Complexity

Rupesh Nasre. rupesh@cse.iitm.ac.in

July 2022

Algorithms

- For the same problem, there could be multiple algorithms.
- An algorithm is a clearly specified sequence of simple instructions that solve a given problem.
 - An algorithm, by definition, terminates.
 - Otherwise, the sequence of instructions constitutes a *procedure*.
- The algorithm should be so clear to you that you should be able to make a machine understand it.
 - This is called programming.

Algorithm Efficiency

- For the same problem, there could be multiple algorithms.
- We prefer the ones that run *fast*.
 - I don't want an algorithm that takes a year to sort!
 - By the way, there are computations that run for months!
 - Operating systems on servers may run for years.
 [rupesh@aampal ~]\$ uptime
 17:51:45 up 585 days, 4:45, 3 users, load average: 0.00, 0.01, 0.00
- We would like to compare algorithms based on their speeds.
 - Mathematical model to capture algorithm efficiency. 3

Irrespective of the values of a and b, this program would take time proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

All of these are equally efficient!

- They all perform constant-time operations.
- We denote those as O(1).

All of these are equally efficient!

- They all perform linear-time operation *(linear in n)*.
- We denote those as O(n).

Definition

- T(N) = O(1) if $T(N) \le c$ when $N \ge n_0$, for some positive c and n_0 .
- T(N) = O(N) if $T(N) \le cN$ when $N \ge n_0$, for some positive c and n_0 .
- In general,

T(N) = O(f(N)) if there exist positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

• Complexity captures the rate of growth of a function.

Big O

• In general,

T(N) = O(f(N)) if there exist positive constants c and n_0 such that $T(N) \le cf(N)$ when $N \ge n_0$.

- The complexity is upper-bounded by c*f(N).
- Thus, big O is the worst-case complexity.

Solving for Time Complexity

- T(n) = c1 + T(n/3) and T(1) = 1
 - = c1 + [c1 + T(n/9)]
 - $= 2*c1 + T(n/3^2)$
 - $= 3*c1 + T(n/3^3)$
 - $= k*c1 + T(n/3^{k})$

If $n == 3^{k}$,

```
T(n) = \log_{3}n*c1 + T(1) = c1*\log_{3}n + 1 = O(\log_{3}n)
int fun(int n) {
return (n <= 1 ? 1 : 4 * fun(n / 3));
}
```

Types of Complexities

Symbol	Name	Bound	Equation
O()	Big O	Upper	T(n) <= cf(n)
Ω()	Big Omega	Lower	T(n) >= cf(n)
Θ()	Theta	Upper and Lower	$c_1 f(n) \le T(n) \le c_2 f(n)$
o()	Little O	Strictly Upper	T(n) < cf(n)
ω()	Little Omega	Strictly Lower	T(n) > cf(n)

Notes

- Θ means O and Ω . It is a stronger guarantee on the complexity.
- If T(n) is O(n), then T(n) is also O(n²), also O(nlogn), also O(n³), O(n¹⁰⁰), O(2ⁿ); but it is <u>not</u> O(logn) or O(1).
- Big O is also called Big Oh.
- $T(n) = T(n/2) = T(1000n) = T(nlog2) = T(2^{logn})$
- Log₂(x), that is, *log to the base 2* is sometimes written as lg(x).
- If T(n) = O(f(n)) then $f(n) = \Omega(T(n))$.

Complexity Arithmetic

- If T1(n) = O(f(n)) and T2(n) = O(g(n)), then
 - T1(n) + T2(n) = O(max(f(n), g(n)))
 - T1(n) * T2(n) = O(f(n) * g(n))
- Classwork:
 - Write a C code that requires the use of T1(n) + T2(n).
 - Write a C code that requires the use of T1(n) * T2(n).

Typical Complexities

Homework: Find which one grows faster: nlogn or n^{1.5}.

Facets of Efficiency

- An algorithm or its implementation may have various facets towards efficiency.
 - Time complexity (which we usually focus on)
 - Space complexity (considered in memory-critical systems such as embedded devices)
 - Energy complexity (e.g., your smartphones)
 - Security level (e.g., program with less versus more usage of pointers)
 - I/O complexity

Max. Subsequence Sum

Problem Statement

Given an array of (positive, negative, zero) integer values, find the largest subsequence sum.

• A subsequence is a consecutive set of elements. If empty, its sum is zero.

Exhaustive Algorithm

For each possible subsequence

Compute sum

If sum > current maxsum

current maxsum = sum

Return current maxsum

How many subsequences?

What is the complexity of this part?

Algorithm 1 takes O(N³) running time.

Source: mss1.cpp

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} \sum_{k=i}^{j} O(1)$$

i - i + 1

We will assume O(1) to be equal to constant 1. This would affect only the constant in BigOh.

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} \sum_{j=i}^{N-1} (j-i+1)$$
sum of first N-i integers
$$= (N-i)(N-i+1)/2$$

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$\sum_{i=0}^{N-1} (N-i)(N-i+1)/2$$

 $= (N^{3} + 3N^{2} + 2N) / 6$ $= O(N^{3})$ The analysis is tight. Is the algorithm tight?

• Observation:

$$\sum_{k=i}^{j} A[k] = A[j] + \sum_{k=i}^{j-1} A[k]$$

For each starting position i For each ending position j Incrementally compute sum If sum > maxsum maxsum = sum Return maxsum

What is the complexity of this algorithm?

- **Observation**: Discard fruitless subsequences early.
 - e.g., in {1, 2, -8, 4, -3, 5, -2, -1, 2, 6, -2}, we need not consider subsequences {-2} or {-2, -1} or even {-2, -1, 2} or {1, 2, -8, 4}.

For each position

Add next element to sum

If sum > maxsum

Maxsum = *sum*

Else if sum is negative

sum = 0

Are you kidding? This shouldn't work. This is linear time algorithm!

Binary Search

- Go to page number 44.
- Searching in an array takes linear time O(N).
- If the array is sorted already, we can do better.
- We can cut the search space by half at every step.

Classwork: Write the code for binary search. **Source: bsearch.cpp**

Binary Search

- Constant amount of time required to
 - Find the mid element.
 - Check if it is the element to be searched.
 - Decide whether to go to the left or the right.
 - Cut the search space by half.
- T(N) = T(N/2) + O(1)
 - Thus, T(N) is O(logN).

Exercises

- Write a function to sort an integer array.
 - What is the complexity? Can you improve it?
- Write a function to sort an array of strings.
 - What is the complexity?
- Merge two sorted arrays.
 - First use a third array. Then merge A and B into A.
- Search in a sorted array.
- Search in a matrix whose each row is sorted and each column is also sorted.
- Search for a substring in a long string.
 - What is the complexity?