Arrays

Rupesh Nasre.
rupesh@cse.iitm.ac.in

Properties

- Simplest data structure
- Acts as aggregate over primitives or other aggregates
- May have multiple dimensions
- Contiguous storage
- Random access in O(1)
- Languages such as C use type system to index appropriately
- e.g., a[i] and a[i + 1] refer to locations based on type
- Storage space:
- Fixed for arrays
- Dynamically allocatable but fixed on stack and heap
- Variable for vectors (internally, reallocation and copying)

Search

- Linear: $\mathrm{O}(\mathrm{N})$

How about Ternary search?

- Binary: $\mathrm{O}(\log \mathrm{N})$

1	2	..	40	50	...	91	95	98	99

$-T(N)=T(N / 2)+c$
mid1 mid2

```
int bsearch(int a[], int N, int val) {
    int low = 0, high = N-1;
    while (low <= high) {
        int mid = (low + high) / 2;
        if (a[mid] == val) return 1;
        if (a[mid] > val) high = mid - 1;
        else low = mid + 1;
    }
    return 0;

\section*{Search in a Sorted Matrix[M][N]}
\begin{tabular}{|ccccc}
\hline 3 & 5 & 9 & 20 & 39 \\
\hline 4 & 6 & 11 & 21 & 40 \\
\hline 7 & 10 & 12 & 23 & 45 \\
\hline 8 & 13 & 22 & 27 & 46 \\
\hline 19 & 29 & 41 & 43 & 49 \\
\hline 24 & 30 & 44 & 50 & 52 \\
\hline 25 & 31 & 47 & 51 & 55 \\
\hline 28 & 33 & 48 & 53 & 61 \\
\hline 32 & 42 & 54 & 56 & 66 \\
\hline 35 & 57 & 60 & 62 & 69 \\
\hline
\end{tabular}

Focus on 44.
Check where all values < 44 appear. Check where all values > 44 appear.

Classwork: Devise a method to search for an element in this matrix.

\section*{Search in a Sorted Matrix[M][N]}
- Approach 2: Divide and Conquer
- Use the corner points of Q1, Q2, Q3, Q4 to decide the quadrant.
\(->y\) and \(>z \rightarrow\) Q3
- Else \(\rightarrow\) Q1, Q2, Q4

\(-\mathrm{T}(\mathrm{M}, \mathrm{N})=3 \mathrm{~T}(\mathrm{M} / 2, \mathrm{~N} / 2)+\mathrm{c}=\mathrm{O}(\min (\mathrm{M}, \mathrm{N}))^{1.54}\)
- Approach 3: Elimination
- Consider e: [0, N-1].
- If key == e, found the element
- If key < e, eliminate that column
- If key >e, eliminate that row
\(-\mathrm{O}(\mathrm{M}+\mathrm{N})\)
- What other corner points I can start with?
z

\section*{Search in a Sorted Matrix[M][N]}
- Approach 4: Divide and Conquer
- Reduce at least one quadrant
\(->x \quad \rightarrow\) Q2, Q3, Q4 (eliminate Q1)
\(-<x \rightarrow\) Q1, Q2, Q4 (eliminate Q3)
- ==x \(\rightarrow\) eureka
\(-\mathrm{T}(\mathrm{M}, \mathrm{N})=3 \mathrm{~T}(\mathrm{M} / 2, \mathrm{~N} / 2)+\mathrm{c}=\mathrm{O}(\min (\mathrm{M}, \mathrm{N}))^{1.54}\)


\section*{Problem: Negative then Positive.}
int \(\operatorname{arr}[\mathrm{N}]=\{53,33,0,-4,43,9,58,22,-59,4,-7,74,55,-9,23,8,2,-3\}\);
-3 -9 -7 -4 -59 958224340745533238253

Given a list of numbers (boys+girls / CS+nonCS / Mahanadi+Ganga / Negative+Positive), move all negatives to the left (in any order).

\section*{Problem: Merge sorted arrays}
```

int A[] = {-3, 0, 43,58,64,79,93};
int B[= {-5,4,59,70,74,75,81, 88, 92};
int NA = sizeof(A) / sizeof(A[0]);
int NB = sizeof(B) / sizeof(B[0]);
-5 -304435859647074757981889293
int C[NA + NB]; // variable length array, allowed from ANSI C99 standard.

```
C[indexC] = A[indexA];
    indexA++;
    indexC++;

Extend the program to perform in-situ merge.
Array \(A\) has two sorted sequences.

\section*{\(C=A\) merge \(B\), with \(A\) and \(B\) are sorted. C is also sorted.}

\section*{Sorting}
- A fundamental operation
- Elements need to be stored in increasing order.
- Some methods would work with duplicates.
- Algorithms that maintain relative order of duplicates from input to output are called stable.
- Comparison-based methods
- Insertion, Bubble, Selection, Shell, Quick, Merge
- Other methods
- Radix, Bucket, Counting

\section*{Sorting Algorithms at a Glance}
\begin{tabular}{|c|c|c|}
\hline Algorithm & Worst case complexity & Average case complexity \\
\hline Bubble & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) \\
\hline Insertion & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) \\
\hline Shell & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) & Depends on increment sequence \\
\hline Selection & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) \\
\hline Heap & \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) & \(O(n \log n)\) \\
\hline Quick & \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) & \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) depending on partitioning \\
\hline Merge & \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) & \(\mathrm{O}(\mathrm{n} \log \mathrm{n}\) ) \\
\hline Bucket & \(\mathrm{O}(\mathrm{n} \alpha \log \alpha)\) & Depends on \(\alpha\) \\
\hline
\end{tabular}

\section*{Bubble Sort}
- Compare adjacent values and swap, if required.
- How many times do we need to do it?
- What is the invariant?
- After ith iteration, i largest numbers are at their final places.
- An element may move away from its final position in the intermediate stages (e.g., check the \(2^{\text {nd }}\) element of a reverse-sorted array).
- Best case: Sorted sequence
- Worst case: Reverse sorted (n-1 + n-2 + ... + \(1+0\) )
- Classwork: Write the code.

\section*{Bubble Sort}
\[
\begin{aligned}
& \text { for (ii }=0 ; i \mathrm{ii}<\mathrm{N} ;++\mathrm{ii}) \\
& \quad \text { for }(\mathrm{jj}=0 ; \mathrm{jj}<\mathrm{N}-1 ;++\mathrm{jj}) \\
& \quad \text { if }(\operatorname{arr}[\mathrm{jj}]>\operatorname{arr}[\mathrm{jj}+1]) \operatorname{swap}(\mathrm{jj}, \mathrm{jj}+1) \text {; }
\end{aligned}
\]

Not using ii
\[
\begin{align*}
& \text { for (ii }=0 ; i i<N-1 ;++i i) \\
& \quad \text { for }(\mathrm{jj}=0 ; j \mathrm{jj}<\mathrm{N}-\mathrm{ii}-1 ;++j j)  \tag{2}\\
& \quad \text { if }(\operatorname{arr}[j \mathrm{jj}]>\operatorname{arr}[j \mathrm{jj}+1]) \operatorname{swap}(\mathrm{jj}, \mathrm{jj}+1) \text {; }
\end{align*}
\]
- Best case: Sorted sequence
- Worst case: Reverse sorted (n-1 + n-2 + ... + \(1+0\) )
- What do we measure?
- Number of comparisons
- Number of swaps (bounded by comparisons)
- Number of comparisons remains the same!

\section*{Insertion Sort}
- Consider \(\mathrm{i}^{\text {th }}\) element and insert it at its place w.r.t. the first i elements.
- Resembles insertion of a playing card.
- Invariant: Keep the first i elements sorted.
- Note: Insertion is in a sorted array.
- Complexity: O(n log n)?
- Yes, binary search is \(O(\log n)\).

But are we doing more work?
- Best case, Worst case?
- Classwork: Write the code.

\section*{Insertion Sort}
```

for (ii = 1 ; ii < N; ++ii) {
int key = arr[ii];
int jj = ii - 1;
while (jj >= 0 \&\& key < arr[jj]) {
arr[jj + 1] = arr[j];; Shift elements
--jj;
}}\operatorname{arr[jj + 1] = key;
}
}
ith element
0 + 1 + 2 + ... n-1
}

```
- Best case: Sorted: while loop is O(1)
- Worst case: Reverse sorted: O(n²)

\section*{Selection Sort}
- Approach: Choose the minimum element, and push it to its final place.
- What is the invariant?
- First i elements are at their final places after i iterations.
- Classwork:
\[
\begin{aligned}
& \text { for (ii = } 0 ; i i<N-1 ;++i i)\{ \\
& \text { int iimin }=\mathrm{ii} ; \\
& \qquad \begin{array}{c}
\text { for }(\mathrm{jj}=\mathrm{ii}+1 ; j \mathrm{jj}<\mathrm{N} ;++j \mathrm{j}) \\
\text { if }(\operatorname{arr}[\mathrm{jj}]<\operatorname{arr}[\mathrm{iimin}]) \\
\text { iimin }=\mathrm{jj} ;
\end{array} \\
& \text { } \operatorname{swap(iimin,~ii);}
\end{aligned}
\]

\section*{Heapsort}

Given N elements,
build a heap and
then perform N deleteMax, store each element into an array. o(N) time and \(N\) space
\(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) time and 2 N space

Can we avoid the second array?

\section*{Quicksort}
- Approach:
- Choose an arbitrary element (called pivot).
- Place the pivot at its final place.
- Make sure all the elements smaller than the pivot are to the left of it, and ... (called partitioning)
- Divide-and-conquer.
- Best case, worst case?
- Classwork: Write the code.

\section*{Merge Sort}
- Divide-and-Conquer
- Divide the array into two halves
- Sort each array separately
- Merge the two sorted sequences
- Worst case complexity: O(n log n)
- Not efficient in practice due to array copying.
- Classwork: Write the code (reuse the merge function already written).

2
4
9
11
7
8
1
3

\section*{Comparison-based Sorts}
- Array consists of \(n\) distinct elements.
- Number of permutations = n!
- A sorting algorithm must distinguish between these permutations.
- The number of yes/no bits necessary to distinguish n! permutations is \(\log (\mathrm{n}!)\).
- Also called information theoretic lower bound
- Given: N! >= (n/2)n/2
- \(\log (N!)>=n / 2 \log (n / 2)\) which is \(\Omega(n \log n)\)
- Comparison-based sort needs 1 bit per comparison (two numbers). Hence it must require at least n log n time.
- For each comparison-based sorting algorithm, there exists an input for which it would take n log n comparisons.
- Heapsort, mergesort are theoretically asymptotically optimal (subject to constants)

\section*{Bucket Sort}
- Hash / index each element into a bucket, based on its value (specific hash function).
- Sort each bucket.
- use other sorting algorithms such as insertion sort.
- Output buckets in increasing order.
- Special case when number of buckets >= maximum element value.
- Unsuitable for arbitrary types.

\section*{Counting Sort}
- Bucketize elements.
- Find count of elements in each bucket.
- Perform prefix sum.
- Copy elements from buckets to original array.
\begin{tabular}{r|c|ccccccccc|}
\hline Original array & 6 & 2 & 4 & 9 & 11 & 7 & 8 & 1 & 3 & 5 \\
\hline Buckets & 1,2 & & 3 & \(4,5,6\) & 7 & & 8 & & 9 & 11 \\
\hline Bucket sizes & 2 & 0 & 1 & 3 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline Starting index & 0 & 2 & 2 & 3 & 6 & 7 & 7 & 8 & 8 & 9 \\
Output array & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 11 \\
\hline
\end{tabular}

\section*{Radix Sort}
- Generalization of bucket sort.
- Radix sort sorts using different digits.
- At every step, elements are moved to buckets based on their ith digits, starting from the least significant digit.
- Classwork: 33, 453, 124, 225, 1023, 432, 2232
\begin{tabular}{ccccccccccc}
64 & 8 & 216 & 512 & 27 & 729 & 0 & 1 & 343 & 125 \\
\hline 0 & 1 & 512 & 343 & 64 & 125 & 216 & 27 & 8 & 729 \\
\hline \begin{tabular}{c}
00,01, \\
08
\end{tabular} & \begin{tabular}{c}
512, \\
216
\end{tabular} & \begin{tabular}{c}
125, \\
27, \\
729
\end{tabular} & & 343 & & 64 & & & \\
\hline \begin{tabular}{c}
000,
\end{tabular} & 125 & 216 & 343 & & 512 & & 729 & & \\
001, & & & & & & & & & \\
\begin{tabular}{c}
008, \\
027, \\
064
\end{tabular} & & & & & & & & & \\
\hline
\end{tabular}

\section*{Practice Problem}

\section*{Knight's tour}
- Start from a corner.
- Visit all 64 squares without visiting a square twice.
- The only moves allowed are 2.5 places.
- Cannot wrap-around the board.


\section*{8-Queens Problem}

Given a chess-board, can you place 8 queens in non-attacking positions?
(no two queens in the same row or same column or same diagonal)

- Does a solution exist for \(2 \times 2,3 \times 3,4 \times 4\) ?
- Have you seen similar constraints somewhere?```

