex with unvisited edges = 9
● Cycle: 9 12 10 9
● Path: 5 4 1 3 2 8 9 12 10 9 6 3 7 4 11 10 7 9 3 4 10 5

● This is the Euler tour. Runs in O(|E| + |V|) time.

22

88

66

33

99

44

1010

55

1111

11

77

1212

33

Hamiltonian Cycle

● Find a tour such that each node is visited
exactly once, and all the nodes are covered.
– Have we seen such a problem before?
– Unlike Euler tour, this problem is hard on general

graphs.

34

Practice Questions
● Given an unweighted graph and two vertices u, v,

there could be multiple paths between u and v.
What is the shortest distance between them?

● Given a weighted graph with weight values 1 or 2,
find the shortest distance between two vertices.

● Find if a node is a part of a 5-clique.
● Find if a node is a part of a 5-cycle.
● Find an edge, deleting which partitions the graph

into two disconnected subgraphs, if it exists.
● If A is an adjacency matrix, what does Ak mean?

35

Some Graph Problems

● Given a node, find another node having the same
neighborhood, if one exists.
– Approximate similarity
– Bipartite graphs (document-terms, course preferences)

● Find if a graph is uniform or skewed.
– Road networks, social networks

● Simulate nslookup.
– Network of routers; store tables.

● Graph coloring

36

Learning Outcomes

● Represent graphs in memory
● Traverse graphs
● Solve simple graph problems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

