
Arrays

Rupesh Nasre.
rupesh@cse.iitm.ac.in

July 2022

Properties
● Simplest data structure

– Acts as aggregate over primitives or other aggregates
– May have multiple dimensions

● Contiguous storage
● Random access in O(1)
● Languages such as C use type system to index

appropriately
– e.g., a[i] and a[i + 1] refer to locations based on type

● Storage space:
– Fixed for arrays
– Dynamically allocatable but fixed on stack and heap
– Variable for vectors (internally, reallocation and copying)

3

Search

● Linear: O(N)
● Binary: O(log N)

– T(N) = T(N/2) + c

int bsearch(int a[], int N, int val) {
 int low = 0, high = N - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 if (a[mid] == val) return 1;
 if (a[mid] > val) high = mid - 1;
 else low = mid + 1;
 }
 return 0;
}

int bsearch(int a[], int N, int val) {
 int low = 0, high = N - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 if (a[mid] == val) return 1;
 if (a[mid] > val) high = mid - 1;
 else low = mid + 1;
 }
 return 0;
}

How about Ternary search?

1 2 ... 40 50 ... 91 95 98 99

mid1 mid2

4

Search in a Sorted Matrix[M][N]

3 5 9 20 39

4 6 11 21 40

7 10 12 23 45

8 13 22 27 46

19 29 41 43 49

24 30 44 50 52

25 31 47 51 55

28 33 48 53 61

32 42 54 56 66

35 57 60 62 69

For now, let’s assume that all values are unique.

Focus on 44.
Check where all values < 44 appear.
Check where all values > 44 appear.

Classwork: Devise a method
to search for an element in this
matrix.

Classwork: Devise a method
to search for an element in this
matrix.

5

Search in a Sorted Matrix[M][N]
● Approach 2: Divide and Conquer

– Use the corner points of Q1, Q2, Q3, Q4 to decide the
quadrant.

– > y and > z → Q3
– Else → Q1, Q2, Q4
– T(M, N) = 3T(M/2, N/2) + c = O(min(M, N))1.54

● Approach 3: Elimination
– Consider e: [0, N-1].
– If key == e, found the element
– If key < e, eliminate that column
– If key > e, eliminate that row
– O(M + N)
– What other corner points I can start with?

e

x y

z

i

jQ1 Q2

Q3Q4

6

Search in a Sorted Matrix[M][N]
● Approach 4: Divide and Conquer

– Reduce at least one quadrant
– > x → Q2, Q3, Q4 (eliminate Q1)
– < x → Q1, Q2, Q4 (eliminate Q3)
– == x → eureka

– T(M, N) = 3T(M/2, N/2) + c = O(min(M, N))1.54

e

x y

z

i

jQ1 Q2

Q3Q4

7

Problem: Negative then Positive.
 int arr[N] = {53, 33, 0, -4, 43, 9, 58, 22, -59, 4, -7, 74, 55, -9, 23, 8, 2, -3};

// Keep two indices left and right
// Start left from 0, right from N-1
// If left number is positive and right number is negative, swap.
// Increment left if the number is negative.
// Decrement right if the number is positive.

 for (int left = 0, right = N-1; left < right;) {
 if (arr[left] >= 0 && arr[right] < 0) swap(arr, left, right);
 if (arr[left] < 0) left++;
 if (arr[right] >= 0) right--;
 }

 int arr[N] = {53, 33, 0, -4, 43, 9, 58, 22, -59, 4, -7, 74, 55, -9, 23, 8, 2, -3};

// Keep two indices left and right
// Start left from 0, right from N-1
// If left number is positive and right number is negative, swap.
// Increment left if the number is negative.
// Decrement right if the number is positive.

 for (int left = 0, right = N-1; left < right;) {
 if (arr[left] >= 0 && arr[right] < 0) swap(arr, left, right);
 if (arr[left] < 0) left++;
 if (arr[right] >= 0) right--;
 }

Given a list of numbers (boys+girls / CS+nonCS / Mahanadi+Ganga /
Negative+Positive), move all negatives to the left (in any order).

 -3 -9 -7 -4 -59 9 58 22 43 4 0 74 55 33 23 8 2 53

8

Problem: Merge sorted arrays

C = A merge B, with A and B are sorted.
C is also sorted.

 int A[] = {-3, 0, 43, 58, 64, 79, 93};
 int B[] = {-5, 4, 59, 70, 74, 75, 81, 88, 92};
 int NA = sizeof(A) / sizeof(A[0]);
 int NB = sizeof(B) / sizeof(B[0]);

 int C[NA + NB]; // variable length array, allowed from ANSI C99 standard.

 int indexA = 0, indexB = 0, indexC = 0;

 while (indexA < NA && indexB < NB) {
 if (A[indexA] < B[indexB]) C[indexC++] = A[indexA++];
 else C[indexC++] = B[indexB++];
 }
 while (indexA < NA) C[indexC++] = A[indexA++];
 while (indexB < NB) C[indexC++] = B[indexB++];

 int A[] = {-3, 0, 43, 58, 64, 79, 93};
 int B[] = {-5, 4, 59, 70, 74, 75, 81, 88, 92};
 int NA = sizeof(A) / sizeof(A[0]);
 int NB = sizeof(B) / sizeof(B[0]);

 int C[NA + NB]; // variable length array, allowed from ANSI C99 standard.

 int indexA = 0, indexB = 0, indexC = 0;

 while (indexA < NA && indexB < NB) {
 if (A[indexA] < B[indexB]) C[indexC++] = A[indexA++];
 else C[indexC++] = B[indexB++];
 }
 while (indexA < NA) C[indexC++] = A[indexA++];
 while (indexB < NB) C[indexC++] = B[indexB++];

-5 -3 0 4 43 58 59 64 70 74 75 79 81 88 92 93

C[indexC] = A[indexA];
indexA++;
indexC++;

Extend the program to perform in-situ merge.
Array A has two sorted sequences.

9

Sorting

● A fundamental operation
● Elements need to be stored in increasing order.

– Some methods would work with duplicates.
– Algorithms that maintain relative order of duplicates

from input to output are called stable.

● Comparison-based methods
– Insertion, Bubble, Selection, Shell, Quick, Merge

● Other methods
– Radix, Bucket, Counting

10

Sorting Algorithms at a Glance

Algorithm Worst case
complexity

Average case
complexity

Bubble O(n2) O(n2)

Insertion O(n2) O(n2)

Shell O(n2) Depends on
increment
sequence

Selection O(n2) O(n2)

Heap O(n log n) O(n log n)

Quick O(n2) O(n log n)
depending on

partitioning

Merge O(n log n) O(n log n)

Bucket O(n α log α) Depends on α

11

Bubble Sort
● Compare adjacent values and swap, if required.
● How many times do we need to do it?
● What is the invariant?

– After ith iteration, i largest numbers are at their final
places.

– An element may move away from its final position in
the intermediate stages (e.g., check the 2nd element
of a reverse-sorted array).

● Best case: Sorted sequence
● Worst case: Reverse sorted (n-1 + n-2 + ... + 1 + 0)

● Classwork: Write the code.

https://visualgo.net/en/sorting

12

Bubble Sort
for (ii = 0; ii < N; ++ii)
 for (jj = 0; jj < N - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1);

for (ii = 0; ii < N; ++ii)
 for (jj = 0; jj < N - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1); Not using ii

for (ii = 0; ii < N - 1; ++ii)
 for (jj = 0; jj < N – ii - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1);

for (ii = 0; ii < N - 1; ++ii)
 for (jj = 0; jj < N – ii - 1; ++jj)
 if (arr[jj] > arr[jj + 1]) swap(jj, jj + 1);

O(n2)

● Best case: Sorted sequence
● Worst case: Reverse sorted (n-1 + n-2 + ... + 1 + 0)

● What do we measure?
– Number of comparisons
– Number of swaps (bounded by comparisons)

● Number of comparisons remains the same!

https://visualgo.net/en/sorting

13

Insertion Sort

● Consider ith element and insert it at its place w.r.t.
the first i elements.
– Resembles insertion of a playing card.

● Invariant: Keep the first i elements sorted.
● Note: Insertion is in a sorted array.
● Complexity: O(n log n)?

– Yes, binary search is O(log n).

But are we doing more work?
– Best case, Worst case?

● Classwork: Write the code.

https://visualgo.net/en/sorting

14

Insertion Sort
 for (ii = 1 ; ii < N; ++ii) {
 int key = arr[ii];
 int jj = ii - 1;

 while (jj >= 0 && key < arr[jj]) {
 arr[jj + 1] = arr[jj];
 --jj;
 }
 arr[jj + 1] = key;
 }

 for (ii = 1 ; ii < N; ++ii) {
 int key = arr[ii];
 int jj = ii - 1;

 while (jj >= 0 && key < arr[jj]) {
 arr[jj + 1] = arr[jj];
 --jj;
 }
 arr[jj + 1] = key;
 }

Shift elements
0 + 1 + 2 + ... n-1

ith element

At its place

● Best case: Sorted: while loop is O(1)
● Worst case: Reverse sorted: O(n2)

https://visualgo.net/en/sorting

15

Selection Sort

● Approach: Choose the minimum element, and
push it to its final place.

● What is the invariant?
– First i elements are at their final places after i

iterations.

● Classwork: Write the code.for (ii = 0 ; ii < N - 1; ++ii) {
 int iimin = ii;

 for (jj = ii + 1; jj < N; ++jj)
 if (arr[jj] < arr[iimin])

iimin = jj;
 swap(iimin, ii);
 }

for (ii = 0 ; ii < N - 1; ++ii) {
 int iimin = ii;

 for (jj = ii + 1; jj < N; ++jj)
 if (arr[jj] < arr[iimin])

iimin = jj;
 swap(iimin, ii);
 }

Find min.

https://visualgo.net/en/sorting

Heapsort

Given N elements,

build a heap and

then perform N deleteMax,

store each element into an array.

N storage

O(N) time

O(N log N) time

O(N) time and N space

O(N log N) time and 2N space

Can we avoid the
second array?

Can we avoid the
second array?

 for (int ii = 0; ii < nelements; ++ii) {
 h.hide_back(h.deleteMax());
 }
 h.printArray(nelements);

 for (int ii = 0; ii < nelements; ++ii) {
 h.hide_back(h.deleteMax());
 }
 h.printArray(nelements);

Source: heap-sort.cpp

17

Quicksort

● Approach:
– Choose an arbitrary element (called pivot).
– Place the pivot at its final place.
– Make sure all the elements smaller than the pivot

are to the left of it, and ... (called partitioning)
– Divide-and-conquer.

● Best case, worst case?
● Classwork: Write the code.

6 2 4 9 11 7 8 1 3 5

18

Merge Sort

● Divide-and-Conquer
– Divide the array into two halves
– Sort each array separately
– Merge the two sorted sequences

● Worst case complexity: O(n log n)
● Not efficient in practice due to array copying.
● Classwork: Write the code (reuse the merge

function already written).

6 2 4 9 11 7 8 1 3 5

19

Comparison-based Sorts

● Array consists of n distinct elements.
● Number of permutations = n!
● A sorting algorithm must distinguish between these permutations.
● The number of yes/no bits necessary to distinguish n! permutations

is log(n!).
– Also called information theoretic lower bound

● Given: N! >= (n/2)n/2

● log(N!) >= n/2 log(n/2) which is Ω (n log n)
● Comparison-based sort needs 1 bit per comparison (two numbers).

Hence it must require at least n log n time.
– For each comparison-based sorting algorithm, there exists an input for

which it would take n log n comparisons.
– Heapsort, mergesort are theoretically asymptotically optimal (subject to

constants)

20

Bucket Sort

● Hash / index each element into a bucket, based
on its value (specific hash function).

● Sort each bucket.
– use other sorting algorithms such as insertion sort.

● Output buckets in increasing order.
● Special case when number of buckets >=

maximum element value.
● Unsuitable for arbitrary types.

6 2 4 9 11 7 8 1 3 5

21

Counting Sort

● Bucketize elements.
● Find count of elements in each bucket.
● Perform prefix sum.
● Copy elements from buckets to original array.

6 2 4 9 11 7 8 1 3 5

1, 2 3 4, 5, 6 7 8 9 11

2 0 1 3 1 0 1 0 1 1

0 2 2 3 6 7 7 8 8 9

1 2 3 4 5 6 7 8 9 11

Original array

Buckets

Bucket sizes

Starting index

Output array

22

Radix Sort
● Generalization of bucket sort.
● Radix sort sorts using different digits.
● At every step, elements are moved to buckets

based on their ith digits, starting from the least
significant digit.

● Classwork: 33, 453, 124, 225, 1023, 432, 2232
64 8 216 512 27 729 0 1 343 125

0 1 512 343 64 125 216 27 8 729

00, 01,
08

512,
216

125,
27,
729

343 64

000,
001,
008,
027,
064

125 216 343 512 729

23

Knight’s tour
● Start from a corner.
● Visit all 64 squares without

visiting a square twice.
● The only moves allowed are

2.5 places.
● Cannot wrap-around the board.

Image source: tutorialhorizon.com

Practice Problem

24

8-Queens Problem

Given a chess-board,

can you place 8 queens

in non-attacking positions?

(no two queens in the same row

or same column or same diagonal)
● Does a solution exist for 2x2, 3x3, 4x4?
● Have you seen similar constraints somewhere?

Image source: leetcode.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

