Complexity

Rupesh Nasre.
rupesh@cse.iitm.ac.in

Algorithms

- For the same problem, there could be multiple algorithms.
- An algorithm is a clearly specified sequence of simple instructions that solve a given problem.
- An algorithm, by definition, terminates.
- Otherwise, the sequence of instructions constitutes a procedure.
- The algorithm should be so clear to you that you should be able to make a machine understand it.
- This is called programming.

Algorithm Efficiency

- For the same problem, there could be multiple algorithms.
- We prefer the ones that run fast.
- I don't want an algorithm that takes a year to sort!
- By the way, there are computations that run for months!
- Operating systems on servers may run for years. [rupesh@aampal ~]\$ uptime 17:51:45 up 585 days, 4:45, 3 users, load average: 0.00, 0.01, 0.00
- We would like to compare algorithms based on their speeds.
- Mathematical model to capture algorithm efficiency.

Examples

$$
\begin{aligned}
& a=a+b \\
& b=a-b \\
& a=a-b
\end{aligned}
$$

Irrespective of the values of a and b, this program would take time proportional to three instructions.

Proportional to N .

Proportional to $\mathrm{N} * \mathrm{M}$.

```
int fun(int n) {
    return (n == 0 ? 1:4* fun(n / 3));
}
```


Examples

$$
\begin{aligned}
& \mathrm{a}=\mathrm{a}+\mathrm{b} ; \\
& b=a-b ; \\
& \mathrm{a}=\mathrm{a}-\mathrm{b} \text {; } \\
& \mathrm{a}[\mathrm{ii}]=0 \text {; } \\
& \mathrm{x}=\mathrm{y} \text {; } \\
& \text { if }(x>0) \\
& \mathrm{y}=\mathrm{x}+1 \text {; } \\
& \text { else } \\
& \mathrm{z}=\mathrm{x}+1 ;
\end{aligned}
$$

All of these are equally efficient!

- They all perform constant-time operations.

$$
\begin{aligned}
& \text { for (ii }=0 ; \text { ii }<1000 ;++\mathrm{ii}) \\
& \quad \mathrm{a}[\mathrm{ii}]=0 ;
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathrm{a}[0]=0 ; \\
& \mathrm{a}[1]=0 ; \\
& \mathrm{a}[2]=0 ; \\
& \cdots \\
& \mathrm{a}[\mathrm{n}-5]=0 ;
\end{aligned}
$$

int fact(int n) \{

$$
\text { if }(\mathrm{n}>0) \text { return } \mathrm{n} * \boldsymbol{f a c t}(\mathrm{n}-1)
$$

$$
\begin{aligned}
& \text { for (ii } \left.=0 ; \mathrm{ii}<2^{*} n ;++\mathrm{ii}\right) \\
& \quad \mathrm{a}[\mathrm{ii}]=0 ;
\end{aligned}
$$

All of these are equally efficient!

$$
\text { return } 1 ;
$$

$$
\}
$$

- They all perform linear-time operation (linear in n).
- We denote those as $\mathrm{O}(\mathrm{n})$.

Definition

- $T(N)=O(1)$ if $T(N) \leq c$ when $N \geq n_{0}$, for some positive c and n_{0}.
- $T(N)=O(N)$ if $T(N) \leq c N$ when $N \geq n_{0}$, for some positive c and n_{0}.
- In general,
$\mathbf{T}(\mathbf{N})=\mathbf{O}(\mathbf{f}(\mathrm{N}))$ if there exist positive constants c and n_{0} such that $T(N) \leq \operatorname{cf}(N)$ when $N \geq n_{0}$.
- Complexity captures the rate of growth of a function.

Big O

- In general,
$\mathrm{T}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N})$) if there exist positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \leq \operatorname{cf}(\mathrm{N})$ when $\mathrm{N} \geq \mathrm{n}_{0}$.
- The complexity is upper-bounded by $\mathrm{C}^{\star \mathrm{f}}(\mathrm{N})$.
- Thus, big O is the worst-case complexity.

Examples

$$
\begin{aligned}
& a=a+b \\
& b=a-b \\
& a=a-b
\end{aligned}
$$

$$
\begin{aligned}
& \text { for (ii }=0 ; \mathrm{ii}<\mathrm{N} ;++\mathrm{ii}) \\
& \quad \mathrm{a}[\mathrm{ii}]=0 ;
\end{aligned}
$$

```
for (ii \(=0 ; \mathrm{ii}<\mathrm{N} ;++\mathrm{ii}\) )
    for ( \(\mathrm{jj}=0 ; \mathrm{jj}<\mathrm{M} ;++\mathrm{jj}\) )
        \(\operatorname{mat}[i i][j j]=\mathrm{ii}+\mathrm{jj}\);
```

$\mathrm{O}(\mathrm{N})$

Irrespective of the values of a and b, this program would take time proportional to three instructions.

Proportional to N .

Proportional to $\mathrm{N} * \mathrm{M}$.
O(N*M)
int fun(int n) \{
? return ($\mathrm{n}<=1$? $1: 4^{*}$ fun($\mathrm{n} / 3$)); \}

Solving for Time Complexity

$$
\begin{aligned}
& T(n)=c 1+T(n / 3) \quad \text { and } \quad T(1)=1 \\
&=c 1+[c 1+T(n / 9)] \\
&=2^{*} c 1+T\left(n / 3^{2}\right) \\
&=3^{\star} c 1+T\left(n / 3^{3}\right) \\
&=k^{*} c 1+T\left(n / 3^{k}\right) \\
& \text { If } n==3^{k}, \\
& T(n)=\log _{3} n^{*} c 1+T(1)=c 1^{*} \log _{3} n+1=O\left(\log _{3} n\right) \\
&\text { int fun(int } n)\{ \\
&\}
\end{aligned} \quad \begin{aligned}
& \text { return }(n<=1 ? 1: 4 * \text { fun }(n / 3)) ;
\end{aligned}
$$

Types of Complexities

Symbol	Name	Bound	Equation
O(...)	Big O	Upper	$T(n)<=\operatorname{cf}(\mathrm{n})$
$\Omega(\ldots)$	Big Omega	Lower	$T(n)>=c f(n)$
$\Theta(\ldots)$	Theta	Upper and Lower	$\mathrm{c}_{1} \mathrm{f}(\mathrm{n})<=\mathrm{T}(\mathrm{n})<=\mathrm{c}_{2} \mathrm{f}(\mathrm{n})$
O(...)	Little O	Strictly Upper	$\mathrm{T}(\mathrm{n})<\mathrm{cf}(\mathrm{n})$
$\omega(\ldots)$	Little Omega	Strictly Lower	$\mathrm{T}(\mathrm{n})>\operatorname{cf}(\mathrm{n})$

Notes

- Θ means O and Ω. It is a stronger guarantee on the complexity.
- If $T(n)$ is $O(n)$, then $T(n)$ is also $O\left(n^{2}\right)$, also $\mathrm{O}(\mathrm{nlogn})$, also $\mathrm{O}\left(\mathrm{n}^{3}\right), \mathrm{O}\left(\mathrm{n}^{100}\right), \mathrm{O}\left(2^{n}\right)$; but it is not $\mathrm{O}(\log n)$ or $\mathrm{O}(1)$.
- Big O is also called Big Oh.
- $T(n)=T(n / 2)=T(1000 n)=T(n \log 2)=T\left(2^{\log n}\right)$
- $\log _{2}(x)$, that is, log to the base 2 is sometimes written as $\lg (\mathrm{x})$.
- If $T(n)=O(f(n))$ then $f(n)=\Omega(T(n))$.

Complexity Arithmetic

- If $T 1(n)=O(f(n))$ and $T 2(n)=O(g(n))$, then

$$
\begin{aligned}
& -T 1(n)+T 2(n)=O(\max (f(n), g(n))) \\
& -T 1(n) * T 2(n)=O(f(n) * g(n))
\end{aligned}
$$

- Classwork:
- Write a C code that requires the use of $T 1(n)+T 2(n)$.
- Write a C code that requires the use of $\mathrm{T} 1(\mathrm{n}) * \mathrm{~T} 2(\mathrm{n})$.

Typical Complexities

Function	Name
c	Constant
Log N	Logarithmic
Log $^{2} N$	Log-squared
N	Linear
$N \log N$	Superlinear
N^{2}	Quadratic
N^{3}	Cubic
2^{N}	Exponential

Homework: Find which one grows faster: nlogn or $\mathrm{n}^{1.5}$.

Facets of Efficiency

- An algorithm or its implementation may have various facets towards efficiency.
- Time complexity (which we usually focus on)
- Space complexity (considered in memory-critical systems such as embedded devices)
- Energy complexity (e.g., your smartphones)
- Security level (e.g., program with less versus more usage of pointers)
- I/O complexity
- ...

Max. Subsequence Sum

- Problem Statement

Given an array of (positive, negative, zero) integer values, find the largest subsequence sum.

- A subsequence is a consecutive set of elements. If empty, its sum is zero.

MSS: Algorithm 1

Exhaustive Algorithm

For each possible subsequence
Compute sum
If sum > current maxsum
current maxsum = sum
Return current maxsum

Algorithm 1 takes $\mathrm{O}\left(\mathrm{N}^{3}\right)$ running time.

MSS: Algorithm 1

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$
\sum_{i=0}^{N-1} \sum_{j=1}^{N-1} \sum_{k=1}^{N} O(1)
$$

$$
j-i+1
$$

We will assume $O(1)$ to be equal to constant 1 . This would affect only the constant in BigOh.

MSS: Algorithm 1

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$$
\sum_{i=0}^{N-1} \sum_{j=i}^{N-1}(j-i+1)
$$

sum of first N -i integers

$$
(N-i)(N-i+1) / 2
$$

MSS: Algorithm 1

- Did we perform a tight mathematical analysis?
- To be precise, we need the following number of operations:

$\sum_{i}^{N-1}(N-i)(N-i+1) / 2$

$=\left(\mathrm{N}^{3}+3 \mathrm{~N}^{2}+2 \mathrm{~N}\right) / 6$
$=O\left(\mathrm{~N}^{3}\right)$

The analysis is tight. Is the algorithm tight?

MSS: Algorithm 2

- Observation:

$$
\sum_{k=i}^{j} A[k]=A[j]+\sum_{k=i}^{j-1} A[k]
$$

For each starting position i
For each ending position j
Incrementally compute sum
If sum > maxsum
maxsum = sum

What is the complexity of this algorithm?

Return maxsum

MSS: Algorithm 3

- Observation: Discard fruitless subsequences early.
- e.g., in $\{1,2,-8,4,-3,5,-2,-1,2,6,-2\}$, we need not consider subsequences $\{-2\}$ or $\{-2,-1\}$ or even $\{-2,-1,2\}$ or $\{1,2,-8,4\}$.
For each position
Add next element to sum
If sum > maxsum
Maxsum = sum

Are you kidding?
This shouldn't work.
This is linear time algorithm!

Else if sum is negative

$$
\text { sum }=0
$$

Binary Search

- Go to page number 44.
- Searching in an array takes linear time $\mathrm{O}(\mathrm{N})$.
- If the array is sorted already, we can do better.
- We can cut the search space by half at every step.

Classwork: Write the code for binary search. Source: bsearch.cpp

Binary Search

- Constant amount of time required to
- Find the mid element.
- Check if it is the element to be searched.
- Decide whether to go to the left or the right.
- Cut the search space by half.
- $T(N)=T(N / 2)+O(1)$
- Thus, $T(N)$ is $O(\log N)$.

Exercises

- Write a function to sort an integer array.
- What is the complexity? Can you improve it?
- Write a function to sort an array of strings.
- What is the complexity?
- Merge two sorted arrays.
- First use a third array. Then merge A and B into A.
- Search in a sorted array.
- Search in a matrix whose each row is sorted and each column is also sorted.
- Search for a substring in a long string.
- What is the complexity?

