
Complexity

Rupesh Nasre.
rupesh@cse.iitm.ac.in

July 2022

 2

Algorithms

● For the same problem, there could be multiple
algorithms.

● An algorithm is a clearly specified sequence of
simple instructions that solve a given problem.
– An algorithm, by definition, terminates.
– Otherwise, the sequence of instructions constitutes a

procedure.

● The algorithm should be so clear to you that you
should be able to make a machine understand it.
– This is called programming.

 3

Algorithm Efficiency

● For the same problem, there could be multiple
algorithms.

● We prefer the ones that run fast.
– I don’t want an algorithm that takes a year to sort!
– By the way, there are computations that run for months!
– Operating systems on servers may run for years.

● We would like to compare algorithms based on
their speeds.
– Mathematical model to capture algorithm efficiency.

[rupesh@aampal ~]$ uptime
17:51:45 up 585 days, 4:45, 3 users, load average: 0.00, 0.01, 0.00

 4

Examples
a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

int fun(int n) {
return (n == 0 ? 1 : 4 * fun(n / 3));

}

Irrespective of the values of a and
b, this program would take time
proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

 5

Examples
a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

a[ii] = 0;a[ii] = 0;

x = y;
if (x > 0)

y = x + 1;
else

z = x + 1;

x = y;
if (x > 0)

y = x + 1;
else

z = x + 1;

for (ii = 0; ii < 1000; ++ii)
a[ii] = 0;

for (ii = 0; ii < 1000; ++ii)
a[ii] = 0;

All of these are
equally efficient!

● They all perform
constant-time
operations.

● We denote those
as O(1).

 6

Examples

a[0] = 0;
a[1] = 0;
a[2] = 0;
...
a[n – 5] = 0;

a[0] = 0;
a[1] = 0;
a[2] = 0;
...
a[n – 5] = 0;

int fact(int n) {
if (n > 0) return n * fact(n – 1);
return 1;

}

int fact(int n) {
if (n > 0) return n * fact(n – 1);
return 1;

}

for (ii = 0; ii < 2*n; ++ii)
a[ii] = 0;

for (ii = 0; ii < 2*n; ++ii)
a[ii] = 0;

 All of these are
 equally efficient!

● They all perform
linear-time operation
(linear in n).

● We denote those as
O(n).

 7

Definition

● T(N) = O(1) if T(N) ≤ c when N ≥ n0, for some
positive c and n0.

● T(N) = O(N) if T(N) ≤ cN when N ≥ n0, for some
positive c and n0.

● In general,

T(N) = O(f(N)) if there exist positive constants
c and n0 such that T(N) ≤ cf(N) when N ≥ n0.

● Complexity captures the rate of growth of a
function.

 8

Big O

● In general,

T(N) = O(f(N)) if there exist positive constants
c and n0 such that T(N) ≤ cf(N) when N ≥ n0.

● The complexity is upper-bounded by c*f(N).
● Thus, big O is the worst-case complexity.

n
0

cf
(N

)

T(N)

 9

Examples
a = a + b;
b = a – b;
a = a – b;

a = a + b;
b = a – b;
a = a – b;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
a[ii] = 0;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

for (ii = 0; ii < N; ++ii)
for (jj = 0; jj < M; ++jj)

mat[ii][jj] = ii + jj;

int fun(int n) {
return (n <= 1 ? 1 : 4 * fun(n / 3));

}

int fun(int n) {
return (n <= 1 ? 1 : 4 * fun(n / 3));

}

Irrespective of the values of a and
b, this program would take time
proportional to three instructions.

Proportional to N.

Proportional to N*M.

?

O(1)

O(N)

O(N*M)

 10

Solving for Time Complexity

T(n) = c1 + T(n/3) and T(1) = 1

 = c1 + [c1 + T(n/9)]

 = 2*c1 + T(n/32)

 = 3*c1 + T(n/33)

 = k*c1 + T(n/3k)

If n == 3k,

T(n) = log3n*c1 + T(1) = c1*log3n + 1 = O(log3n)
int fun(int n) {

return (n <= 1 ? 1 : 4 * fun(n / 3));
}

int fun(int n) {
return (n <= 1 ? 1 : 4 * fun(n / 3));

}

 11

Types of Complexities
Symbol Name Bound Equation

O(...) Big O Upper T(n) <= cf(n)

Ω(...) Big Omega Lower T(n) >= cf(n)

Θ(...) Theta Upper and Lower c
1
f(n) <= T(n) <= c

2
f(n)

o(...) Little O Strictly Upper T(n) < cf(n)

ω(...) Little Omega Strictly Lower T(n) > cf(n)

 12

Notes

● Θ means O and Ω. It is a stronger guarantee on
the complexity.

● If T(n) is O(n), then T(n) is also O(n2), also
O(nlogn), also O(n3), O(n100), O(2n); but it is not
O(logn) or O(1).

● Big O is also called Big Oh.
● T(n) = T(n/2) = T(1000n) = T(nlog2) = T(2logn)
● Log2(x), that is, log to the base 2 is sometimes

written as lg(x).
● If T(n) = O(f(n)) then f(n) = Ω(T(n)).

 13

Complexity Arithmetic

● If T1(n) = O(f(n)) and T2(n) = O(g(n)), then
– T1(n) + T2(n) =
– T1(n) * T2(n) =

● Classwork:
– Write a C code that requires the use of T1(n) + T2(n).
– Write a C code that requires the use of T1(n) * T2(n).

O(max(f(n), g(n)))
O(f(n) * g(n))

 14

Typical Complexities
Function Name

c Constant

Log N Logarithmic

Log2 N Log-squared

N Linear

N log N Superlinear

N2 Quadratic

N3 Cubic

2N Exponential

Homework: Find which one grows faster:
nlogn or n1.5.

 15

Facets of Efficiency

● An algorithm or its implementation may have
various facets towards efficiency.
– Time complexity (which we usually focus on)
– Space complexity (considered in memory-critical

systems such as embedded devices)
– Energy complexity (e.g., your smartphones)
– Security level (e.g., program with less versus more

usage of pointers)
– I/O complexity
– ...

 16

Max. Subsequence Sum

4 -3 5 -2 -1 2 6 -2

6 5

9

● Problem Statement

Given an array of (positive, negative, zero)
integer values, find the largest subsequence
sum.

● A subsequence is a consecutive set of
elements. If empty, its sum is zero.

 17

MSS: Algorithm 1

Exhaustive Algorithm

For each possible subsequence

 Compute sum

 If sum > current maxsum

 current maxsum = sum

Return current maxsum

How many
subsequences?

What is the complexity
of this part?

Source: mss1.cpp

Algorithm 1 takes O(N3) running time.

 18

MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of

operations:

∑ ∑ ∑ O(1)
N-1

i=0 j=i

N-1 j

k=i

We will assume O(1) to be
equal to constant 1. This
would affect only the
constant in BigOh.

j – i + 1

 19

MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of

operations:

∑ ∑ (j – i + 1)
N-1

i=0 j=i

N-1

sum of first N-i integers
=

(N – i)(N – i + 1) / 2

 20

MSS: Algorithm 1

● Did we perform a tight mathematical analysis?
● To be precise, we need the following number of

operations:

∑ (N – i)(N – i + 1) / 2
N-1

i=0

 = (N3 + 3N2 + 2N) / 6
 = O(N3)

The analysis is tight.
Is the algorithm tight?

 21

MSS: Algorithm 2

● Observation:

∑ ∑
k=i

j
A[k] = A[j] +

k=i

j-1

A[k]

For each starting position i
 For each ending position j
 Incrementally compute sum

If sum > maxsum
maxsum = sum

Return maxsum
Source: mss2.cpp

What is the complexity
of this algorithm?

 22

MSS: Algorithm 3

● Observation: Discard fruitless subsequences early.
– e.g., in {1, 2, -8, 4, -3, 5, -2, -1, 2, 6, -2}, we need not consider

subsequences {-2} or {-2, -1} or even {-2, -1, 2} or {1, 2, -8, 4}.

For each position

 Add next element to sum

 If sum > maxsum

 Maxsum = sum

 Else if sum is negative

 sum = 0

Are you kidding?
This shouldn’t work.

This is linear time algorithm!

Source: mss3.cpp

 23

Binary Search

● Go to page number 44.
● Searching in an array takes linear time O(N).
● If the array is sorted already, we can do better.
● We can cut the search space by half at every

step.

5 7 8 20 23 42 43 44 78 81

Classwork: Write the code for binary search.
Source: bsearch.cpp

 24

Binary Search

● Constant amount of time required to
– Find the mid element.
– Check if it is the element to be searched.
– Decide whether to go to the left or the right.
– Cut the search space by half.

● T(N) = T(N/2) + O(1)
– Thus, T(N) is O(logN).

 25

Exercises
● Write a function to sort an integer array.

– What is the complexity? Can you improve it?

● Write a function to sort an array of strings.
– What is the complexity?

● Merge two sorted arrays.
– First use a third array. Then merge A and B into A.

● Search in a sorted array.
● Search in a matrix whose each row is sorted and

each column is also sorted.
● Search for a substring in a long string.

– What is the complexity?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

