
Trees

Rupesh Nasre.

July 2022

2

TreesTrees

Manager-Employee
Relation

Google Maps

Modeling Computation

Expression Evaluation

Planetary Hierarchy

3

Nomenclature

● Root
● Stem
● Branches
● Leaves
● Fruits
● Flowers

Edges

4

Definition
A tree is a collection of nodes.
It could be empty. // base case
Otherwise, it contains a root node,
connected to zero or more (child) nodes,
each of which is a tree in itself! // recursive

Alternatively, a tree is a collection of nodes and
directed edges, such that each node except one
has a single parent. The node without a parent
node is the root.

5

Nomenclature

Root has no parent.
Leaves have no children.
Non-leaves are inteinterrnal nodesnal nodes.

Each node is reachable
from the root.
The whole tree can be
accessed via root.
Each node can be viewed as
the root of its unique subtree.

Empty Tree

Tree with one node

Tree with two nodes

Trees with three nodes

6

Properties

● A tree has six nodes.
– What is the minimum number of edges in the tree?
– What is the maximum?
– Generalization for N nodes?

● How many (undirected) paths exist between
two nodes?

7

More Nomenclature

● Sibling
– What is the maximum number of siblings a node

may have in an N node tree?
● Grandparent, grandchild
● Ancestor, descendant
● Path, length
● Height, depth

8

Exercises
● Given (a pointer to) a node in an employee tree,

list all its direct and indirect subordinates.
● Same as above with the name of the employee

given.
● Find distance between two nodes.
● Find tree diameter (max. distance).
● Convert infix to postfix (using a tree).
● Mirror a tree vertically.
● Find if there is a directed path from p to q.

9

Learning Outcomes

● Apply tree data structure in relevant applications.
● Construct trees in C++ and perform operations

such as insert.
● Perform traversals on trees.
● Analyze complexity of various operations.

10

Implementation
● A challenge is that the maximum number of

children is unknown, and may vary dynamically.

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 char data;
 PtrToNode firstChild;
 PtrToNode nextSibling;
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 char data;
 PtrToNode firstChild;
 PtrToNode nextSibling;
};

C C++

#include <vector>
typedef struct TreeNode *PtrToNode;

struct TreeNode {
 char data;
 std::vector<PtrToNode> children;
};

#include <vector>
typedef struct TreeNode *PtrToNode;

struct TreeNode {
 char data;
 std::vector<PtrToNode> children;
};

AA

BB CC DD EE FF GG

HH II JJ KK

MM NN

LL

AA

BB CC DD EE FF GG

HH II JJ KK

MM NN

LL

11

Directory Listing
/

home

somesh saurabh jk

acad intern test.c cv.pdf cs1100 spw

1.c 2.c 3.c ibm

first second third

readme readme readme

bintree searchtree

1.cpp 2.cpp trees.pdf 1.cpp 2.cpp bst.pdf

There is a Linux command to list
a directory in a tree-like format.
Any guesses for the command?

There is a Linux command to list
a directory in a tree-like format.
Any guesses for the command?

12

Switch to code.
2.cpp and 3.cpp

13

Traversals
● Preorder

– Process each node before processing its children.
– Children can be processed in any order.

● Postorder
– Process each node after processing its children.
– Children can be processed in any order.

● Preorder and postorder are examples of
Depth-First Traversal.
– Children of a node are processed before processing

its siblings.
– The other way is called Breadth-First or Level-Order

Traversal.

14

Preorder

void Tree::preorder() {
 std::stack<PtrToNode> stack;
 stack.push(root);

 while (!stack.empty()) {
 PtrToNode rr = stack.top();
 stack.pop();
 if (rr) {
 rr->print();
 for (auto child: rr->children)

stack.push(child);
 }
 }
}

void Tree::preorder() {
 std::stack<PtrToNode> stack;
 stack.push(root);

 while (!stack.empty()) {
 PtrToNode rr = stack.top();
 stack.pop();
 if (rr) {
 rr->print();
 for (auto child: rr->children)

stack.push(child);
 }
 }
}

void Tree::preorder(PtrToNode rr) {
 if (rr) {
 rr->print();
 for (auto child:rr->children)

preorder(child);
 }
}
void Tree::preorder() {
 preorder(root);
}

void Tree::preorder(PtrToNode rr) {
 if (rr) {
 rr->print();
 for (auto child:rr->children)

preorder(child);
 }
}
void Tree::preorder() {
 preorder(root);
}

Iterative Recursive

Switch to code: 4.cpp, 6.cpp
Classwork: Indent files as per their depth. What is the code complexity?
Note that indentation time also needs to be considered.

15

Find full size of each directory
/ 29

home 28

somesh 14 saurabh jk

acad intern test.c cv.pdf 1 cs1100 spw

1.c 2.c 3.c ibm 7

first second third 2

readme
1

readme readme

bintree searchtree

1.cpp 2.cpp trees.pdf 1.cpp 2.cpp bst.pdf

16

Postorder

Try it out offline.Try it out offline.

void Tree::postorder(PtrToNode rr) {
 if (rr) {
 for (auto child:rr->children)

postorder(child);
 rr->print();
 }
}
void Tree::postorder() {
 postorder(root);
}

void Tree::postorder(PtrToNode rr) {
 if (rr) {
 for (auto child:rr->children)

postorder(child);
 rr->print();
 }
}
void Tree::postorder() {
 postorder(root);
}

Iterative Recursive

Switch to code: 5.cpp

17

Story so far...

● General trees
– arbitrary number of children
– Resembles several situations such as employees,

files, ...
● Special trees

– Fixed / bounded number of children
– Resembles situations such as expressions, boolean

flows, …
– All the children may not be present.

18

K-ary Trees

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode firstChild;
 PtrToNode nextSibling;
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode firstChild;
 PtrToNode nextSibling;
};

#include <vector>
typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 std::vector<PtrToNode> children;
};

#include <vector>
typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 std::vector<PtrToNode> children;
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode children[K];
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode children[K];
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode left;

 PtrToNode right;
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode left;

 PtrToNode right;
};

For a fixed K When K == 2

19

K-ary Trees

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode children[K];
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode children[K];
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode left;

 PtrToNode right;
};

typedef struct TreeNode *PtrToNode;

struct TreeNode {
 int data;
 PtrToNode left;

 PtrToNode right;
};

For a fixed K When K == 2

Ternary
Binary

20

Properties of Binary Trees
● For an N node binary tree (N > 0):

– What is the maximum height?
– What is the minimum height?
– How many NULL pointers?
– How many min/max leaves?

● What is the maximum number of nodes a binary
tree of height H may have?

● Full nodes (nodes with two children):
– how many minimum, maximum?

● Show that #full nodes + 1 == #leaves in a non-
empty binary tree.

N

log2(N)

N + 1

0/1, N / 2

2H - 1

0, N / 2 - 1

21

Operations on Trees

● Insert: our addChild would take care of this.
– Given pointers, this is constant time operation.

● Remove: Update parent’s pointer to NULL (and
free memory).
– What if the node getting removed has children?
– Based on the above answer, the complexity could

be O(1) or O(N)
● Search: Our tree traversals can help.

– Can a tree contain duplicate values?
– This is O(N), since the whole tree needs to be

searched in the worst case.

22

Some Questions?

● What if a child node is common to two parents?
– Ancestry

● Can the edge be undirected?
● Can the edges have weights?
● Can there be multiple roots?
● Can there be multiple edges between two

nodes?
● Is it okay to draw a tree with root at the bottom?

23

Coding (a little different)
● I want to transmit some data.
● Data contains a-z and space.
● For these 27 characters, I need 5 bits.

– For N characters, I need log
2
(N) bits.

● Encoding pattern:
– space = 00000, a = 00001, b = 00010, …, z = 11010

● Decoding:
– Each 5-bit string represents a unique character

(except the last five strings: 11011 to 11111).
– What is 001001100101110000010110101111?

24

How is a code related to a tree?

...

a b cs
p
a
c
e

● It is a binary tree.
● Tree is (almost) complete.
● Has height of 5, equal to the code

length.
● Each character has a unique code,

because each tree node has a unique
path from the root.

● Encoding: Given a character, traverse
back from its node towards the root,
and we get the reverse of its code.

● Decoding: Given a code, traverse the
tree from the root, and the node we
reach is the corresponding character.

● None of the interior nodes represents
a character.

0

0

0

0

0

0

1

1

1

1

1

1

1 1

25

What is this plot?

Source: http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html

Can we exploit these frequencies to
improve data transmission?

26

Make the common case faster!

● If most people order vanilla ice-cream, keep it in
front.

● If only a few students buy fish, keep it at a
separate counter.

● If most people coming to the department use
bicycle, bicycle parking should be prioritized.

● If most of the humans in the classroom stay in
hostels, the classes should be held in hostels!

● If ‘e’ gets used more often, can we transmit it
faster?

27

Shorter Codes
Code

0

1

00

01

10

Character Frequency

e 12.02

t 9.10

a 8.12

o 7.68

i 7.31

ee0 tt

0

0

1

1

aa oo ii

Encoding is easy (e.g., eat = 0001).
Decoding is tough (e.g., 0001 = ?).
This happens because interior nodes
also represent data.
We need data only at the leaves.

Code 2

0

10

110

1110

1111

ee

0

0

1

tt

1

0

aa

1

0

oo ii

1

Code 3

00

10

11

010

011

0

0

0

1

1

ee tt
0

oo ii

1
aa

1

Called prefix codes.
We can 001110 easily now.

28

Prefix Codes

● Such codes were invented by Huffman.
– as a term paper at MIT during his PhD.
– had the habit of keeping poisonous snakes as pets.

● Prefix codes are easy to decode.
– No ambiguous decoding possible.

● Faster transmission of frequent data.
– In practice, close to 40-50% improvement

● We will study Huffman’s algorithm during Heaps.

29

Learning Outcomes

● Apply tree data structure in relevant applications.
● Construct trees in C++ and perform operations

such as insert.
● Perform traversals on trees.
● Analyze complexity of various operations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

