Arrays

Rupesh Nasre.

Properties

Simplest data structure
- Acts as aggregate over primitives or other aggregates
- May have multiple dimensions

Contiguous storage
Random access in O(1)

Languages such as C use type system to index
appropriately

- e.g., a[i] and a]i + 1] refer to locations based on type
Storage space:

- Fixed for arrays

- Dynamically allocatable but fixed on stack and heap

— Variable for vectors (internally, reallocation and copying)

Search

* Linear: O(N) How about Ternary search?
o Binary: O(|Og N) 1 2 .../40 50 ... 91 95 98 99
- T(N) =T(N/2) + ¢ mid1 mid2

‘int bsearch(int a[], int N, int val) {
Int low =0, high=N - 1,

while (low <= high) {
iInt mid = (low + high) / 2;
If (a[mid] == val) return 1,
If (a[mid] > val) high = mid - 1;
else low = mid + 1;

}

return O;

Search in a Sorted Matrix[M][N]

3
4
-
8

19
24
25
28
32
35

S
6
10
13
29
30
31
33
42
o7

11
12
22
41
44
47
48
24
60

20
21
23
27
43
50
51
53
56
62

39
40
45
46
49
52
55
61
66
69

Focus on 44.

Check where all values < 44 appear.
Check where all values > 44 appear.

Classwork: Devise a method
to search for an element in this
matrix.

Search in a Sorted Matrix[M][N]

* Approach 2: Divide and Conquer
- Use the corner points of Q1, Q2, Q3, Q4 to decide the

guadrant.
- >yand>z - Q3 |
- Else - Q1,Q2, Q4 x Q1 J Q2
- T(M, N) = 3T(M/2, N/2) + ¢ = O(min(M, N))1.54 o

* Approach 3: Elimination
— Consider e: [0, N-1].
- If key == e, found the element

- If key < e, eliminate that column

- If key > e, eliminate that row

_ T OMN o ND
UL T 1IN)

- What other corner points | can start with? Q4

Search in a Sorted Matrix[M][N]
* Approach 4: Divide and Conquer

- Reduce at least one quadrant

- >Xx -5 Q2,03, Q4 (eliminate Q1)
- <X -5 Q1,02 Q4 (eliminate Q3) |
- ==X - eureka a ! @

- T(M, N) = 3T(M/2, N/2) + ¢ = O(min(M, N))154

Q4 Q3

Problem: Negative then Positive.

int arr[N] = {53, 33, 0, -4, 43, 9, 58, 22, -59, 4, -7, 74, 55, -9, 23, 8, 2, -3}

-3-9-7-4-59958224340745533238253

Given a list of numbers (boys+girls / CS+nonCS / Mahanadi+Ganga /
Negative+Positive), move all negatives to the left (in any order).

Problem: Merge sorted arrays

int Al ={-3, 0, 43, 58, 64, 79, 93};
nt B[] ={-5, 4, 59, 70, 74, 75, 81, 88, 92},
int NA = sizeof(A) / sizeof(A[0)]);

Nt NB = sizeof(B) / sizeof(B[0]);

int C[NA + NBJ;

 ClindexC] = AfindexA];

indexA++;
indexC++;

:

Extend the program to perform in-situ merge.
Array A has two sorted sequences.

C = Amerge B, with A and B are sorted.

C Is also sorted.

Sorting

* A fundamental operation

* Elements need to be stored in increasing order.
- Some methods would work with duplicates.

- Algorithms that maintain relative order of duplicates
from input to output are called stable.

 Comparison-based methods
- Insertion, Bubble, Selection, Shell, Quick, Merge

* Other methods
- Radix, Bucket, Counting

Sorting Algorithms at a Glance

Algorithm

Bubble
Insertion
Shell

Selection
Heap
Quick

Merge
Bucket

Worst case
complexity

O(n?)
O(n?)
O(n?)

O(n?)
O(nlog n)
O(n?)

O(n log n)
O(n a log a)

Average case
complexity

O(n?)
O(n?)

Depends on
Increment
sequence

O(n?)
O(n log n)

O(n log n)
depending on
partitioning

O(n log n)
Depends on a

10

Bubble Sort

 Compare adjacent values and swap, If required.

* How many times do we need to do it?

e What Is the invariant?

— After ith iteration, | largest numbers are at their final
places.

- An element may move away from its final position in
the intermediate stages (e.g., check the 2nd element

of a reverse-sorted array).
* Best case: Sorted sequence
 Worst case: Reverse sorted
e Classwork: Write the code.

11

https://visualgo.net/en/sorting

Bubble Sort

for (i = 0; ii < N; ++ii)
- for (jj=0; jj <N - 1; ++jj) - .
if (arr[j] > arr[jj + 1]) swap(jj, jj+1); ~ Notusingii

for (il = 0; i < N - 1; ++ii)

for (jj = 0; jj < N — i - 1; ++j) L o
if (arr[jj] > arr[jj + 1]) swap(j, jj + 1); L

« Best case: Sorted sequence

* Worst case: Reverse sorted

 What do we measure?
— Number of comparisons
- Number of swaps

12

* Number of comparisons remains the same!

https://visualgo.net/en/sorting

Insertion Sort

Consider ith element and insert it at its place w.r.t.
the first | elements.

- Resembles insertion of a playing card.
Invariant: Keep the first i elements sorted.
Note: Insertion Is in a sorted array.
Complexity: O(n log n)?
- Yes, binary search is O(log n).

But are we doing more work?
- Best case, Worst case?

Classwork: Write the code. 13

https://visualgo.net/en/sorting

Insertion Sort

***************** for (i = 1 ; ii < N; ++ii) {
!nt _key__: arrfi; - i"element
Intj) =1 - 1; -

while (jj >= 0 && key < arr[u]) { - |
aJ’r[IJ + 1] = arrfjj]; Shift elements
-JJ;

}

arrfjj + 1] = key; | At its place

e Best case: Sorted
e Worst case: Reverse sorted

14

https://visualgo.net/en/sorting

Selection Sort

* Approach: Choose the minimum element, and
push it to its final place.

e What Is the invariant?

- First | elements are at their final places after |
iterations.

e Classwork: ¢ (il =0;ii <N -1; ++ii) {
int iimin = ii;

for (jj = ii + 1; jj < N; ++j)))
if (arrfjj] < arr[||m|n]) Find min. |

limin = jj;
swap(iimin, ii);

https://visualgo.net/en/sorting

Heapsort

Given N elements,

build a heap and

then perform N deleteMax,

store each element into an array.

for (int ii = 0; il < nelements; ++ii) {

h.hide_back(h.deleteMax()); Can ” we avoid the
} ~ second array?
h.printArray(nelements);

Source: heap-sort.cpp

Quicksort

* Approach:
— Choose an arbitrary element (called pivot).
- Place the pivot at its final place.

- Make sure all the elements smaller than the pivot
are to the left of it, and ... (called partitioning)

- Divide-and-conguer.
e Best case, worst case?
e Classwork: Write the code.

6 2 4 9 11 7 8 1 3

17

Merge Sort

* Divide-and-Conquer
- Divide the array into two halves
— Sort each array separately
- Merge the two sorted sequences

* Worst case complexity: O(n log n)
* Not efficient in practice due to array copying.

* Classwork: Write the code (reuse the merge
function already written).

6 2 4 9 11 7 8 1 3

18

Comparison-based Sorts

* Array consists of n distinct elements.

Number of permutations = n!

A sorting algorithm must distinguish between these permutations.

The number of yes/no bits necessary to distinguish n! permutations
IS log(n!).

— Also called information theoretic lower bound

Given: N! >= (n/2)n2

log(N!) >= n/2 log(n/2) which is Q (n log n)

Comparison-based sort needs 1 bit per comparison (two numbers).
Hence it must require at least n log n time.

— For each comparison-based sorting algorithm, there exists an input for
which it would take n log n comparisons.

- Heapsort, mergesort are theoretically asymptotically optimal (subject to

constants) 19

Bucket Sort

Hash / index each element into a bucket, based
on its value (specific hash function).

Sort each bucket.
— use other sorting algorithms such as insertion sort.

Output buckets In increasing order.

Special case when number of buckets >=
maximum element value.

Unsuitable for arbitrary types.

6 2 4 9 11 7 8 1 3 5

20

Counting Sort

Bucketize elements.
-ind count of elements In each bucket.

Perform prefix sum.
Copy elements from buckets to original array.

Original array 6 2 4 9 11 7 8 1 3 5
Buckets 1,2 3 45 6 7 8 9 11
Bucket sizes 2 0 1 3 1 0 1 0 1 1

Starting index 0 2 2 3 6 7 7 38 8 9

Output array 1 2 3 4 5 6 7 8 9 11

Radix Sort

e Generalization of bucket sort.
* Radix sort sorts using different digits.

* At every step, elements are moved to buckets
based on thelir ith digits, starting from the least
significant digit.

* Classwork: 33, 453, 124, 225, 1023, 432, 2232

64 3 216 512 27 729 0 1 343 125
0 1 512 343 64 125 216 27 3 729
00, 01, 512, 125, 343 64
08 216 27,
729
000, 125 216 343 512 729
001,
008,
027,

064

Practice Problem

Knight's tour

e Start from a corner.

* Visit all 64 squares without
visiting a square twice.

* The only moves allowed are
2.5 places.

e Cannot wrap-around the board.

23
Image source: tutorialhorizon.com

8-Queens Problem

Given a chess-board, :

can you place 8 queens E
IN non-attacking positions?

(no two queens in the same row |

or same column or same diagonal) =

Does a solution exist for 2x2, 3x3, 4x47?

Have you seen similar constraints somewhere?

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

