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ABSTRACT

KEYWORDS: complex networks, multilayer networks, hypergraphs, inter tissue

communication, node centrality, PageRank, hypergraph clustering

Network science provides a framework to model systems involving interacting

components. These systems are observed in various domains such as genes interacting

in tissues, railway junctions connected in transportation systems, multiple computers

connected on the internet, humans involved in social relationships, researchers

collaborating on projects, etc. There is a growing body of literature on graphs that

represents such richer forms of interactions, and our thesis adds novel measures,

algorithms, and network science applications, to this line of research, specifically

pertaining to multilayer graphs and hypergraphs. In this thesis, we analyze these two

rich graph structures, viz. multilayer networks and hypergraphs, and discuss their

applications in modeling multi-tissue datasets and collaboration networks, respectively.

In particular, we look at the problems of finding node centrality in multilayer networks

and clustering and hyperedge prediction in hypergraphs.

We begin with providing the mathematical framework required to define multilayer

networks and hypergraphs. We start with exploring different forms of multilayer

networks based on coupling schemes and zoom into the most general form of multilayer

network based on cross-coupling. We systematically study centrality methods for

multilayer networks and discuss their applicability in different scenarios. Existing

centrality measures for multilayer networks fail to distinguish between within-layer and

iv



across-layer edges’ impact. Identifying across-layer central nodes is crucial in several

systems. For example, discovering genes responsible for inter-tissue communication in

a multi-tissue system can help answer interesting biological questions. We introduce

MultiCens, a novel centrality framework that can distinguish within- vs. across-layer

connectivity to quantify the "influence" of any gene in a tissue on a query set of genes of

interest in another tissue. MultiCens enjoys theoretical guarantees on convergence and

decomposability, and performs well on synthetic benchmarks. On human multi-tissue

datasets, MultiCens predicts known and novel genes linked to hormones. Our findings

on multilayer networks establish the necessary foundation for several other methods,

such as clustering, where the effect of within-layer and across-layer edges must be

separated.

In the next part of this thesis, we focus on another network structure, hypergraphs, and

explore two problems, hypergraph clustering and hyperedge prediction. Hypergraph

clustering is the problem of finding densely connected components (set of nodes) in a

hypergraph. Hypergraph clustering is analogous to graph clustering, where modularity

maximization-based clustering methods have been known to work well. In this work,

we provide a generalization of the modularity maximization framework for clustering

on hypergraphs. We also propose an iterative technique that provides refinement over

the obtained clusters, as shown by our extensive set of experiments. The second

problem in the space of hypergraphs we focus on is hyperedge prediction. This problem

has immense applications in multiple domains, such as predicting new collaborations

in social networks, discovering new chemical reactions in metabolic networks, etc.

Despite its significant importance, the problem of hyperedge prediction hasn’t received

v



adequate attention, mainly because of its inherent complexity. We propose HPRA

(Hyperedge Prediction using Resource Allocation) to predict new hyperedges with

a reasonable computation time. The proposed method is tested to predict missing

hyperedges as well as future hyperedges using past data, where it outperforms the state-

of-the-art methods.
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CHAPTER 1
Introduction

Many real-world systems can be characterized by several components that interact

in multiple ways and determine the overall system behavior. Such systems are

observed in various domains such as genes interacting in the tissues, railway junctions

connected in transportation systems, multiple computers connected on the internet,

humans involved in social relationships, researchers collaborating for projects, etc.

Traditionally, graph-based modeling has been used to represent such systems. Though

graph-based modeling is backed by well-established graph theory, it fails to retain the

peculiar artifacts of the underlying complex systems. For instance, a set of genes in

the human body can have different interaction patterns in different tissues, resulting

in a multilayer structure where a dedicated layer represents each tissue. A graph-

based model will either overlook the peculiarities of individual tissues and merge all

connections in the same layer or ignore the multilayer tissue structure of the system

and model a giant network of interacting genes. A multilayer network where each layer

represents a tissue provides a natural representation of the multi-tissue system. Here,

each layer (tissue) comprises the same set of nodes (genes), but their connectivity (edge)

pattern in each layer may differ.

Similarly, in bibliographic systems, multiple researchers can collaborate on the same

project resulting in a super-dyadic relation (involving more than two agents). Modeling

it as a graph will limit us to capture only pairwise relations and breaking the

super-dyadic relations into pairwise interactions. Hypergraphs provide a natural

representation for such systems where the researchers are represented by nodes and

hyperedges connect nodes that form collaborations. In this thesis, we explore multilayer



networks and hypergraphs. In addition to multilayer networks and hypergraphs, there

are several other complex network structures, such as knowledge graphs, heterogeneous

graphs, multipartite graphs, etc., which are not covered in this thesis.

Hypothalamus

Adrenal Cortex

Pituitary
Gland

Created with BioRender.com

Figure 1.1: Example multilayer network: A multi-tissue system comprising of
Hypothalamus, Pituitary Gland and Adrenal Cortex, also known as HPA
axis. Each tissue corresponds to a layer in the multilayer network and each
layer contains the same set of genes which are connected based on their
co-expression scores. Solid edges represent within-tissue connections and
inter-tissue connections are represented by dotted edges.

Figure 1.1 shows a multilayer network representation of a multi-tissue system. There

are three tissues encoded by three layers, where each layer comprises the same set of

genes encoded by nodes. Unlike graphs, multilayer networks can distinguish between

within-layer and cross-layer connections, which makes this representation suitable to

2



Figure 1.2: An example hypergraph: An example hypergraph representing a
collaboration network. Here, students represent nodes in the hypergraph
and a set of nodes are connected if they are part of the same study group.

answer several interesting questions, as we will discuss in the remaining part of this

section. Figure 1.21 shows an example collaboration hypergraph where students are

represented by nodes and hyperedges connect students from the same study group.

Unlike graphs, a hypergraph can capture the underlying system’s super-dyadic (of

cardinality greater than two) relations.

In this work, we start with investigating the existing network science methods and

measures for traditional graphs and ways to extend them to multilayer networks and

hypergraphs.We begin by reviewing the different coupling techniques of multilayer

networks and dive into the most generalized inter-layer cross-coupling scheme. We

focus on finding node centrality (also called network centrality) in multilayer networks.

Network centrality assesses the “importance or centrality" of each node in a network

1Image source: http://www.math.iisc.ernet.in/~ifcam/new_avenue/Slides/Seminars/Ravindran.pdf

3



by quantifying how well-connected or well-knit each node is to other nodes in the

network. Network centrality has numerous applications, including finding influential

people in a social network (Awangga et al. (2018)), detecting essential proteins or

disease genes in biological networks (del Rio et al. (2009); Mistry et al. (2017)),

etc. Our goal is to discover the genes responsible for multi-tissue communication.

Traditionally, centrality algorithms have been used to study gene-gene interactions,

but most of them are limited to single-layer graphs (Jeong et al. (2001)) and hence

are suitable for single tissue systems. Recently, the community has seen progress in

analyzing multi-tissue interaction data, but these studies fail to distinguish between inter

and intra-tissue communication links. A central open question in extending centrality

measures to multi-tissue networks is the assessment of the local effect of a gene in its

layer vs. the global effects of the gene in the overall network or in specific target tissues

or target gene sets. In this study, we propose several PageRank-like iterative centrality

measures that offer these local vs. global effects of genes by decomposing the overall

multilayer centrality into relative contributions from intra-tissue vs. inter-tissue edges.

We show that these measures have desirable theoretical properties like decomposability

and derive the necessary conditions for convergence.

In the later part of the thesis, we focus on hypergraph clustering and hyperedge

prediction. Learning on hypergraphs has been garnering increased attention with

potential applications in network analysis, VLSI design, and computer vision, among

others. Hypergraph clustering is gaining attention because of its enormous applications

such as component placement in VLSI (Karypis et al. (1999); Shamir (2008)), group

discovery in bibliographic systems (Sharma et al. (2014)), image segmentation in

4



computer vision (Ducournau and Bretto (2014)), etc. For the problem of clustering on

graphs, modularity maximization has been known to work well in the pairwise setting.

Our primary contribution in this work is to provide a generalization of the modularity

maximization framework for clustering on hypergraphs. In doing so, we introduce a null

model for graphs generated by hypergraph reduction and prove its equivalence to the

configuration model for undirected graphs. The proposed graph reduction technique

preserves the node degree sequence from the original hypergraph. The modularity

function can be defined on a thus reduced graph, which can be maximized using

any standard modularity maximization method, such as the Louvain method. We

additionally propose an iterative technique that provides refinement over the obtained

clusters. We demonstrate both the efficacy and efficiency of our methods on several

real-world datasets.

In hyperedge prediction, our goal is to predict either missing or future hyperedges in a

given hypergraph. This problem has immense applications in multiple domains, such

as predicting new collaborations in social networks (Yoon et al. (2020)), discovering

new chemical reactions in metabolic networks (Zhang et al. (2018a)), etc. Despite

its significant importance, hyperedge prediction has not received adequate attention,

mainly because of its inherent complexity. In a graph with n nodes, the number of

potential edges is O(n2), whereas in a hypergraph, the number of potential hyperedges

is O(2n) and there is a need for non-trivial ways to explore it. Existing hyperedge

prediction methods restrict this search space by either fixing the hyperedge degree to

a specific number k (k-uniform hypergraph) or by exploring only a set of potential

hyperedges (known as candidate hyperedge set). As many real-world hypergraphs are
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not restricted to be k-uniform, and it is not always feasible to access the collection of

potential hyperedges, existing methods fail to predict hyperedges. We propose HPRA -

Hyperedge Prediction using Resource Allocation, the first-of-its-kind algorithm, which

can predict hyperedges of any cardinality without using any candidate hyperedge set in

a reasonable time where existing algorithms fail. HPRA is a similarity-based method

working on the principles of the resource allocation process. In addition to recovering

missing hyperedges, we demonstrate that HPRA can predict future hyperedges in a wide

range of hypergraphs. Our extensive set of experiments shows that HPRA achieves

statistically significant improvements over state-of-the-art methods.

1.1 OBJECTIVES AND SCOPE

In this thesis, we work with two rich graph structures - multilayer networks and

hypergraphs with the following key objectives.

Centrality in Multilayer Networks

This problem focuses on finding node importance in multilayer networks. In particular,

we are interested in defining node centrality in the context of a target layer or target set

of nodes in a target layer. Such a measure has immediate applications in biological

systems. Knowing the genes with target effect on another set of genes can reveal

interesting insights such as gene-hormone relations, potential drug targets, dispersion

of abnormalities from one brain region to another, etc. The existing multilayer network

centrality measures either rely entirely on the inter-layer edges or treat the inter-

layer and intra-layer edges equally. These methods fail to capture long-hop effects
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targeted to a specific layer or a specific set of genes. In this work, our objective is

to define a set of centrality measures that can distinguish between the local effect of

a node in its layer vs. the global effects of the node in the overall network or in

a specific target layer or target node-set. We also want our centrality measure(s) to

have theoretical guarantees such as convergence, decomposability, etc. We apply our

proposed centrality measures to predict genes involved in inter-tissue communication in

multi-tissue systems. Our centrality measures can readily be applied to answer several

additional exciting questions in systems biology and can potentially be applied to other

settings, such as studying multimodal transportation systems’ congestion behavior.

Hypergraph clustering

This problem can be formally stated as finding densely connected components in

a network. One definition of a densely connected component is if a set of nodes

have more than the expected number of edges among them. The modularity of a

network is a measure that denotes the difference between the observed number of

edges and the expected number of edges for a given clustering assignment (Newman

(2006)). Maximizing modularity over a given network to find the optimal clustering

is a hard problem (Brandes et al. (2006)). Louvain algorithm is a heuristic-based

modularity maximization approach that is known to work well on networks with pair-

wise interactions. In order to apply the Louvain algorithm to hypergraphs, we need to

define modularity for hypergraphs. In this work, our objective is to define modularity for

hypergraphs, propose a reduction mechanism that projects a hypergraph to a weighted

graph and prove that maximizing modularity over this reduced graph and the original
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hypergraph are equivalent. We also aim to analyze the way hyperedges get cut during

clustering and intend to obtain the cluster assignments where hyperedges get cut in a

balanced way.

Hyperedge Prediction

This problem focuses on predicting hyperedges in a given hypergraph. In a graph with

n nodes, the number of potential edges is O(n2), whereas in a hypergraph, the number

of potential hyperedges isO(2n) and there is a need for non-trivial ways to explore it in

an efficient manner. In order to avoid searching through this vast space of hyperedges,

current methods restrain the original problem in the following two ways. One class

of algorithms assumes the hypergraphs to be k-uniform, where each hyperedge can

have exactly k nodes. However, many real-world systems are not confined to have

interactions involving only k components. Thus, these algorithms are not suitable for

many real-world applications. The second class of algorithms requires a candidate set of

hyperedges from which the potential hyperedges are chosen. In the absence of domain

knowledge, the candidate set can have O(2n) possible hyperedges, which makes this

problem intractable. More often than not, domain knowledge is not readily available,

making these methods limited in their applicability. In this work, our objective is to

propose an algorithm to predict hyperedges of any cardinality without relying on a

candidate hyperedge set. The problem of hyperedge prediction can arise either because

of missing hyperedges or to predict potential future interactions. Our objective is to

test the proposed method under both settings. The problem of hyperedge prediction can

arise either because of missing hyperedges in past data or to predict future interactions.
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1.2 CONTRIBUTIONS

In this thesis, we work with two rich graph structures - multilayer networks and

hypergraphs and focus on the following research problems.

Multilayer Network Centrality

We model multi-tissue systems as multilayer networks and propose a set of centrality

measures that can capture effects of genes within a tissue, across the tissue, targeted

to a specific tissue or set of genes in a particular tissue. Our work is among very

few approaches to model multi-tissue system as a multilayer network to study inter-

tissue communication. To systematically identify inter-tissue mediators, we present a

novel computational approach MultiCens (Multilayer/Multi-tissue network Centrality

measures). Unlike single-layer network methods, MultiCens can distinguish within-

vs. across-layer connectivity to quantify the “influence” of any gene in a tissue on a

query set of genes of interest in another tissue. MultiCens enjoys theoretical guarantees

on convergence and decomposability, and performs well on synthetic benchmarks.

On human multi-tissue datasets, MultiCens predicts known and novel genes linked to

hormones. MultiCens further reveals shifts in gene network architecture among four

brain regions in Alzheimer’s disease. MultiCens-prioritized hypotheses from these

two diverse applications, and potential future ones like “Multi-tissue-expanded Gene

Ontology” analysis, can enable whole-body yet molecular-level systems investigations

in humans.
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Hypergraph Clustering

We define a null model for graphs generated by hypergraph reduction that preserves the

hypergraph node degree sequence. Using this null model and the hypergraph reduction

mechanism, we define a modularity function that can be used in conjunction with the

popular Louvain method to find clusters in a hypergraph. We propose a generic iterative

refinement procedure to enforce balanced hyperedge-cuts and eventually improve the

cluster quality in hypergraphs. This refinement is done by reweighting hyperedges

and operating natively on the hypergraph structure. We perform extensive experiments

with the proposed algorithm, titled Iteratively Reweighted Modularity Maximization

(IRMM), on a wide range of real-world datasets and demonstrate both its efficacy and

efficiency over state-of-the-art methods. We empirically establish that the hypergraph-

based methods perform better than their graph-based counterparts. We also examine the

scalability of the hypergraph modularity maximization algorithm using synthetically

generated hypergraphs.

Hyperedge Prediction

We propose a computationally efficient hyperedge prediction model, HPRA (Hyperedge

Prediction using Resource Allocation), which can predict novel hyperedges without

using any candidate hyperedge set. Since many of the existing works use a candidate

set while predicting hyperedges, we propose a variant of HPRA that can work under

this setting as well. We show that HPRA can recover missing hyperedges in a given

hypergraph as well as predict future hyperedges in a temporal hypergraph. Our
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comprehensive set of experiments demonstrates that HPRA significantly outperforms

the state-of-the-art methods in terms of widely used metrics such as the area under the

precision-recall curve (AUC), F1 score and precision.

1.3 OUTLINE

The current chapter provides the introduction to the complex networks area along with

the problems that we study. This thesis is comprised of three parts. The first part

provides fundamental concepts required to define the problems. This part begins with

Chapter 2, where we introduce the notations used in this thesis and discuss the basic

concepts of modularity maximization, link prediction, resource allocation, and node

centrality. In Chapter 3, we will dive into multilayer networks and discuss different

coupling schemes with a particular focus on cross-coupled multilayer networks. In

the second part, we begin with defining the centrality measures and discussing their

theoretical aspects in Chapter 4 and continue with their applications in biological

systems in Chapter 5. The third part is dedicated to hypergraphs, and we discuss the

proposed frameworks for hypergraph clustering and hyperedge prediction in Chapter 6.

In Chapter 7, we present the empirical validation of the proposed methods.
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Part I

Fundamentals
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CHAPTER 2

Preliminaries
This section defines the basic notations and fundamental concepts required to formulate

our research problem and derive its solution.

2.1 BASIC NOTATIONS

In this section, we define the basic notations used in the thesis to represent multilayer

networks and hypergraphs. We begin by providing definition of a graph.

2.1.1 Graph

A graph G = (V,E), where V is the set of n nodes (or vertices) and E is the set of m

edges is defined by its adjacency matrix as:

A(i, j) =


wij if {vi, vj} ∈ E

0 otherwise

(2.1)

where wij denotes the weight of an edge between nodes vi and vj by a non-zero value.

2.1.2 Multilayer Networks

A multilayer network is represented by G = (V,L, E), where V represent the set of

n nodes which is the same across all layers, L is the set of L number of layers and E

represents the set of inter and intra layer edges. The set of nodes in layer α is represented

by V = {vα1 , vα2 , . . . , vαn}. The total number of nodes in the multilayer network is
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Figure 2.1: A multilayer network depicting the cross inter-layer coupling. A node is
allowed to have connections with nodes within the same layer and nodes
from other layers. The node-set in the layers need not be the same among all
layers, as node 1 is missing in L3. In order to keep the notation consistent,
such nodes are added without any connections.

N = n× L. Following the convention used in (Gomez et al. (2013)), we represent the

multilayer network by a supra-adjacency matrix M of dimension N ×N as,

M(iα, jβ) =


w(iα, jβ) if (vαi , v

β
j ) ∈ E

0 otherwise

(2.2)

where w(iα, jβ) denotes the weight of edge between node i in layer α and node j in

layer β.

Supra-adjacency matrix is a special kind of matrix with an inherent block structure with

diagonal blocks dedicated to intra-layer edges and non-diagonal blocks dedicated to
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inter-layer edges. For the multilayer network shown in Figure 2.1, the supra-adjacency

matrix is shown in Figure 2.2.

In Figure 2.2, the presence of intra-layer edges is indicated by and inter-layer edges

L 1 2 3

1

2

3

Figure 2.2: Supra-adjacency matrix representation of the multilayer network shown in
Fig. 2.1.

are indicated by . Since all the edges (inter-layer and intra-layer) are undirected for

this example, so the supra-adjacency matrix is symmetric.

2.1.3 Hypergraphs

A hypergraph is represented by a tuple G = (V,E); where V = {v1, v2, . . . , vn} is

the set of n nodes (or vertices) and E = e1, e2, . . . , em is the set of m hyperedges.

Each hyperedge e contains an unordered subset of V and has a positive weight w(e)

associated with it. While in a traditional graph, an edge connects two nodes, a

hyperedge can connect an arbitrary number of nodes. Degree of node v is defined

as d(v) =
∑

e∈E,v∈ew(e) and N(v) is a set containing the one-hop neighbors of node v

(nodes of hyperedges, v is part of). For a hyperedge e, its degree is defined as δ(e) = |e|.

Incidence matrix H of a hypergraph is defined as
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H(v, e) =


1 if v ∈ e

0 otherwise

(2.3)

Presence of 1 in the incidence matrix represents participation of the corresponding node

in that particular hyperedge. Dv ∈ Rn×n, De ∈ Rm×m and W ∈ Rm×m are the diagonal

matrices containing node degrees, hyperedge degrees and hyperedge weights at the

diagonals and zero otherwise, respectively. Figure 2.3 shows an example hypergraph

and an incidence matrix associated with it. Each hyperedge corresponds to one column,

and a row represents a vertex in the incidence matrix.

0 0 0 01

0 0 0 01

1 0 0 01

1 1 0 00

0 1 0 00

0 1 1 00

0 0 1 10

0 0 0 10

0 0 0 10

0 0 0 10

1 2

3
4

5

6 7

8 9

10

e2 e3 e4 e5e1

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 2.3: An incidence matrix (left) corresponding to the hypergarph (right).

The adjacency matrix of the graph associated to a hypergraph G is defined as(Hadley

et al. (1992)): A = HWHT −Dv.
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2.2 PAGERANK CENTRALITY

PageRank, initially proposed for a network of webpages (Page et al. (1999)), assigns

an importance score to each node in the network. The PageRank algorithm is based

on the principle of aggregating node importance from its neighbors; hence a node

reachable by several other central nodes gets high centrality. Another interpretation

of PageRank centrality is based on random web surfer model, which works as follows.

On a given web, a random walk starts from any webpage, and at each step it does one

of the following,

1. It jumps to a page linked by a hyperlink with probability p.

2. With probability (1−p), it jumps to a random webpage in the network and restarts
the walk.

In such a model, the PageRank centrality of a node/webpage is given by the fraction

of times a webpage is visited after infinite random walks (Chung and Zhao (2010)).

Formally, for a network G with adjacency matrix A, the PageRank centrality x is given

by the following expression.

x = pAx+
(1− p)

n
1⃗

where p is a scalar known as damping factor that denotes the transition probability of

the random walker to a neighborhood node. 1⃗ is known as the personalization vector

that contains all ones.
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2.3 MODULARITY

When clustering graphs, it is desirable to cut as few edges (or edges with lesser weights

in the case of weighted graphs) within a cluster as possible. Modularity is a metric of

clustering quality that measures whether the number of within-cluster edges is greater

than its expected value. In (Newman (2006)) the modularity function is defined as:

Q =
1

2m

∑
ij

[Aij − Pij]δ(gi, gj)

=
1

2m

∑
ij

Bijδ(gi, gj)

(2.4)

Here, δ(.) is the Kronecker delta function, and gi, gj are the clusters to which vertices i

and j belong. The 1
2m

is based on a constant (number of edges) for a given graph and

can be dropped as it does not affect the maximization of Q. Bij = Aij − Pij is called

the modularity matrix. Aij denotes the actual, and Pij denotes the expected number of

edges between node i and node j, given by a null model. For graphs, the configuration

model (Newman (2010)) is used as a null model, where edges are drawn at random while

keeping the node-degree preserved. For two nodes i and j, with (weighted) degrees ki

and kj respectively, the expected number of edges between them is hence given by:

Pij =
kikj∑
j∈V kj

Since the total number of edges in a given network is fixed, maximizing the number of

within-cluster edges is the same as minimizing the number of between-cluster edges.
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This suggests that clustering can be achieved by modularity maximization. Kindly note

that in this thesis, we focussed on modularity as defined by Newman et al. (Newman

(2006)). There are other definitions of modularity (Courtney and Bianconi (2016)) that

we do not consider in this work.

2.4 LINK PREDICTION USING SIMILARITY-BASED ALGORITHMS

Several kinds of real-world networks such as social networks, web networks are known

to exhibit the property of homophily, which states that similar nodes are more likely

to connect in the future than dissimilar nodes (McPherson et al. (2001); Sarkar et al.

(2011)). In accordance with this, similarity-based algorithms are broadly used for edge

prediction in graphs. In a typical similarity-based algorithm, a similarity score is defined

for node pairs of a graph. All the possible edges are ranked based on the similarity score,

and the top-ranked edges are chosen as the potential edges. One group of existing works

use the node attributes to define the similarity score for node-pairs (Lin (1998)), but

are restricted to attributed graphs. Without such restriction, another group of methods

defines similarity scores solely based on the network structure and are termed structural

similarity scores. Popular structural similarity scores are common neighbors (Newman

(2001)), resource allocation (Zhou et al. (2009)) and katz index (Katz (1953)). Among

these similarity scores, resource allocation is shown to work well in a wide variety of

graphs Lü and Zhou (2011). We elaborate on resource allocation similarity score in the

remaining part of this section.
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2.5 RESOURCE ALLOCATION (RA)

Motivated by the resource allocation process in networks (Georgiadis et al. (2006)), RA

score (Zhou et al. (2009)) for a node-pair (x, y), which are not directly connected is

defined as:

RAxy =
∑

z∈N(x)∩N(y)

1

d(z)

To illustrate resource allocation in a simple way, assume node x has a resource amount

of d(x) units allocated to it. Node x transfers its resource to node y through common

neighbors, who act as transmitters in the following way; Node x uniformly distributes

its resource to all its neighbors, resulting in each neighbor of x getting a unit of resource.

Following this, neighbors of x uniformly transfer their unit resources to their neighbors.

The resource that node y receives from node x is defined as the resource allocation score

for pair (x, y). A higher amount of resource transferred between two nodes signifies a

higher similarity among those nodes.

2.6 SUMMARY

This chapter introduced the mathematical framework required to formulate our research

problem and derive its solution. We presented mathematical notations to describe

graphs, multilayer networks and hypergraphs and skimmed through some methods and

processes defined for graphs. In the upcoming chapters, we will extend some of these

approaches to multilayer networks and hypergraphs. In the next chapter, we begin by

plunging into the anatomy of multilayer networks.
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CHAPTER 3

Review of Multilayer Network Representations and Algorithms

3.1 INTRODUCTION

In this chapter, we explore multilayer networks in the context of different coupling

schemes and understand the applicability of various centrality measures to these

networks. Centrality can be defined in multiple ways depending on the type of

network (directed/undirected, size) or application domain. For example, PageRank is

an appropriate centrality measure for ranking the web pages in response to a search

query (Gleich (2015)), whereas betweenness centrality is employed in designing the

packet routing strategies in computer networks (Dolev et al. (2010); Holme (2003)). A

thorough study of the centrality measures for monoplex (i.e., single layer) networks can

be found at (Newman (2018)). Let A ∈ RN×N be the adjacency matrix of a monoplex

network with N nodes, where Aij is the strength of the ijth connection. Let x ∈ RN

be the centrality vector of a network where xi represents the centrality of node i. For a

given adjacency matrix A, Table 3.1 represents different ways of calculating centrality

vector x. These centrality measures are traditionally defined for single-layered graphs.

With the advent of data collection methods and superior data processing techniques,

we often have access to multiple views of the data. For example, a set of authors

can have multiple types of relationships, such as co-authorship, citation, co-citation,

etc. Networks that change their structure with time (temporal networks) can also give

rise to multiple data views. Such systems are better modeled by multilayer networks.

Extending existing centrality measures to multilayer networks is a non-trivial task.



Centrality measure Centrality of node i Description

Eigenvector centrality xi = λ−1
∑

j Aijxj λ is the leading eigenvalue

PageRank centrality xi = α
∑

j Aij
xj

kj

α is a scalar and kj is the
degree of node j

HITS centrality
(authority) xi = α

∑
j Aijyj

α is a scalar and yj is the
hub centrality of node j

HITS centrality (hub) yi = α
∑

j Aijxj
α is a scalar and xj is the
authority centrality of node j

Betweenness centrality xi =
∑

st
ni
st

gst

ni
st is the # of shortest paths

between s and t that go through
i. gst is the total # of shortest
paths between nodes s and t

Table 3.1: Centrality measures for monoplex networks. For detailed description of these
measures and many others, please refer Newman (2018)

Finding centrality in multilayer networks has immense applications, such as the study of

the emergence of congestion in transport flows (Solé-Ribalta et al. (2016b)), ranking in

evolving networks (Liao et al. (2017)), and analyzing different life stages in the species

(Shinde and Jalan (2015)). In multilayer networks, the local neighborhood of a node

can comprise nodes from the same layer as well as nodes from other layers. To define

a centrality measure for multilayer networks, one has to come up with a way to handle

the multilayer neighborhood of a node. Recently there have been several attempts at

defining centrality measures for multilayer networks. Most of these methods differ

in the way they handle inter-layer coupling. For instance, the multiple layers can be

merged to form a monoplex network, or at the other extreme, the multilayer network

itself can be treated as a giant monoplex network. The coupling methods have their own
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implications when combined with the centrality measures. In the upcoming sections,

we will discuss how existing works extend centrality measures to multilayer networks.

3.2 INTER-LAYER COUPLING METHODS

There are different possible approaches to handle multiple layers and inter-layer edges

of multilayer networks. The first approach is to ignore the layered structure of the

network and treat nodes from all the layers like a giant network. One can use existing

centrality measures on this entire network. This approach fails to distinguish between

intra-layer and inter-layer edges and is hence not appropriate for analyzing multilayer

networks. Another approach is to calculate the centrality of node i in each layer

separately and get the vector c(i) = {x[1](i), . . . x[L](i)}. Node centrality xi can be

identified by finding the mean of c(i). In addition to finding the mean, there are several

other possible ways such as finding a convex combination, finding the weighted average

(Battiston et al. (2017)), or normalizing the eigenvector relative to the largest eigenvalue

(Solá et al. (2013)), etc. This approach seems to be straightforward; however, it ignores

the inter-layer coupling of the network. Setting aside these two naive methods, we

discuss the following coupling schemes in the remaining part of this chapter.

3.2.1 Diagonal Coupling (Adjacent Layers)

Diagonal coupling refers to the condition where interlayer edges are only allowed

between identical nodes in a pair of layers. For the purpose of this section, we will

assume that the layers are ordered, and interlayer edges are only permitted between

two adjacent layers. This type of network is particularly useful for modeling temporal
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systems, where changes in the underlying system at different time points lead to

alterations in the network structure. As a result, multiple layers of the network are

generated, with each layer corresponding to a specific timestamp. Finding centrality

in temporal networks has many applications such as dynamic network analysis (Liu

et al. (2018)), finding temporal node centrality (Kim and Anderson (2012)), finding

joint and marginal centrality (Yin et al. (2018)), etc. Network structure at different

timestamps can be interpreted as multiple layers of a larger network (Gallotti and

Barthelemy (2015); Hristova et al. (2016)). Working with the layers independently

to define temporal network centrality measures may lead to undesired results like

sudden fluctuations in the centrality scores as seen in unsteady university rankings in

a multilayer academic network (Sorz et al. (2015)). Temporal networks have the

L 1 2 3

1

2

3

Figure 3.1: Supra adjacency matrix representation of multilayer network shown in Fig.
3.2

special property of having the inter-layer coupling only between adjacent layers. Which

means that the network can have inter-layer edges only between layers {α, α±1}. This
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particular kind of coupling leads to diagonal blocks in non-diagonal positions (adjacent

to diagonal blocks) of the supra-adjacency matrix as shown in Fig. 3.1.
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Figure 3.2: A multilayer network depicting the diagonal inter-layer coupling of adjacent
layers, for example, time-series points.

To extend the existing centrality measures to temporal networks, one obvious way

is to use the N × N supra-adjacency matrix with different attention to the inter-

layer edges. Here, the magnitude of the attention can be represented by assigning a

corresponding weight to the inter-layer connections. There can be several criteria to

identify appropriate weight for inter-layer edges. In general, the supra-adjacency matrix

can be written as,

A =



A[1] ω(I) 0 . . .

ω(I) A[2] ω(I)
. . .

0 ω(I) A[3] . . .

... . . . . . . . . .


where ω ≥ 0 is known as the layer coupling coefficient. Traditional centrality measures

can directly be applied on A, which will lead to a centrality vector of size N . The

centrality vector can be interpreted to return the node centrality at each time stamp
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(Bazzi et al. (2016)). Clearly, this approach ignores the block diagonal structure of the

matrix and the centrality measure doesn’t distinguish between the inter-layer and intra-

layer edges (De Domenico et al. (2013b)). This issue can be circumvented by changing

the representation of either the inter-layer edges or the intra-layer edges. We discuss

both of these methods below:

Inter-layer Coupling of Centrality Matrices

The idea of this approach is to find the centrality matrix for each layer and directly

couple it to the centrality matrix of its adjacent temporal layers. Let C [α] denotes the

centrality matrix for the temporal network at layer α. Let ϵ = 1
ω

. Then the supra-

centrality matrix (Taylor et al. (2017) can be represented as,

C =



ϵC [1] I 0 . . .

I ϵC [2] I
. . .

0 I ϵC [3] . . .

... . . . . . . . . .



The above formulation works with the assumption that C [α] is non-negative and

irreducible for every α ∈ L. Similarly, C is also non-negative and irreducible for

any ϵ > 0, which leads to the Perron– Frobenius theorem for non-negative matrices

(Meyer (2000) and ensures uniqueness of the largest eigenvalue and non-negativity of

the corresponding eigenvector (Yin et al. (2018)). Thus, the C matrix can be viewed as

an adjacency matrix to find centrality using standard methods.
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Incorporating Inter-layer Similarity

Let C [α,α+1] = diag(c
[α,α+1]
1 , c

[α,α+1]
2 , . . . , c

[α,α+1]
N ) be the N × N dimensional inter-

layer similarity matrix for layers α and α + 1. The supra-adjacency matrix can then be

formulated (Yin et al. (2018) as:

A =



A[1] C [1,2] 0 . . .

C [2,1] A[2] C [2,3] . . .

0 C [2,3] A[3] . . .

... . . . . . . . . .



where cα,α+1
i denotes the similarity between the same physical node at two adjacent

layers. The supra-adjacency matrix A can now be used to find the centrality. There are

many similarity measures to compute cα,α+1
i such as Adamic-Adar Index (Adamic and

Adar (2003)), Jaccard Index, Salton Index (Hamers et al. (1989)), Resource Allocation

Index (Zhou et al. (2009)), etc. For a detailed experimental study on this method, kindly

refer to (Yin et al. (2018)).

3.2.2 Diagonal Coupling-based Multilayer Networks

In time-independent multilayer networks, the inter-layer coupling is not limited to

adjacent layers. For example, a multilayer network can represent different relationships

among authors such as citation, co-authorship, co-citation, etc. In such networks, one

can observe inter-layer coupling among all pairs of layers as shown in Figure 3.3.

Without loss of generality, one can assume the same set of vertices but a possibly
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different set of edges in different layers. Finding centrality in such networks has

multiple applications such as node ranking (Sideris et al. (2018)), finding the most

versatile nodes (De Domenico et al. (2015)), etc. For the same reason, multilayer

centrality is also referred to as versatility.

L 1 2 3

1

2

3

Figure 3.3: Supra adjacency matrix representation of multilayer network as shown in
Fig. 3.4

Network structure in layer α may get influenced by the nodes from other layers α′. The

centrality measure for multilayer networks must take this influence into account. This

influence among layers can be captured by a matrix W ∈ RL×L, where wαβ denotes the

influence of layer α on layer β. Once the wαβ is fixed, we can define the local multilayer

eigenvector-like centrality cα as a leading eigenvector of the following matrix:

Aα =
∑
β

wαβA
[β,β]

Now, we can directly use this matrix to find centrality with traditional methods.
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Figure 3.4: A multilayer network depicting the diagonal inter-layer coupling. Every
node in a layer is connected to its counterpart in all other layers.

In some cases, the centrality of a node v in a layer not only depends on the other

connected nodes in the same layer α but also on the nodes from other layers. In such

networks, it becomes essential to consider the influence of the nodes across the layers.

To find the centrality of a node in a particular layer, the following modified adjacency

matrix can be used (Solá et al. (2013)).

A⊗ =



w11A
[1,1] w12A

[2,2] . . . w1LA
[L,L]

w21A
[1,1] w22A

[2,2] . . . w2LA
[L,L]

...
... . . . ...

wL1A
[1,1] wL2A

[2,2] . . . wLLA
[L,L]


∈ RNL×NL
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Where A⊗ is the Khatri-Rao product of the following matrices:

W =


w11 . . . w1L

... . . . ...

wL1 . . . wLL

 and(A[1,1]A[2,2] . . . A[L,L])

A⊗ can be viewed as a giant adjacency matrix and can be used to find centrality by the

measures defined on monoplex networks. To read up on the existence and uniqueness

of the leading eigenvector of A⊗, please refer to (Solá et al. (2013)).

3.2.3 Cross Coupling-based Multilayer Networks

This is the most general case of coupling among all the methods. A node-layer pair

(i, α) can be influenced by the nodes in the same layer ((j, α) : i ̸= j) as well as

nodes of any other layer ((j, β) : α ̸= β) as shown in Fig. 2.1. Note that the coupling

techniques discussed in earlier sections are the special cases of this particular coupling,

which makes it essential to extend (or reformulate) the centrality measures for these

networks. We do so by adopting as is the framework of random walk on weighted

(monoplex) graphs, and only changing the graph on which this framework is applied

(viz., applying this random walk framework as is to a large weighted graph constructed

out of our multilayer network as described below).

In order to define the centrality measures first, we introduce the random walk operator

for a multilayer network G = (V,L, E). A weighted multilayer network can have

weights associated to the edges. Let wij(α, β) be the weight of the edge between

(i, α) and (j, β). Let siα =
∑

j,β wij(α, β) be the node strength of (i, α). We can
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write the transition probability from (i, α) to (j, β) as

T(iα, jβ) =
wij(α,β)

max(siα, ϵ)
,

where ϵ > 0 is a constant. Note that M(iα, jβ) can also be viewen as a 4-dimensional

tensor (also known as tensor). At time t, let piα(t) be the probability of finding the

random walker at (i, α). Then,

pjβ(t+ 1) =
∑

(i,α)∈VM

T iα
jβ piα(t).

The steady state solution for the random walk can be given by the leading eigentensor

(Solé-Ribalta et al. (2016a)),

T(iα, jβ)Πiα = λΠjβ.

Intuitively a random walker should visit the nodes with high strength more frequently

than those with lesser strength. This is also evident from the formulation as, πiα ∝

siα. We can use this formulation to define different centrality measures on multilayer

networks. Following the discussion from (De Domenico et al. (2015)), in PageRank, a

walker can move from one node to its neighbor with probability p, and it can teleport to

any other node with probability (1− p). Considering the uniform probability of getting

a node picked while teleportation, the transition matrix can be given by,

R(iα, jβ) = pT(iα, jβ) +
(1− p)

N
U(iα, jβ),
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where U(iα, jβ) assigns a uniform probability of transition between any pair of nodes.

PageRank centrality for multilayer networks is given by the solution of this master

equation. In addition to using the supra-adjacency list and supra-adjacency matrix

representation of multilayer networks, there are other popular approaches such as

representing the multilayer network as a collection of nodes and multi links (Iacovacci

et al. (2016)). Since cross-coupling-based multilayer networks represent the most

generalized form of multilayer networks, we explore it in detail in the next part of

this thesis, with a specific focus on deriving new centrality measures.

3.3 SUMMARY

In this chapter, we discussed different types of inter-layer coupling in multilayer

networks, their use cases, and their implications on centrality measures. We show that

cross-layer-based coupling is the most generalized form of multilayer network. In the

upcoming chapters, we will discuss the applicability of centrality measures to this form

of multilayer network and its applications in understanding biological networks.
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Part II

Multilayer Networks: Centrality and

its Applications
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CHAPTER 4

MultiCens: Multilayer Network Centrality framework
Network centrality assesses the “importance or centrality” of each node in a network by

quantifying how well-connected or well-knit each node is to other nodes in the network.

Network centrality has numerous applications, including finding influential people in a

social network, studying the emergence of network structure, and detecting essential

proteins or disease genes in biological networks. Traditional centrality measures are

limited to single-layered graphs where nodes can be involved in only one type of

interaction. With advances in data collection, we may often have access to more

than one view of a complex system. For instance, research interactions among a set

of authors can be viewed via co-authorship, co-citation, and other types of relations;

state variables of a time-evolving system may exhibit varied behaviors and interaction

patterns in different time points; and high-throughput technologies in biology permit

us to measure the activity of the same set of genes in different tissues, yielding

multiple layers of the biological system. A central open question in extending centrality

measures to multilayer networks is the assessment of the local effect of a node in its

layer vs. the global effects of the node in the overall network or in specific target

layers or target node sets. In this study, we propose several PageRank-like iterative

centrality measures that offer these local vs. global effects of nodes by decomposing

the overall multilayer centrality into relative contributions from intra-layer vs. inter-

layer edges. We show that these measures have desirable theoretical properties like

decomposability and derive the necessary conditions for convergence. For validation,

we use our proposed centrality measures with several multilayer networks from human

multi-tissue datasets and discover genes involved in tissue-tissue communication.



4.1 INTRODUCTION

Multilayer networks have found immense applications in ecological systems (Pilosof

et al. (2017)), biological systems (Halu et al. (2019)), transport systems (Aleta et al.

(2017)), social network analysis (Türker and Sulak (2018)), etc. In this work, we

focus on centrality in multilayer networks which has found applications in the study

of the emergence of congestion in transport flows (Solé-Ribalta et al. (2016b)), ranking

in evolving networks (Liao et al. (2017)), and analyzing different life stages in the

species (Shinde and Jalan (2015)). In multilayer networks, the neighborhood of a node

can comprise nodes from the same layer as well as nodes from other layers. Based

on the neighborhood, centrality measures such as PageRank can be used to find the

centrality of nodes. The working of the PageRank can also be viewed as a random web-

surfer model that explores the neighborhood of nodes using a random walk operator.

These random walks are of infinite length and have a restart probability associated with

them. In this work, we propose several PageRank-like centrality measures that differ

in their ways of exploring within-layer or across-layer neighborhoods of the random

walk operator. The different strategies proposed by us explore the multilayer structure

of the network intelligently and help us answer several interesting enigmas of biology.

Our main contribution is in developing a gene importance or centrality measure that

quantifies the extent to which each gene in a tissue influences a query set of genes of

interest in another tissue, both directly and indirectly via inter/intra-tissue interactions.

In this chapter, we start with the existing methods for multilayer network centrality

and discuss their limitations. Then we proceed to the proposed centrality framework

and define different centrality measures along with their convergence analysis.
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We emphasize another theoretical aspect of the proposed centrality measures,

decomposability, which ensures that the overall centrality of nodes in a multilayer

network can be decomposed to local vs. global level, a layer-specific level, and

further to a node-set level. By having this property, the existing works and upcoming

advancements for PageRank centrality can be applied to the proposed set of centrality

measures.

In order to discuss the existing methods, assume a multilayer network G = (V,L, E),

where V represents the set of n nodes which is the same across all layers, L is the set of

L number of layers, and E represents the set of inter- and intra- layer edges. The total

number of nodes in the multilayer network is N = n× L. Let G be represented by the

supra-adjacency matrix M of dimension N ×N .

The supra-adjacency matrix can further be decomposed to represent the network with

only intra-layer edges by A and the network with only inter-layer edges by C such that,

M = A+ C

A[1,1] C [1,2] C [1,3] . . .

C [2,1] A[2,2] C [2,3] . . .

C [3,1] C [3,2] A[3,3] . . .

... . . . . . . . . .


=



A[1,1] 0 0 . . .

0 A[2,2] 0
. . .

0 0 A[3,3] . . .

... . . . . . . . . .


+



0 C [1,2] C [1,3] . . .

C [2,1] 0 C [2,3] . . .

C [3,1] C [3,2] 0
. . .

... . . . . . . . . .


Here, A represents adjacency matrices for each layer along the diagonal, and C

represents edges between different pairs of tissues at off-diagonal entries. Both A and
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C are of dimension N×N , and are composed of n×n block submatrices {A[i,i]}i=1,...,L

and {C [i,j]}i,j=1,...,L;i ̸=j respectively as shown here and in Fig. 4.1b.

In this work, we assume our multilayer network to be undirected; thus M , A, C, and

A[i,i] for each i are symmetric matrices. In this work, we model multi-tissue data

as a multilayer network, where each tissue is represented by a layer and genes are

represented by nodes. In the subsequent sections, we discuss the construction of these

networks in more detail.

4.2 EXISTING METHODS

The existing methods for finding multilayer centrality either emphasize only the inter-

layer degree of the nodes or do not distinguish between within-layer and across-layer

connections. Though such methods have revealed exciting properties of the underlying

system, our goal is to develop centrality-based methods that can identify different

effects of nodes, such as within-layer, across-layer, to a target layer, or a query set

of nodes in a target layer. In this section, we discuss the existing methods of finding

multilayer network centrality.

4.2.1 Degree-based Centrality and Ssec

Degree-based centrality, as the name suggests, counts the degree of a node. In the

case of weighted networks, the weights of the edges connected to nodes can be

added. In multilayer networks, nodes can have intra-layer connections and inter-layer

connections. Thus degree centrality can be defined in two ways based on the type of
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connections under consideration. Intra-layer degree can be calculated by summing the

weights of edges a node has within its own layer.

Definition 4.2.1. Intra-layer centrality vector of a multilayer network can be computed

by the following equation.

degintra = A1⃗ (4.1)

where 1⃗ is the vector of all ones.

Inter-layer degree is a count of the edges that cross the layers. These edges make the

backbone of layer-layer communication. The inter-layer degree can be computed using

the C matrix as follows.

Definition 4.2.2. Inter-layer centrality vector of a multilayer network can be computed

by the following equation.

deginter = C1⃗ (4.2)

This inter-layer degree centrality vector is called Ssec score vector when the weight of

each edge in the multilayer network is given by − ln(P-value used to determine the

statistical significance of correlation between the two nodes linked by the edge in a

given observational dataset).

The study that proposed this Ssec score vector Seldin et al. (2018) had used it to find

prominent hormone-encoding genes that are strongly connected in a pair of tissues.

Recently, degree and connectivity patterns such as shortest paths in multilayer networks

are being deployed to complete private data with the help of open datasets Malek

et al. (2020). Apart from degree-based centrality, there are methods such as PageRank
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centrality that can capture multi-hop effects in a network. We will now discuss an

existing framework that extends PageRank centrality to a multilayer network.

4.2.2 Versatility

Domenico et al., in their seminal paper (De Domenico et al. (2015)), described

a mathematical framework for centrality computation in multiplex networks. The

proposed approach assigns a ranking to the nodes based on their interconnectedness.

By setting proper weights of the layers (based on the number of nodes/edges), such a

ranking method can reveal versatile nodes in the network. For a user-defined constant

p ∈ [0, 1), and N dimensional vector 1⃗, the versatility vector can be defined as follows:

Definition 4.2.3. Multilayer network PageRank centrality (also known as versatility

(De Domenico et al. (2015))) x of a supra-adjacency network can be defined by the

following equation.

x = pMx+
(1− p)

N
1⃗ (4.3)

x =
(
I − pM

)−1((1− p)

N
1⃗
)

The method itself does not distinguish between the within-layer and cross-layer edges,

thus making it unavailing to distinguish the local vs. global effect of nodes. However,

the mathematical formulation of a multilayer network described in this work can be

extended to define the desired centrality measures, as we will discuss in the upcoming

parts.
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4.2.3 Other Works

NicheNet Browaeys et al. (2020) is a method to predict relations between ligands and

their targets between interacting cells. The technique utilizes gene expression data, gene

regulatory networks, and prior knowledge of cell signaling. NicheNet predicts genes

associated with ligands in a two-layer setting by applying a personalized PageRank

centrality algorithm to the overall network. This method is not applied to a multilayer

setting where different tissues can have the same set of genes, and connections

crossing layer boundaries have different semantics than within-layer connections. In the

upcoming parts of this section, we will discuss how the MultiCens centrality framework

applies to any number of layers.

4.3 PROPOSED METHODS

In the last section, we discussed methods based on inter-layer degrees and PageRank.

Both these methods have shown their usefulness in revealing information about the

underlying system. However, the multilayer structure of the network allows us to

capture the effect of nodes at multiple levels such as within layer, across the layer,

to a target layer, or a query set of genes in a target layer. The existing methods do not

capture these effects and thus are limited in their usability. Capturing such effects can

have immediate applications in several areas, such as systems biology, where we can

identify genes that regulate hormonal communication between two tissues via multiple

hops. In order to capture such effects, we propose a set of centrality measures, as shown

in Figure 4.1. We begin by defining a multilayer network using a multi-tissue dataset.

Figure 4.1(a) shows the multilayer network model representing the Hypothalamus-
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Pituitary-Adrenal axis. Here, each layer represents a tissue, and each node represents a

gene in the tissue. Nodes are connected to represent gene-gene connections that can be

based on high gene co-expression scores, participation in protein complexes, frequent

co-appearance in literature, etc. In this work, we call this multilayer network a “multi-

tissue" network, where each layer can be a “tissue" network in itself.

Overview of Our Proposed Centrality Measures: MultiCens

We introduce a set of centrality measures, termed MultiCens, to quantify the influence

or effect a gene has at different levels of granularity, such as the effect a gene has

(i) “locally” within a tissue due to its connections to other genes in the tissue, or (ii)

“globally” across all tissues due to within- as well as across-tissue connections, or

specifically (iii) to a particular tissue, or (iv) to a query set of genes in a particular

tissue. MultiCens measures account for the multilayer, multi-hop network connectivity

of the underlying system in a hierarchical fashion, by decomposing the overall centrality

(versatility pioneered by Domenico et al. De Domenico et al. (2015)) of a gene into

local vs. global centrality, and further into layer-specific centrality specific to a tissue

(referred to interchangeably as layer) or query-set centrality specific to a gene set in

a tissue (see hierarchical organization in Fig. 4.1). We prove theoretical guarantees

on the convergence and decomposability of MultiCens measures in this chapter and

demonstrate empirical applications of MultiCens to simulated networks as well as real-

world healthy and disease multi-tissue datasets in the next chapter.
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Figure 4.1: Workflow of our MultiCens measures. (A) Each layer in the network
represents a tissue, and connections represent gene-gene interactions (e.g.,
inferred from transcriptomic data). (Created with BioRender.com) (B)
Supra-adjacency matrix (M ) contains within-tissue connections on the
diagonal blocks (intra-layer matrix A), and across-tissue connections on
the off-diagonal blocks (inter-layer matrix C). The A,C matrices are used
to compute different hierarchically-organized centralities as shown (note:
the “collectively exhaustive node-sets” mentioned actually partition all the
nodes in a layer or the network; see text). The centrality vectors (x, l, and
g) have an entry for each gene in every tissue. (C) The centrality scores
are used to obtain gene rankings which are further validated using different
methods, and interpreted to predict novel mediators of inter-tissue signaling.

4.3.1 Local Centrality

A node in a layer can affect other nodes in the same layer as well as different layers.

In order to capture the within layer effect of a node, we define the local centrality as

follows:
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Definition 4.3.1. Local centrality vector of a multilayer network is given by the

following iterative equation.

l = pAl +
(1− p)

n
1⃗ (4.4)

Local centrality vector for a particular layer i is defined by the following iterative

equation.

llayeri = pA[i]llayeri +
(1− p)

n
1⃗[i] (4.5)

where A[i] represents matrix A with all but the ith column-block entries set to 0 (note:

ith column-block of A represents adjacency matrix of the layer i), and 1⃗[i] is a vector

with entries for the nodes in layer i set to 1 and 0 otherwise.

It can be noticed that the local centrality of a node is defined by using only within-

layer connections; thus, it does not capture any effects beyond the layer where the

node is located. The PageRank centrality does not distinguish between within-layer

connections and across-layer connections. Since local centrality considers the effect of

only within-layer connections, the remaining effect is captured by global centrality.

4.3.2 Global Centrality

The global centrality of a node is a measure of its influence on all nodes irrespective

of their layers. While computing this centrality score, we use both - within and across

tissue connections in the following manner.
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Definition 4.3.2. For a given local centrality vector l, global centrality vector in a

multi-layer network can be defined by the following iterative equation

g = p
[(
A+ C

)
g + Cl

]
+

(1− p)

N
1⃗ (4.6)

The global centrality of a node can be thought of as seeing an infinite length random

walker on that node where at each step, the random walker can do one of the following.

1. With probability p,
(a) Jump to a neighboring node vn′ in the same layer with probability

proportional to the weight of the connection.

(b) Jump to a neighboring node vn′ in a different layer with probability
proportional to the weight of the connection and the local centrality of vn′ .

2. Restart the walk from any node in the network with probability (1− p).

The global centrality of a node results from the effect of all the layers present in the

network. For some applications like hormonal communication in a multi-tissue system,

the effect on a specific layer (tissue) that either produces or responds to a hormone can

be of particular interest. So we decompose the effect of global centrality into layer-

specific centrality.

4.3.3 Layer-specific Centrality

We are interested in finding the effect of node(s) on a specific layer (target layer) in the

multilayer network. In doing so, we define the layer-specific centrality as follows.
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Definition 4.3.3. For a given local centrality vector for layer i, layer-specific centrality

vector in a multilayer network can be defined by the following iterative equation.

glayeri = p
[(
A+ C

)
glayeri + Cllayeri

]
+

(1− p)

N
1⃗[i] (4.7)

(note: the Cllayeri term effectively uses only the ith column-block of C, i.e., the block

representing all inter-layer edges that are incident to some node in layer i)

Our proposed centrality framework is highly generic, and the definition of centrality can

further be customized to capture the effect of a node on a set of nodes on a specific target

layer. We propose another refinement in the layer-specific centrality by decomposing it

into multiple query-node sets in the specific target layer.

4.3.4 Query-set Centrality

We introduce query-set centrality that can capture the effect of a node on a query-set

of nodes present in any specific layer in the multilayer network. We begin by defining

local-set centrality, a variant of local centrality focused on a query set of nodes in a

specific layer.

Definition 4.3.4. For a given set of query nodes setk present in layer i, the local-set

centrality vector in a multilayer network can be defined by the following equation.

lsetklayeri
= pA[i]lsetklayeri

+
(1− p)

n
1⃗klayeri , (4.8)
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where 1⃗klayeri represents the vector of 1′s at indices corresponding to the nodes in setk

in layer i and 0 otherwise. Note that query nodes setk is restricted to be in the target

layer i alone.

We use this local-set centrality to define query-set centrality as follows.

Definition 4.3.5. For a given set of query genes setk in a layer i, the query-set centrality

in a multilayer network can be defined by the following equation.

gsetklayeri
= p
[(
A+ C

)
gsetklayeri

+ Clsetklayeri

]
+

(1− p)

N
1⃗klayeri (4.9)

The query-set centrality is defined in order to capture the effect of nodes on a query-set

of genes in a specific target layer. As shown in Fig. 4.1, our centrality equations are

based on the principle of decomposability.

Convergence of MultiCens centrality measures

We now prove the convergence of the proposed centrality measures. The local centrality

measure is similar to the Pagerank centrality and its convergence follows from the

Pagerank centrality convergence itself. Whereas, global centrality has additional terms

in the equation and we provide a proof for its convergence.

Lemma 4.3.1. For 0 ≤ p < 1, global centrality, as defined by Equation 4.6 always

converges.
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Proof. From equation 4.6,

g = p
[(
A+ C

)
g + Cl

]
+

(1− p)

N
1⃗

= p

[(
A+ C

)(
p
[(
A+ C

)
g + Cl

]
+

(1− p)

N
1⃗
)
+ Cl

]
+

(1− p)

N
1⃗

= p

[
p(A+ C)2g + p(A+ C)Cl + (A+ C)

(1− p)

N
1⃗ + Cl

]
+

(1− p)

N

...

= pk(A+ C)kg + p
∑
k

pk(A+ C)kCl +
∑
k

pk(A+ C)k
(1− p)

N
1⃗ +

(1− p)

N
1⃗

The first term on the right side converges as k grows larger. The second and third terms

give rise to two geometric series generated by p(A + C). We know that (A + C) is

a row stochastic matrix and the product (p(A + C)) can have maximum eigenvalue,

|λ′| < 1. A geometric series generated by a matrix with eigenvalues less than 1 always

converges. This completes the proof.

Lemma 4.3.2. For 0 ≤ p < 1, glayeri defined by Equation 4.7 always converges.

Proof. Following the steps from Lemma 4.3.1, the layer-specific centrality (Equation

4.7) can be written as:

glayeri = pk(A+C)kglayeri+

(
p

k−1∑
k′=0

pk
′
(A+ C)k

′
Cllayeri

)
+

(
k−1∑
k′=0

pk
′
(A+ C)k

′ (1− p)

N
1⃗[i]

)

The right-hand side of the equation results in multiple geometric series, and all of them

converge as the number of iterations increases. This completes the proof.
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Lemma 4.3.3. For 0 ≤ p < 1, lsetklayeri
defined by Equation 4.8 always converges.

Proof. Following the steps from Lemma 4.3.1, we can write local-set centrality

(Equation 4.8) as:

lsetklayeri
= (pA[i])jlsetklayeri

+

j−1∑
j′=0

(pA[i])j
′ (1− p)

n
1⃗klayeri , where j →∞

The right side of the equation is similar to the original PageRank centrality which is

known to converge for 0 ≤ p < 1.

Lemma 4.3.4. For 0 ≤ p < 1, gsetklayeri
defined by Equation 4.9 always converges.

Proof. Following the steps from Lemma 4.3.1, we can write query-set centrality

(Equation 4.9) as:

gsetklayeri
= pd(A+C)dgsetklayeri

+

(
p

d−1∑
d′=0

pd
′
(A+ C)d

′
Clsetklayeri

)
+

(
d−1∑
d′=0

pd
′
(A+ C)d

′ (1− p)

N
1⃗klayeri

)

The right-hand side of the equation results in multiple geometric series, and all of them

converge as the number of iterations increases. This completes the proof.

Theorem 4.3.5 (Convergence of MultiCens). For 0 ≤ p < 1, all MultiCens centrality

measures, including local centrality, global centrality, layer-specific centrality, local-

set centrality and query-set centrality as defined by Equations 4.4-4.9 converge.

Proof. The local centrality measure, defined by Equation 4.4 is similar to the Pagerank

centrality and its convergence follows the Pagerank convergence Page et al. (1999).
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Lemmas 4.3.1-4.3.4 prove the convergence of global centrality, layer-specific centrality,

local-set centrality and query-set centrality as defined by Equations 4.6-4.9.

This completes the proof.

Decomposability of MultiCens centrality measures

Our centrality framework exhibits a special theoretical property called decomposability.

We define global centrality and local centrality in a way that they add up to the

versatility in the multilayer network, which the following proof can verify.

Lemma 4.3.6. Versatility of a multilayer network can be decomposed into local

centrality and global centrality with a scaling factor.

l + g = x (4.10)Proof.

From equation 4.4

l = pAl +
(1− p)

n
1⃗

from equation 4.6

g = p
[(
A+ C

)
g + Cl

]
+

(1− p)

N
1⃗

(l + g) = p
[(
A+ C

)
g +

(
A+ C

)
l
]
+ (1− p)(

1

n
+

1

N
)⃗1

(l + g) = p
[(
A+ C

)(
l + g

)]
+

(L+ 1)(1− p)

N

(⃗
1
)

(l + g) =
(
I − p

(
A+ C

))−1((L+ 1)(1− p)

N
1⃗
)

(l + g) = (L+ 1)
(
I − p

(
M
))−1((1− p)

N
1⃗
)

(l + g) = (L+ 1)x
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Where L is the total number of layers. Since l, g, and x are centrality vectors, they are

scale agnostic, so the constant factor (L + 1) on the right side of the equation can be

ignored. This completes the proof.

We decompose global centrality into layer-specific centrality and further into query-

set centrality in a way that instances of each centrality measure add up to their parent

centrality measure.

Lemma 4.3.7. Global centrality of a multilayer network can be decomposed into the

layer-specific centrality of all layers, i.e.,

L∑
i=1

glayeri = g (4.11)

Proof.

L∑
i=1

glayeri = p
[(
A+ C

) L∑
i=1

glayeri + C
L∑
i=1

llayeri

]
+

L∑
i=1

(1− p)

N
1⃗[i]

g̃ = p
[(
A+ C

)
g̃ + Cl

]
+

(1− p)

N
1⃗

g̃ = g

This completes the proof.

Lemma 4.3.8. For a layer i, its local centrality vector can be decomposed into local-set

centrality of sets {setk}k=1,...,K , where {setk}k=1,...,K is a partition of all nodes in layer

i.
K∑
k=1

lsetklayeri
= llayeri (4.12)
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Proof.

K∑
k=1

lsetklayeri
= pA[i]

K∑
k=1

lsetklayeri
+

(1− p)

n

K∑
k=1

1⃗klayeri

l̃ = pA[i](l̃) +
(1− p)

n
1⃗[i]

This equation is the same as the iterative equation defined for computing local centrality.

This completes the proof.

Lemma 4.3.9. Layer-specific centrality of layer i can be decomposed into query-set

centrality of sets {setk}k=1,...,K that together partition all nodes in layer i.

∑
k

gsetklayeri
= glayeri (4.13)

Proof.

∑
k

gsetklayeri
= p
[(
A+ C

)∑
k

gsetklayeri
+ C

∑
k

lsetklayeri

]
+

(1− p)

N

∑
k

1⃗klayeri

g̃setklayeri
= p
[(
A+ C

)
g̃setklayeri

+ C
∑
k

lsetklayeri

]
+

(1− p)

N

∑
k

1⃗klayeri

By using Lemma 4.3.8

g̃setklayeri
= p
[(
A+ C

)
g̃setklayeri

+ Cllayeri

]
+

(1− p)

N
1⃗[i]

The right side of the equation is the same as equation 4.7. This completes the proof.

51



Theorem 4.3.10 (Decomposability of MultiCens). In a multilayer network, versatility

can be decomposed into local and global centrality, and global centrality into layer-

specific centrality of all layers. Furthermore, layer-specific centrality of any layer can

be decomposed into the query-set centrality of sets that collectively partition the nodes

in the layer.

Proof. Equation 4.10 presents the decomposability of versatility into local centrality

and global centrality. Lemma 4.3.6 provides necessary proof for the decomposability

of versatility.

Equations 4.11- 4.13 present the decomposability of MultiCens centrality measures.

Lemmas 4.3.7-4.3.9 collectively prove the decomposability of centrality measures

defined under MultiCens framework. This completes the proof.

4.3.5 Complexity analysis of the proposed centrality measures

The power method can be used to implement our centrality measures, involving a

matrix-vector product that can be computed in O(n2) time at each iteration. After

computing the products, adding vectors can be done in O(n) time, resulting in each

iteration being executed with time complexity of O(n2). The number of iterations

required for convergence is another critical factor. Empirically, we found that a two-

layered multilayer network with approximately 12000 nodes each requires 50 to 100

iterations to converge.

Convergence in the power method generally depends on the ratio of the dominant

eigenvalue to the next largest eigenvalue Trefethen and Bau (2022), determining the
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required number of iterations for PageRank. Personalized PageRank’s number of

iterations also relies on seed nodes. If well-connected and with many outgoing links, the

Personalized PageRank score can converge quickly as the seed nodes’ influence spreads

to other nodes in the network. The network’s structure beyond the seed nodes can also

affect the convergence rate, with networks with many tightly connected communities

requiring more iterations to spread the seed nodes’ influence across the clusters.

Similarly, our proposed centrality measures’ iteration count depends on the query set

of nodes’ connectivity pattern. We also introduce an additional bias towards the target

layer where the query set of nodes resides, impacting the number of iterations required.

Further research could explore the relationship between iteration count and multilayer

network structure in such centrality measures.

4.4 SUMMARY

Multilayer networks offer a natural representation of complex systems involving

multiple forms of interactions among their constituents. Finding the centrality of

nodes in multilayer networks has applications ranging from biological networks to

transport networks and social systems. In this chapter, we began by introducing cross-

coupled multilayer networks and discussed the existing forms of centrality methods.

After emphasizing the need for a newer and more flexible framework for defining

multilayer network centrality, we proposed a series of centrality measures. We

discussed their theoretical properties, such as convergence and decomposability. The

proposed framework of defining centrality to capture local and global effects can

potentially be extended to other forms of centrality as well.
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CHAPTER 5

Applications of MultiCens framework to analyze Biological
Networks

In this chapter, we will discuss the applications of multilayer network centrality

methods. We use the proposed centrality methods, particularly the most refined method

query-set centrality, to identify genes involved in inter-tissue communication. We begin

the discussion by presenting the scope of application in contrast with the related studies.

The experimental details and results follow this, and we conclude with our findings and

future works.

5.1 INTRODUCTION

For any multicellular organism with specialized tissue or organ structures, including

humans, communication among the different tissues/organs is essential for the coherent

integrated functioning of the whole body. The molecular mechanisms of such inter-

organ communication, be it canonical communication routes such as the nervous

system and hormonal system (or) non-canonical recently-discovered routes such as ones

mediated by fat-derived extracellular vesicles (Huang and Xu (2021)) and microbiota-

derived metabolites in the gut-brain axis, can be represented as a network of interactions

among the biomolecules residing in different tissues/organs (and called the inter-organ

communication network or ICN) (Droujinine and Perrimon (2013)). Rapidly gaining

interest in the mapping of ICN (Droujinine et al. (2021)) and detailed mechanistic

characterization of specific interactions in the ICN (Bodine et al. (2021)) have revealed

a large ICN network among secreted proteins in model organisms like Drosophila, and

the key roles played by certain ICN molecules or interactions in healthy and disease

conditions. But these in vivo experimental techniques for ICN mapping or ICN analysis



to identify key players are limited in non-model organisms, including humans, and

also quite time-consuming even in model organisms due to the huge experimental

space (to cover the quadratic number of all pairwise interactions among thousands

of biomolecules in tens of tissues of interest). As a result, the ICN is vastly under-

explored in both model as well as non-model organisms, and there is an immediate

need to accelerate the mapping and analysis of ICNs in health and disease.

In this study, we deploy the proposed computational approaches to rapidly map and

analyze a multi-tissue network, comprising not only inter-tissue but also intra-tissue

gene-gene interactions. Our work is made possible by the recently accumulating

multi-tissue genomic datasets (e.g., (Lonsdale et al. (2013); Wang et al. (2018b)),

which can be used to infer inter/intra-tissue networks using the concept of gene-gene

correlation or coexpression. Coexpression network mapping and analysis have been

done before, for instance, using the popular WGCNA method (Langfelder and Horvath

(2008)), and gene prioritization using network-based measures have also successfully

guided downstream experiments before (Aerts et al. (2006); Schlicker et al. (2010);

Moreau and Tranchevent (2012); López-Cortés et al. (2018); Kolosov et al. (2021)),

but these existing studies have primarily focused on a single tissue of interest in a

healthy condition or the single most affected tissue in disease. Our proposed multi-

tissue centrality measures offer a systematic data/computation-driven prioritization of

genes to be key regulators of inter-tissue signaling and thereby help generate hypotheses

to guide downstream experiments that advance this emerging field of studying the whole

body at the holistic (multiple organ/tissue) as well as molecular level.
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The conceptual framework we use to model multi-tissue systems is more general, and

can also be applied to study interactions among multiple regions of the brain, for

instance, and to study the overall influence of a gene in the whole multi-tissue network

or an entire tissue, rather than a specific query set of genes in a specific tissue. This

is made possible by modeling this system as a multilayer network model, where each

tissue/region contributes to a layer and nodes (genes) can have within-layer and across-

layer connections (gene-gene interactions), and by proposing several PageRank-like

iterative centrality measures that decompose the overall multilayer centrality of a node

into relative contributions from intra- vs. inter-layer edges. The application focus of

this study is multi-tissue network centrality analysis to discover genes responsible for

inter-tissue communication via mediating hormones. We apply our proposed centrality

measures to human multi-tissue datasets and retrieve genes that are involved in the

production/processing/release of hormones in a source tissue or those that respond to

hormones in the target tissues. Our study with well-studied hormones for humans,

such as Insulin, identifies known as well as novel regulators of insulin signaling, with

the latter including lncRNAs backed by biomedical literature support, either in terms

of co-occurrence or in terms of similarity of literature-derived embedding vectors of

hormones and gene symbols. The application to hormone-gene inter-tissue signaling is

promising for broader applications of our work to understand communication between

different functional structures within our human body. We now discuss the data

collection steps and elaborate on the multilayer network construction.
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5.2 DATASETS AND NETWORK GENERATION

We validate the proposed centrality methods on synthetic as well as real-world datasets.

In this section, we discuss the process of constructing multilayer networks from raw

data and making it available for experimentation.

5.2.1 Synthetic Multilayer Networks

To understand the working of our MultiCens measures, we generate an extensive set

of synthetic multilayer networks. As shown in Fig. 5.1, we begin with a two-layered

multilayer network where each layer has 500 nodes. Following the popular ER-random

graph generation model Erdos et al. (1960), we consider all possible pairs of nodes

(within and across layer) and put an edge with probability p = 0.05. This multilayer

network is called the base network, and we mark 50 nodes in layer two as the query-set.

On top of the base network, we add additional edges among the nodes in the query-set

by another ER-based process of adding random edges. To add these additional edges,

we vary this additional edge probability p (called connection strength) from p = 0.05

to p = 1 at steps of 0.05, and obtain a network structure at each step. If a node pair, say

(i, j), gets connected in the base network and gets another edge while adding additional

edges, we assign weight of two units to the original edge. Similarly, in the first layer, we

mark a community of 50 nodes directly connected to the query-set, and call it source

set 1. Another community of 50 nodes, source set 2, is connected to source set 1.

The connection strength within these two communities and between source set 1 and

source set 2, and between source set 1 and query-set is varied from 0.05 to 1. In our

hormonal signaling example, query-set can be thought of as a set of genes that respond

57



to a hormone, say insulin in skeletal muscle tissue. Source set 1 and source set 2 can be

considered as genes in the pancreas tissue that interact with the query-set either by direct

or two-hop long dense connections. Since the tissues will have multiple other clusters

of genes that are not in the proximity of insulin-related genes, we mark three such

communities of 50 nodes each. Connection strength within these three communities

and across them is also varied.

In this synthetic multilayer network, our goal is to understand whether genes from

source set 1 and source set 2 get top centrality-based ranks for a given query-set, across

different values of connection strength.

5.2.2 Real-world Multilayer Networks

We evaluate our proposed centrality framework to reveal inter-tissue communication

mediating genes in human multi-tissue systems and extend our experiments to

Alzheimer’s brain network application with four brain regions/tissues. For human

multi-tissue datasets, we use the following resources.

GTEx.v8 Single-Tissue cis-QTL Data (Lonsdale et al. (2013)) 1

This data is a result of the Genotype-Tissue Expression (GTEx) project. The dataset

contains gene expression profiles of hundreds of individuals from over 30 tissues. The

dataset is pre-processed to account for some known as well as derived covariates 2.

1File “GTEx_Analysis_v8_eQTL_expression_matrices.tar" accessed from
“https://gtexportal.org/home/datasets" on Sep 25, 2020: 2100 hours IST

2We used the list of covariates from file “GTEx_Analysis_v8_eQTL_covariates.tar.gz" accessed from
“https://gtexportal.org/home/datasets" on Sep 25, 2020, at 2100 hours IST.
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Stanford Biomedical Network Dataset Collection (Zitnik et al. (2018)3

This dataset provides a tissue-specific protein-protein edge list for humans. The data

is derived from a global protein-protein network. In the global interactions, if a

pair of proteins is tissue-specific or if one protein is tissue-specific and the other

protein is ubiquitous, then the tissue information is associated with the interaction, and

hence the tissue-specific networks are obtained. Physical protein-protein interactions

experimentally support the edges in the networks. We retrieve the hormone-producing

and responding gene sets from HGv1 dataset4 (Jadhav et al. (2022)). In HGv1, the

source and target genes of hormones are first retrieved in a tissue-agnostic manner, and

then through biomedical literature mining source and target tissues of a given hormone

is designated. We treat these hormone producing and responding gene sets as the ground

truth genes for hormonal signaling.

5.2.3 Hormone-related Network Construction

Gene coexpression networks are known to capture the patterns of underlying gene

expression data that can reveal important biological biomarkers, functional associations

between different genes, etc. In human experiments, we make use of the GTEx.v8

Single-Tissue cis-QTL data and compute Spearman correlation to find the correlation

coefficients between all gene pairs (within and across tissue) and use it as an edge

weight (absolute value) to signify the strength of interactions. In order to avoid the

3File “PPT-Ohmnet_tissues-combined.edgelist" accessed from “http://snap.stanford.
edu/biodata/datasets/10013/10013-PPT-Ohmnet.html" on Sep 25, 2020, at 2100 hours
IST.

4Files accessed from “https://cross-tissue-signaling.herokuapp.com/" on Jan 10, at 1600 hours IST.

59

http://snap.stanford.edu/biodata/datasets/10013/10013-PPT-Ohmnet.html
http://snap.stanford.edu/biodata/datasets/10013/10013-PPT-Ohmnet.html


blowup in the size of the multilayer network, we only use the top 10k varying genes in

each tissue and take the union of these genes while constructing the multilayer network.

We also use the protein-protein interaction data as described earlier, in addition to using

a gene coexpression network. For every gene-gene pair, if it is present in the protein

interaction data, we increase its weight by 1 unit (adding edge weights) and work with

the resultant network. In this thesis, we report results on this resultant network unless

mentioned otherwise.

In GTEx dataset, combining multiple tissues in a network leads to fewer common

samples and, hence, a less robust network; we restrict these experiments to multilayer

networks only with two tissues (the predominant source and target tissue for a hormone;

so these multilayer networks we construct and analyze are hormone-specific). However,

our network generation mechanism as well as the MultiCens framework to compute

centrality can be readily used for any number of tissues, as we illustrate in the

Alzheimer’s brain network application with four brain regions/tissues.

Evaluation of Hormone-gene Predictions

In one of MultiCens’ applications, we use hormone-producing set as the query-set of

genes and rank all genes in the target tissue to predict the hormone-responsive set;

this process is repeated vice versa to predict hormone-producing genes from an input

query set of hormone-responsive genes. We use the HGv1 database Jadhav et al. (2022)

as ground truth and validate our gene rankings against it. We also perform disease

enrichment analysis to find that whether our centrality-based gene rankings are enriched
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for hormone-related diseases using WebGestalt5. To obtain the enriched set of diseases

for human gene rankings, we use the WebGestalt portal and select "Homo sapiens" as

the Organism of Interest. Method of interest and Functional Database are set to Gene Set

Enrichment Analysis (GSEA) and disease, respectively. We select OMIM functional

database and set the significance level to 0.05 FDR. We give the gene symbols, and

their corresponding centrality scores as input, and the portal returns the set of diseases

enriched at the given FDR cut-off.

From the gene rankings obtained using our centrality measure, we find the support for

top protein-coding genes based on co-occurrence with hormone-related terms in the

PubMed corpus6. More information about these evaluation approaches are given below.

Recall-at-k plot

This plot can be used to validate the results visually. Both in synthetic as well as real-

world datasets, we have a set of ground truth genes that we expect to come at the top

as per their centrality scores. This can be verified by visualizing recall-at-k plots where

the x-axis reports the top k predictions and the y-axis marks the number of hits from

the ground truth at any given k.

5Tool http://webgestalt.org/ accessed on Aug 5, 2021.
6Data accessed from “https://pubmed.ncbi.nlm.nih.gov/" on Aug 1, 2021.
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Area under recall-at-k curve

Higher recall-at-k curve implies the better performance of a method. One way to

quantify it is by calculating the area under it. We normalize the maximum possible area

under recall-at-k curve to be 1 and report the area obtained by curves corresponding to

the proposed method.

Support from literature

The evaluation metrics discussed above require the ground truth for evaluation. Many

times, especially in biology, it is tough to have access to the complete ground set of

hormone-producing/responding genes. Continuous research like this study pushes our

knowledge boundaries, and we get access to more reliable and more complete ground

truth datasets. In order to validate the novel findings, we rely on support from literature

and use the following two metrics.

Co-occurrence in the PubMed database: We use articles present in the PubMed data

and find the support for predicted genes. The support is calculated as an overlap between

the gene name and the hormone/disease name. The support is calculated using the

following formula.

Support =
H ∩G
H

number of articles on PubMed ×G

Where H and G denote the number of articles that mention the hormone name and

gene name, respectively, and H ∩G denote the number of articles that contain both the

hormone name and gene name. While finding support for the gene-disease association,
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we use articles that contain the disease name instead of hormone name. We use 27

million as the number of articles present in the PubMed database.

Cosine similarity in the embedding space: We find cosine similarity between

the embedding vector of a gene symbol and that of a hormone or disease name.

Since cosine similarity can range between -1 and 1, a positive number indicates that

the gene-hormone or gene-disease association is supported in the embedded space.

Our embeddings (also called as word embeddings or embedding vectors) are from

BioWordVec7, a deep learning model pretrained on the PubMed corpus Zhang et al.

(2019). Both these metrics use articles present in the PubMed database, but they differ

because the co-occurrence is based solely on the presence of two terms in an article,

whereas the second metric also captures the contextual dependencies in the embedding

space.

Our PubMed literature analysis focuses only on the peptide hormones insulin and

somatotropin (out of all the four primary hormones considered), since we wanted to

apply an informative filter to inspect predictions that are only among genes involved in

peptide secretion8. This filter was inspired by a similar filter applied in an earlier study

on endocrine interactions Seldin et al. (2018).

For the second application, we apply MultiCens framework to four-layered human brain

multilayer network and identify shift in the gene rankings of control and AD groups.

7BioWordVec model/embeddings are downloaded from https://github.com/ncbi-nlp/
BioSentVec.

8List of genes involved in peptide secretion accessed from this URL-
www.ebi.ac.uk/QuickGO/GTerm?id=GO:0002790 on Dec 1, 2020
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5.2.4 Multi-brain-region Data - Preprocessing and Correction

The covariate-adjusted transcriptomic (RNA-sequencing) data with the following

synapse ids - syn16795931 – Brodmann Area (BM10) – frontal pole (FP), syn16795934

- BM22 - superior temporal gyrus (STG), syn16795937 - BM36 - parahippocampal

gyrus (PHG), syn16795940 – BM44 - inferior frontal gyrus (IFG), were downloaded

from AD Knowledge Portal – The Mount Sinai/JJ Peters VA Medical Center Brain Bank

cohort (MSBB) study Wang et al. (2018a) (10.7303/syn3159438). The preprocessed

data is corrected for library size differences using the trimmed mean of M-values

normalization (TMM method – edge R package) and linearly corrected for sex, race,

age, RIN (RNA Integration Number), PMI (Post-Mortem Interval), sequencing batch,

exonic rate and rRNA (ribosomal RNA) rate. The normalization procedure was

performed on the concatenated data from all four brain regions to avoid any artificial

regional difference Wang et al. (2018a).

The clinical (MSBB_clinical.csv) and experimental metadata

(MSBB_RNAseq_covariates_November2018Update.csv) files available on the

portal are used to classify the samples into control (CTL) and Alzheimer’s disease

(AD) based on CERAD score (Consortium to Establish a Registry for AD). CERAD

score 1 was used to define CTL samples, and 2 (’Definite AD’) was used for defining

AD samples Wang et al. (2018a). Probable AD (CERAD = 3) and Possible AD

(CERAD = 4) samples were not considered for this study.

To mitigate the confounding effect of cellular composition on gene-gene coexpression

relations, we corrected (linearly adjusted) the RNAseq gene expression data for cell
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type frequencies of four major brain cell types: astrocytes, microglia, neuron, and

oligodendrocytes. We estimated these cell type frequencies in each brain region/tissue

separately from the bulk tissue expression of the marker genes of these cell types using a

cellular deconvolution method called CellCODE (Cell-type Computational Differential

Estimation) Chikina et al. (2015). Specifically, we used the getAllSPVs function from

the CellCODE, and provided its input arguments to select robust marker genes that do

not change between AD vs. CTL groups (specified via the mix.par argument set at

0.3) from a starting set of 80 marker genes (top 20 per cell type, obtained from the

BRETIGEA (BRain cEll Type specIfic Gene Expression Analysis) meta-analysis study

McKenzie et al. (2018).

Network Construction and Enrichment Analysis of Gene Rankings

AD and CTL networks are separately constructed as before by computing the Spearman

correlation between all pairs of genes in the four brain regions and taking absolute

value of these correlations as the edge weights. To make the analysis computationally

tractable, we restrict our focus to a subset of genes as follows - identify the 9000 most

varying genes in each region for both AD and CTL populations, and then consider the

union of all these gene sets as the final set of nodes in each layer of the multilayer

network.

MultiCens scores are then calculated for all the nodes in the AD or CTL multilayer

networks to obtain gene rankings, which were then subjected to enrichment analysis

with WebGestalt as described before. Additionally, we applied redundancy reduction

methods (affinity propagation and weighted set cover) and selected the significantly
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enriched terms, which passed both the methods. We use the centrality score of each of

the three brain regions other than the query brain region to find the significantly enriched

terms considering both Reactome pathways and Gene Ontology based Biological

Process (GO-BP).

5.3 RESULTS

In this section, we present the results obtained using synthetic as well as real-world

datasets.

5.3.1 Results with Synthetic Multilayer Networks

Figure 5.1 shows the construction and evaluation using synthetic multilayer networks.

As discussed, we work with a two-layered multilayer network with a query-set present

in the second layer. We begin with a configuration where only source-set-1 makes

the ground truth and rank all nodes in the first layer. In the recall-at-k plots, we

show the overlap between the ground truth and the top 100 ranked nodes. It can be

seen that all three methods can recover the ground truth as the density of edges in

communities increases. As we start changing the ground truth by removing nodes

from source-set-1 and adding nodes from source-set-2, methods other than query-set

centrality start failing. In the end, we reach a configuration where 100% nodes in

the ground truth are from source-set-2 where the proposed method outperforms the

other methods drastically. In the context of predicting hormone-gene associations, it is

unlikely when only the genes that are not directly connected to query-set produce or

respond to a hormone. In real-world multilayer networks, we expect a mixture of nodes

66



Query Set

Directly connected
source set - 1

Indirectly connected
source set - 2

Other communities in
the network

Multilayer random
network of 500
nodes in each

layer. 
Any pair of nodes

in the same or
different layers is
connected by an

edge with
probability 0.05


Fraction of nodes
from Source set -2
in the ground truth


0%

25%

50%

75%

100%

Adding Communities on
the top of base random

multilayer network


We start with Source set -1 as the ground truth and
then keep on adding nodes from Source set -2 as a

fraction of ground truth nodes.


Query-set centrality
Versatility
Inter-layer degree

Query-set centrality
Versatility
Inter-layer degree

Query-set centrality
Versatility
Inter-layer degree

Query-set centrality
Versatility
Inter-layer degree

Query-set centrality
Versatility
Inter-layer degree

Connection strength

N
um

be
r o

f n
od

es
 re

co
ve

re
d

c

a

b

Figure 5.1: Synthetic multilayer network construction and evaluation. (a) Synthetic
network construction starts with a base random multilayer network with
edge probability 0.05; (b) More edges are then added, according to
the connection strength desired, both within the selected communities
(indicated by circles) and between certain pairs of communities (indicated
by thick dark edges connecting the pair; e.g. between source-set 1 and
source-set 2). (c) As more nodes from source-set-2 become part of the
ground truth (shown as increasing percentages), our MultiCens query-set
centrality outperforms the existing methods to a larger extent. Each plot
shows the connection strength (x-axis) against the number of ground truth
nodes in the top 100 ranked nodes (y-axis).
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directly connected (like source-set-1) to the query-set, and nodes connected by long

hops (similar to source-set-2) make the ground truth; In such scenarios, the proposed

method shows better results in these plots. Now we evaluate the proposed centrality

measure on the real-world multilayer networks in the next section.

5.3.2 Results with Human Multi-tissue Data

MultiCens ranks the inter-tissue communication driver genes at the top.

We work with human multi-tissue datasets and find genes that regulate inter-tissue

communication. We use the HGv1 dataset to obtain hormone-producing and responding

genes. In the HGv1 dataset, there is a vast imbalance in the known hormone-gene

associations between the well-studied hormones such as Insulin (156 producing genes)

and Leptin (1 producing gene). We restrict our experiments to only those hormones

with at least 10 genes in either the hormone-producing or responding sets. Further, we

report only those hormones with at least 10 genes on both sides to perform the ground-

truth-based evaluation. Four hormones viz. Insulin, Somatotropin, Progesterone, and

Norepinephrine cross this threshold. We use either hormone-producing or responding

gene set as the query-set and treat the other set as the ground truth to recover.

Figure 5.2(a) shows the recall-at-k plots for the hormones where we have more than

10 genes in both hormone-producing as well as responding sets. We compare the

recall curve with a curve that stands for the recall had the ranking been random. It

can be seen that the proposed centrality measure outperforms in three out of four

hormones showing the promising potential in identifying the drivers for tissue-tissue
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Figure 5.2: MultiCens on human multilayer networks: ground-truth validation. (a)
Recall (# of ground truth genes recovered; y-axis) in the top k ranked genes
(x-axis) are plotted using MultiCens query-set centrality based ranking vis-
à-vis a random ranking (random curve). (b) For hormones with 10 or more
genes in either producing or responding set, the smaller set is used as the
query-set, and the plot reports AUC score for predicting the bigger set
(marked in bold-face font in x-axis). For the four primary hormones having
at least 10 genes on both producing and responding sets, plot reports AUC
for predicting both sets.

communication. Figure 5.2 (b) shows the performance of the proposed centrality

measure on the hormones with at least 10 genes in either hormone-producing or

responding sets. The upper plot is obtained from a network constructed using both
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Figure 5.3: OMIM-based disease set enrichment analysis of the centrality scores. We
use WebGestalt to get these enrichments and apply an FDR cut-off of
0.05. For Somatotropin and Norepinephrine, we do not see any enrichment
crossing the FDR cut-off in Liver and Adrenal Glands, respectively.

coexpression-based edges and the SNAP repository, where the bottom plot is obtained

using only coexpression-based edges.

In hormones, where we do not have at least 10 genes in either set, we report the

performance of predicting the larger set using the smaller set as the query-set of genes.

Figure 5.2 (b) shows a trend of increasing performance as the number of genes in

the ground truth increase. It also shows the robustness of the method, as using only

coexpression-based edges results in a small drop in the performance of some of the

hormones.
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Our validation using the ground truth hormone-gene associations from the HGv1 dataset

affirms the potential of the proposed centrality framework to capture the inter-tissue

communication driver genes. The encouraging performance of the proposed centrality

measure led us to perform disease-based enrichment analysis (DSEA) of the centrality-

based gene rankings. We use the WebGestalt platform to run DSEA on the genes

along with their centrality scores. Figure 5.3 presents the enriched disease terms for

each hormone at 0.05 FDR cut-off. We apply a stringent FDR cut-off to minimize

the chances of encountering false positives; hence, the gene rankings corresponding to

two hormones, Somatotropin and Norepinephrine, do not show any enrichment on the

hormone-responding and producing sides, respectively.

Centrality-based Gene Rankings are Enriched for Hormone Related Diseases

Among the enriched disease terms, many of them are well-supported in the literature.

A recent study on understanding the carcinogenic factors for the development of gastric

cancer revealed the role of insulin resistance Kwon et al. (2019). Insulin resistance

has also been found to be a potential cause for the Colorectal cancer Schoen et al.

(1999), and Prostate cancer Hsing et al. (2003). The relationship between Insulin

and Diabetes Type-2 is well studied in the literature Reaven (1980), as found by

our enrichment analysis. Studies have shown that patients with congenital fiber-type

disproportion myopathy on muscles develop insulin-resistance diabetes Vestergaard

et al. (1995), confirming the term enrichment in our results. Further, Leukemia

is known to undercut the capacity of healthy cells to consume glucose Ye et al.

(2018). The role of (somatotropin) growth hormone-related genes is known for the
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development of colorectal cancer Yang et al. (2004), and our enrichment analysis

confirms this association. Progesterone hormone plays a crucial role in the development

of breast cancer Trabert et al. (2020), and our findings show this term enriched for

the gene rankings in both hormone-producing as well as hormone-responding tissues.

Norepinephrine is known to be an etiological factor in developing several types of

cancers, including the ones we found in the enrichment analysis Fitzgerald (2009).

However, the set of primarily associated diseases to Norepinephrine are not observed in

our analysis, which is in line with the poor performance of this hormone-related gene

ranking in other analyses as well.

Our Top Predicted Genes are Supported by The PubMed-based Literature

Analysis.

For the out-of-ground-truth analysis, we seek the validation of predicted hormone-gene

associations from the PubMed database. In PubMed articles, a hormone-gene pair can

co-occur and imply a potential relationship between them. We use a scoring mechanism,

co-occurrence score, to quantify this evidence, as defined in section 5.2.3. In the

PubMed database, some articles may involve the study of similar hormones, hormones

with their associated diseases, diseases with the driver genes, etc. Such articles may not

include the potential hormone-gene pairs in the text, but these hormones and genes tend

to have a similar context. Text-based embedding methods have shown great success

in capturing these similarities into word vectors Habibi et al. (2017). We investigate

the cosine similarity between the word vectors corresponding to gene and the hormone-

related terms to validate our predictions. In this analysis, we only test the predictions
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among top protein-coding9 genes. Figure 5.4 shows the top ten predicted genes for each

hormone along with their co-occurrence and embedding-based cosine similarity scores

with the hormone-related terms. Genes with a green background are not present in

the ground-truth HGv1 dataset of hormone-gene associations, but our centrality-based

rankings find their connection which is confirmed by the high similarity scores with at

least one of the hormone-related terms. Genes with a grey background are not present

in the ground truth, and none of the hormone-related terms show a supportive score for

both columns. Genes with a yellow background are present in the HGv1 database and

ranked top in our centrality-based ranking.

In Figure 5.4, it can be seen that all hormones show multiple entries with a

green background, confirming the identification of novel drivers of tissue-tissue

communication. Recently, LRRC8 has been found to enhance insulin secretion in

pancreatic β-cells Stuhlmann et al. (2018). Later studies also confirm the role of LRRC8

in insulin resistance and glucose resistance Kumar et al. (2020). Similarly, EGFR gene

is known to have an association with diabetes disease Group et al. (2015). The role of

CD74 in Insulin secretion and related diseases was not well-established until the recent

discovery of its participation in insulin resistance Chan et al. (2018). Based on the high

centrality ranking and recent pieces of evidence, CD74 warrants further exploration and

can be prioritized in future experiments.

In the case of somatotropin, S100A8 gene is not present in the ground truth HGv1

database, and it receives little support from the scores. Literature shows downregulation

9List of protein-coding genes accessed from this URL- www.ebi.ac.uk/QuickGO/GTerm?id=GO:0002790
on Dec 1, 2020, at 2100 hours IST
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Figure 5.4: Literature support for the gene rankings obtained using the proposed
centrality score. This Figure presents the top 10 predicted genes (ranked
only among secretory genes) for each hormone, along with their co-
occurrence scores and similarity in embedding space with hormone-related
terms. Genes with a yellow background are present in the ground truth
(HGv1 data); from the remaining genes, the green background represents
genes supported by scores from either or both hormone-related terms, and
genes with a grey background are not supported by any of the hormone-
related term using both scores.

74



in S100A8 on exogenous administration of growth hormone: such studies and a high

ranking as per our centrality method command further exploration. Similarly, RFX3

gene is known to play a role in hydrocephalus disease Baas et al. (2006), which is

associated with the deficiency in growth hormone Wen et al. (2010). This context-based

dependency is well captured in the cosine-based similarity in the embeddings pace, but

the gene has no direct co-occurrence with hormone-related terms.

In Progesterone, three out of the top ten predicted genes are not present in the ground

truth. These genes get nominal support from the literature indicating the requirement

of further exploration of these associations. Studies show an increase in postprandial

Norepinephrine levels by inhibiting the DDP4 gene. The first rank obtained by DDP4

gene demands further exploration on these lines.

5.3.3 Centrality of random node sets to assess statistical significance

In synthetic benchmarks or hormone-gene prediction applications discussed above,

we typically compare the performance of the ranking given by a particular centrality

measure to random rankings of all nodes in the network that need to be ranked.

Specifically, a ranking-based evaluation metric of a set of nodes of interest S (e.g.,

recall-at-k of a ground-truth set of genes) computed from the actual centrality-based

ranking vs. random rankings are then compared to assess the statistical significance

of the centrality scores of node(s) in S. This procedure is equivalent to comparing the

centrality scores of S to that of a random set of nodes whose size matches the size of S.
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Figure 5.5: Comparison of gene rankings of ground truth sets (hormone-producing and
responding) with a random gene set chosen by stratification on the gene
variance level. Blue curve corresponds to the actual ground truth gene set,
orange curve represents the ranking obtained by a random set of genes
chosen by stratifying over gene variance levels, and green curve is the
average curve obtained using any random set of genes. Note that the random
gene sets we consider have the same size as the actual ground truth set.

To refine the above procedure, we can also have the random set match other properties

of S, such as the expression values or variances of the genes in S across all the samples

in the input dataset. More specifically, we can stratify genes into three classes of

genes: ones with low, medium and high variance across all input samples. We use

closed intervals of 0-33, 33-66, and 66-100 percentile-based cut-offs to classify the

genes into low, medium, and high varying categories, respectively. A random gene set

is now chosen such that the number of genes in each of these three classes matches

the corresponding number of genes in S. We have performed this refinement for

insulin-gene predictions, for instance, and show that (see Figure 5.5 ) the ground-truth

producing or responding gene set of insulin to be predicted has better centrality than

matched random sets of genes.
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5.3.4 Novel Findings: lncRNAs and their Support from Literature

Our multi-tissue datasets include non-secretory genes such as lncRNAs. For a long

time, these lncRNAs were not known to be participating in hormonal signaling until

recent studies have shown their association with human physiology and diseases (Sun

and Kraus (2015)). Our centrality results also return a ranking among lncRNAs for

each hormone. We validate these findings by searching through Google Scholar to find

articles that contain these lncRNAs and the hormone or disease names associated with

them.

Rank lncRNA symbol References
1 LINC00672 Li et al. (2017, 2019a)
2 HOXA-AS2 Lian et al. (2017); Li and Yu (2020)
3 PRR34-AS1 Liu et al. (2019)
4 MIR22HG Lin et al. (2017)
5 LINC00294 None

Table 5.1: Top predicted lncRNAs for Insulin in Pancreas along with their references in
the literature. The references mentioned in the table include these lncRNAs
with terms Insulin or Diabetes.

Rank lncRNA symbol cReferences
1 ZEB1-AS1 Gu et al. (2020); Meng et al. (2020); Song et al. (2019)
2 TNK2-AS1 None
3 PWAR6 Liu et al. (2019); Nagai and Mori (1999); Basheer et al. (2016)
4 PRRT3-AS1 Yang et al. (2021)
5 PRKCQ-AS1 Timmons et al. (2018)

Table 5.2: Top predicted lncRNAs for Insulin in Skeletal Muscle along with their
references in the literature. The references mentioned in the table include
these lncRNAs with terms Insulin or Diabetes.
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Rank lncRNA symbol References
1 LINC01588 Volejnikova et al. (2020)
2 PTPRD-AS1 None
3 LINC01132 None
4 UCA1 None
5 LINC01473 None

Table 5.3: Top predicted lncRNAs for Somatotropin in Pituitary Gland along with
the references mentioning terms Somatotropin (growth hormone) or
Acromegaly.

Rank lncRNA symbol References
1 NEAT1 None
2 ZNF528-AS1 Rothzerg et al. (2021)
3 MIR210HG Sun et al. (2021)
4 ALMS1-IT1 None
5 LINC01278 None

Table 5.4: Top predicted lncRNAs for Somatotropin in Liver along with the references
mentioning terms Somatotropin (growth hormone) or Acromegaly.

Rank lncRNA symbol References
1 HAGLR Jin et al. (2021); Tang et al. (2019)
2 TAF1A-AS1 None
3 LINC00602 None
4 PCAT19 Lange (2021)
5 HHIP-AS1 Li and Zhan (2019)

Table 5.5: Top predicted lncRNAs for Progesterone in Uterus along with the references
mentioning terms Progesterone, Breast cancer or Endometriosis.

Rank lncRNA symbol References
1 CCDC18-AS1 None
2 LINC00641 Dastmalchi et al. (2021)
3 MIR210HG Li et al. (2019b); Du et al. (2020)
4 LINC01016 Li et al. (2021); Pan et al. (2018)
5 BEAN1-AS1 None

Table 5.6: Top predicted lncRNAs for Progesterone in Ovaries along with their
references in the literature. The references mentioned in the table include
these lncRNAs with terms Progesterone, Breast cancer or Endometriosis.
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Rank lncRNA symbol References
1 PGM5P4-AS1 None
2 CCDC18-AS1 None
3 MAGI2-AS3 Ghosal et al. (2021)
4 LINC01291 None
5 TOLLIP-AS1 None

Table 5.7: Top predicted lncRNAs for Norepinephrine in Adrenal Glands along with
their references in the literature. The references mentioned in the table
include these lncRNAs with terms Norepinephrine or Depression.

Rank lncRNA symbol References
1 RNF139-AS1 None
2 CARMN None
3 SPATA41 Zhang et al. (2020)
4 GHET1 None
5 ATP1B3-AS1 None

Table 5.8: Top predicted lncRNAs for Norepinephrine in Small Intestine along with
their references in the literature. The references mentioned in the table
include these lncRNAs with terms Norepinephrine or Depression.

5.3.5 MultiCens detects Changes in Brain Networks between Alzheimer
Disease and Control Populations

After recognizing the potential of MultiCens in identifying genes (both protein coding

and lncRNAs) in hormone signaling pathways in health, we employ it to understand

the change in the gene-gene network structures in disease, specifically Alzheimer’s

disease (AD) relative to a control (CTL) population. We retrieved data of 264 AD

and 372 control human postmortem RNAseq samples from Mount Sinai Brain Bank

dataset Wang et al. (2018a) for four brain regions: frontal pole (FP), superior temporal

gyrus (STG), parahippocampal gyrus (PHG), and inferior frontal gyrus (IFG). We

construct one multilayer network for the AD group of individuals and another for the

79



CTL group, with four layers in the network representing the four brain regions, and

network nodes and edges representing respectively the genes in these brain regions and

gene-gene coexpression relations (after adjusting for covariates). We use the genes

involved in synaptic signaling (SSG) in the PHG region as the query set of genes

(134 genes), and identify the disease-driven change in the centrality-based ranking of

genes in the remaining three regions. We observed considerable shift in the ordering

of these three brain regions in the AD vs. CTL multilayer networks according to their

median gene centrality scores (see Fig. 5.6a, STG region’s ordering for instance). In

terms of individual genes, ANKFN1, OR10AD1 and PLCD3 gain the highest positive

shift in AD-based ranking in the FP, STG and IFG regions respectively. ANKFN1

is found to be upregulated in hippocampus tissues of AD patients Yan et al. (2019).

Though OR10AD1 (olfactory receptor family 10 subfamily AD member 1) is not yet

connected to AD, olfactory impairments is recently reported to be one of the early

phase’ pathophysiological changes in AD Alves et al. (2014). PLCD3 is known to be

upregulated in the AD population along with other regulators of lipid metabolism Zhang

et al. (2018b).
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Reactome Pathways Gene Ontology-based Biological Process

Figure 5.6: MultiCens on multi-brain-region networks in disease: Study of changes
in MultiCens gene rankings of four-layer networks of control and Alzheimer
affected population. We rank genes of frontal pole (FP), superior temporal
gyrus (STG) and inferior frontal gyrus (IFG) using MultiCens centralities
calculated using a query-set of synaptic signaling genes in parahippocampal
gyrus (PHG). (a) Bar-plot showing region-wise shift of centrality scores
of the three regions. (b) Reactome pathways and Gene Ontology-based
process (GO-BP) enrichment analysis of each region in control and
AD state. Color map represents the normalized enrichment score from
WebGestalt. The highlighted boxes pass the 0.01 FDR cut-off. If centrality-
based gene rankings of a region do not pass the 0.05 FDR cut off for an
enrichment, we set the corresponding normalized enrichment score to 0.
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MultiCens also offers an across-region view of gene importance in the AD or CTL

multilayer networks. In the AD network, irrespective of brain regions, genes JMJD6,

SLC5A3, CIRBP, TARBP1 and AHSA1 are among the top ten central genes correlated

with the SSG set, of which AHSA1 (activator of HSP90 ATPase activity 1) is already

known to correlated with AD progression by promoting tau fibril formation Shelton

et al. (2017). On the other hand, CIRBP (cold inducible RNA binding protein)

shields neurons from amyloid toxicity mediated by antioxidative and antiapoptotic

pathways, making it a favourable molecule contending for AD prevention or therapy

Su et al. (2020). It may be worth studying the other three genes experimentally to

test their connections to AD pathology. Similar to these individual genes, certain

biological pathways were also enriched for top ranks, irrespective of the brain region,

in the AD network (see Fig. 5.6b) – examples include HSP90 chaperone cycle for

steroid hormone receptors (R-HSA-3371497) pathway and negative regulation of

nervous system development (GO:0051961). Heat shock protein 90 (Hsp90), "a

molecular chaperone", is known to induce microglial activation leading to amyloid-

beta (Aβ) clearance Ou et al. (2014). The across-region consistency of top-ranking

genes/pathways in the AD network is not observed in the CTL multilayer network.

For example, gene CDK5R2 (Cyclin Dependent Kinase 5 Regulatory Subunit 2) is

ranked 3rd in FP, rank 224 in STG, and 2076 in IFG. Pathway enrichments are also

more region-specific in the CTL network (relative to AD network; see Fig. 5.6b), such

as Axon guidance in FP, Cell-cell junction organization in STG, and immune system

in IFG. The intricate links between immune system and neuronal signaling is well-

appreciated. Other enrichments that serve as a positive control to increase confidence
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in our MultiCens rankings are those of biological processes like ‘regulation of trans-

synaptic signaling’ in FP and STG, and ‘synapse organization’ in IFG.
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Figure 5.7: Different ranks and centrality scores of the genes (y-axis in log-scale),
participating in enriched biological process resulting from LC-GC delta
rank, are highlighted in the box plots. While RNA splicing seems
to be predominant (influential) in the intra-region gene network, Acute
inflammatory response seems to be influential in the inter-region gene
network due to its better global centrality ranks.

Along with MultiCens query-set centrality (QC), we have further computed and

analyzed (e.g., using WebGestalt) local centrality (LC) and global centrality (GC)

measures of MultiCens. To highlight the difference among these three centrality

measures, we also computed and analyzed “delta" rankings (i.e., differences in two

rankings: “LC - GC", and “GC - QC"). Fig 5.7 reveals important biological insights

from the different centrality measures - while better ranked genes in LC are enriched

for RNA splicing, those in GC are enriched for acute inflammatory response. Further,

the distribution of LC and GC ranks for the above mentioned GO-BPs show that while

some genes have an active role to play within brain regions, other genes are influential

in inter-brain-region connectivity. We observed a similar trend when inspecting GC-
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QC delta ranks as shown in Fig. 5.8. Taken together, having multiple centrality values

within our MultiCens framework is advantageous in bringing out different facets of the

AD disease network.
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Figure 5.8: Different ranks and centrality scores of the genes (y-axis in log-scale),
participating in enriched pathways resulting from GC-QC delta rank, are
highlighted in the box plots. Both neuronal system pathway and trans-
synaptic signaling regulation are better connected to the query-set (synaptic
signaling genes) as expected.

Finally, to find out whether changes in AD-network is specific to the query pathway or

similar across pathways, we further use plaque-induced genes (PIGs, total 57 genes),

prominent in the later phase of AD, as query-set in PHG instead of the SSG set

and repeat the same analysis with MultiCens. We found predominant similarities as

well as certain interesting differences in centrality ranks between the two query gene

sets. While pathways related to heat stress was common for both query sets, synaptic

signalling related process like “cell-cell junction organization” was prominent for SSG

set and interleukin signaling was exclusively noted for PIG set (see Fig. 5.9).
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Figure 5.9: MultiCens on multi-brain-region networks in disease (PIG-based
query-set): Study of changes in the centrality-based gene rankings of four-
layer networks of control and Alzheimer affected population. The PIG
query-set is present in parahippocampal gyrus (PHG) and we rank genes of
frontal pole (FP), superior temporal gyrus (STG) and inferior frontal gyrus
(IFG). (a) Bar-plot showing region-wise shift of centrality scores of the three
regions. (b) Reactome pathways and Gene Ontology-based process (GO-
BP) enrichment analysis of each region in control and AD state. Color
map represents the normalized enrichment score from WebGestalt. The
highlighted boxes pass the 0.01 FDR cut-off. If centrality-based gene
rankings of a region do not pass the 0.05 FDR cut off for an enrichment,
we set the corresponding normalized enrichment score to 0.
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In aggregate, these results on alterations of brain networks in Alzheimer’s disease using

different query sets show how MultiCens can provide a network-centric perspective and

related hypotheses for prioritizing experimental investigations of disease mechanisms.

5.4 SUMMARY

We survey the centrality methods for multilayer networks and emphasize the need for

novel methods to leverage the layered configuration of the underlying system to capture

the centrality effects on local vs. global levels and to a particular layer and a query set

of nodes in a specific layer. We propose MultiCens, a collection of centrality measures

to capture the effect of nodes at different granularities of the multilayer structure.

The proposed centrality measures have theoretical properties such as convergence

guarantees and decomposability. We validate our proposed methods on an extensive

set of synthetic multilayer networks and derive the conditions where the proposed

methods outperform the existing methods. We experiment with multilayer networks

arising from human multi-tissue datasets and identify genes regulating inter-tissue

hormonal communication. Our detailed analysis showed the superior performance of

the proposed method on multiple validation methods, both with and without using the

ground truth data. Our gene rankings are enriched for processes and diseases related to

the hormones, which assures us to consider this method for prioritizing genes in future

experiments. This work also opens paths to using the proposed centrality measures

to identify differential components in healthy and diseased populations. We extend

our experiments to understand the shift in gene rankings in brain regions of the AD

population than the control group and draw important insights.
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Part III

Hypergraphs: Theoretical insights and

implications for effective clustering

and hyperedge prediction
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CHAPTER 6

Hypergraph: Methods for Clustering and Hyperedge Prediction
Many real-world systems involve components interacting at a super-dyadic level.

The representational power of pairwise graph models is insufficient to capture higher-

order information and present it for analysis or learning tasks. These systems can

be more precisely modeled using hypergraphs where nodes represent the interacting

components, and hyperedges capture higher-order interactions (Bretto (2013); Klamt

et al. (2009); Satchidanand et al. (2014); Lung et al. (2018)). A hyperedge can capture

a multi-way relation; for example, in a co-authorship network, where nodes represent

authors, a hyperedge could represent a group of authors who collaborated for a common

paper. If this were modeled as a graph, we would be able to see which two authors are

collaborating, but would not see if multiple authors worked on the same paper. This

suggests that the hypergraph representation is not only more information-rich but is

also conducive to higher-order learning tasks by virtue of its structure. Indeed, there

is a recently expanding interest in research in learning on hypergraphs (Zhang et al.

(2018a); Zhao et al. (2018); Saito et al. (2018); Feng et al. (2018); Chodrow and

Mellor (2020)). In this work, we are interested in devising solutions for the problem

of Hypergraph clustering and Hyperedge prediction. Analogous to the graph clustering

task, Hypergraph clustering seeks to discover densely connected components within a

hypergraph (Schaeffer (2007)). This has been the subject of several research works by

various communities with applications to various problems such as VLSI placement

(Karypis and Kumar (1998)), discovering research groups(Kamiński et al. (2019)),

image segmentation (Kim et al. (2011)), de-clustering for parallel databases (Liu and



Wu (2001)) and modeling eco-biological systems (Estrada and Rodriguez-Velazquez

(2005)), among others.

Hyperedge prediction is a less explored but extremely important problem of

hypergraphs. Unlike edge prediction, hyperedge prediction has several bottlenecks,

both semantically and computationally, making the problem more challenging. The

inherent complexity of hypergraphs hinders edge-prediction methods from directly

predicting hyperedges. Unlike graphs, where an edge can connect only two nodes,

a hyperedge can connect an arbitrary number of nodes. Thus, while in a graph,

the maximum possible number of edges is O(n2), in a hypergraph, the maximum

possible number of hyperedges is O(2n). Searching through this enormous space for

potential hyperedges exacerbates the modeling and search challenge as compared to the

traditional edge or link prediction. In this chapter, we present the theoretical framework

required to build solutions for hypergraph clustering and hyperedge prediction. The

experimental details, results and its analysis are presented in the next chapter. We begin

by introducing modularity in hypergraphs, and follow up by presenting an iterative

algorithm for hypergraph clustering. In the end we discuss the scoring strategies

required to predict new hyperedges in a given hypergraph.

6.1 HYPERGRAPH MODULARITY

One possible way to define hypergraph modularity is to introduce a hypergraph null

model and utilize it to define a modularity function. Kaminski et al. (Kamiński et al.

(2019)) follow this approach and use a generalized version of the Chung-Lu model

(Chung and Lu (2002)) to define hypergraph modularity. The proposed modularity

89



function only counts the participation of hyperedges entirely contained inside a cluster.

Moreover, the modularity function requires separate processing of hypergraphs induced

by hyperedges with different cardinalities. Though such assumptions can provide the

analytic tractability of the solution, they limit its applicability to real-world hypergraphs

where the hypergraphs can be of very large size with varying hyperedge cardinalities.

Another possible way to define hypergraph modularity is to convert the hypergraph

to an appropriate graph and then define modularity on the resultant graph. Such an

approach can get benefits from the already existing tools for graphs. In this section, we

will follow the latter approach to introduce hypergraph modularity.

To begin, we represent a hypergraph G = (V,E), where V = {v1, v2, . . . , vn} is the

set of n nodes (or vertices) and E = e1, e2, . . . , em is the set of m hyperedges, by an

incidence matrix H as follows,

H(v, e) =


1 if v ∈ e

0 otherwise

(6.1)

The presence of 1 in the incidence matrix represents the participation of the

corresponding node in that particular hyperedge. Degree of node v is defined as

d(v) =
∑

e∈E,v∈ew(e) where w(e) represents the weight of the hyperedge e, and N(v)

is a set containing the one-hop neighbors of node v (nodes of hyperedges, v is part of).

For a hyperedge e, its degree is defined as δ(e) = |e|. Dv ∈ Rn×n, De ∈ Rm×m and

W ∈ Rm×m are the diagonal matrices containing node degrees, hyperedge degrees and

hyperedge weights at the diagonals and zero otherwise, respectively.
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To introduce the hypergraph modularity, we start by proposing a null model on the

graphs generated by reducing hypergraphs. In a reduced graph, we desire the nodes to

possess the same degree as that of the original hypergraph. In a thus reduced graph, the

expected number of edges connecting nodes i and j can be given as

P hyp
ij =

d(i)× d(j)∑
v∈V d(v)

(6.2)

Where d(i) and d(j) represents the node degrees of nodes i and j respectively. The

proposed null model can be interpreted as a mechanism to generate random graphs

where the node degree sequence of a given hypergraph is preserved irrespective of the

count and cardinality of hyperedges. In order to define a modularity matrix, we need

to obtain a graph reduction where the node degree sequence should remain preserved.

One straightforward way could be to use a clique reduction of the original hypergraph.

However, during clique reduction, the degree of a node in the resultant graph does not

remain the same as its degree in the original hypergraph, as verified below.

Lemma 6.1.1. For the clique reduction of a hypergraph with incidence matrix H , the

degree of a node i in the reduced graph is given by:

ki =
∑
e∈E

H(i, e)w(e)(δ(e)− 1)

where δ(e) and w(e) are the degree and weight of a hyperedge e respectively.
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Proof. For the clique reduction, the adjacency matrix of the resultant graph is given by

Aclique = HWHT

(HWHT )ij =
∑
e∈E

H(i, e)w(e)H(j, e)

In the resultant graph, each node has a self-loop that can be removed, since they are not

cut during the clustering process. This is achieved by explicitly setting Aclique
ii = 0 for

all i. Considering this, the degree of a node i in the resultant graph can be written as:

ki =
∑
j

Aclique
ij

=
∑
j

∑
e∈E

H(i, e)w(e)H(j, e)

=
∑
e∈E

H(i, e)w(e)
∑
j:j ̸=i

H(j, e)

=
∑
e∈E

H(i, e)w(e)(δ(e)− 1)

This completes the proof.

From the above lemma, we can infer that in the clique reduction of a hypergraph, the

degree of a node is not preserved and for each hyperedge e, it is overcounted by a factor

of (δ(e)−1). We can hence scale down the node degree in the reduced graph by a factor

of (δ(e)− 1). This results in the following reduction equation,

Ahyp = HW (De − I)−1HT (6.3)
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We can now verify that the above adjacency matrix preserves the hypergraph node

degree.

Proposition 6.1.2. For the reduction of a hypergraph given by the adjacency matrix

Ahyp = HW (De− I)−1HT , the degree of a node i in the reduced graph (denoted ki) is

equal to its degree d(i) in the original hypergraph.

Proof. We have,

(HW (De − I)−1HT )ij =
∑
e∈E

H(i, e)w(e)H(j, e)

δ(e)− 1

Following a similar argument from the previous theorem, we can explicitly set Ahyp
ii = 0

for all i. The degree of a node in the reduced graph can be written as

ki =
∑
j

Ahyp
ij

=
∑
e∈E

H(i, e)w(e)

δ(e)− 1

∑
j:j ̸=i

H(j, e)

=
∑
e∈E

H(i, e)w(e)

= d(i)

93



With Eq. 6.3, we can reduce a given hypergraph to a weighted graph and zero out its

diagonals by explicitly setting the diagonal entries to zero. The hypergraph modularity

matrix can subsequently be written as,

Bhyp
ij = Ahyp

ij − P hyp
ij

This new modularity matrix can be used in Eq. 2.4 to obtain an expression for

the hypergraph modularity and can then be used in conjunction with a Louvain-style

algorithm.

Qhyp =
1

2m

∑
ij

Bhyp
ij δ(gi, gj) (6.4)

6.1.1 Fundamental Observations:

• Bhyp exhibits all spectral properties of an undirected weighted graph’s modularity
matrix (Bolla et al. (2015); Fasino and Tudisco (2016)).

• As with any undirected weighted graph (Blondel et al. (2008)), Qhyp ranges from
−1 to +1.

• A negative value of Qhyp indicates a clustering assignment, where a node pair
(i, j) from the same cluster participates in lesser than the expected number of
hyperedges. This situation may arise when the number of within-cluster edges is
lower than the number of across cluster edges.

• A positive value of Qhyp indicates a clustering assignment, where a node pair
(i, j) from the same cluster participates in more than the expected number of
hyperedges. In graphs, typically, a modularity value higher than 0.3 is considered
to be significant (Clauset et al. (2004)).

• Qhyp = 0 indicates a clustering assignment, where a node pair (i, j) from the
same cluster participates in the expected number of hyperedges. This situation
can occur because of the random assignment of nodes to the clusters.

In the rest of the section, we will analyze the properties of the proposed modularity

function. We will relate the graph reduction equation to the random walk model
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for hypergraphs. The relation establishes the link with earlier works on hypergraph

clustering, where the random walk strategies were employed (Zhou et al. (2007)).

6.1.2 Connection to Random Walks:

Consider the clique reduction of the hypergraph. We can distribute the weight of each

hyperedge uniformly among the edges in its associated clique. All nodes within a single

hyperedge are assumed to contribute equally; a given node would receive a fraction of

the weight of each hyperedge it belongs to. The number of edges each node is connected

to from a hyperedge e is δ(e) − 1. Hence by dividing each hyperedge weight by the

number of edges in the clique, we obtain the normalized weight matrix W (De − I)−1.

Introducing this in the weighted clique formulation results in the proposed reduction

Ahyp = HW (De − I)−1HT .

Another way of interpreting this reduction is to consider a random walk on the

hypergraph in the following manner -

• pick a start node i

• select a hyperedge e containing i, proportional to its weight w(e)

• select a new node from e uniformly (there are δ(e)− 1 choices)

The behaviour described above is captured by the following random walk transition

model -

Pij =
∑
e∈E

w(e)h(i, e)

d(i)

h(j, e)

δ(e)− 1

=⇒ P = D−1
v HW (De − I)−1HT
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By comparing the above with the random walk probability matrix for graphs (P =

D−1A) we can recover the reduction Ahyp = HW (De − I)−1HT .

6.2 ITERATIVE HYPEREDGE REWEIGHTING

When clustering graphs, it is desired that edges within clusters are greater in number

than edges between clusters. Hence when trying to improve clustering, we look at

minimizing the number of between-cluster edges that get cut. For a hypergraph, this

would be done by minimizing the total volume of the hyperedge cut (Zhou et al. (2007)).

Consider the two-clustering problem, where the task is to divide the set V into two

clusters S and Sc. Zhou et al. (Zhou et al. (2007)) observed that the volume of the cut

∂S is directly proportional to
∑

ew(e)|e∩S||e∩Sc|, for a hypergraph whose vertex set

is partitioned into two sets S and Sc. For a hyperedge e, which has its vertices in both

S and Sc, the product |e ∩ S||e ∩ Sc| can be interpreted as the number of cut sub-edges

within a clique reduction. It can be seen that this product is maximized when the cut is

balanced and there are an equal number of vertices in S and Sc. In such a case, there

will be
(

δ(e)
2

)2
sub-edges getting cut. On the other hand, when all vertices of e go into

one partition and the other partition is left empty, the product is zero. Similarly, if one

of the vertices of e go into one partition and the other partition contains all δ(e) − 1

vertices, then the product is δ(e) − 1. A min-cut algorithm would favor cuts that are

as unbalanced as possible, as a consequence of the minimization of |e ∩ S||e ∩ Sc|.

In the sequel, we will present the intuition behind our proposed iterative re-weighting

technique followed by its mathematical formulation.
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Intuition: While clustering in graphs, when an edge gets cut between two clusters, one

of its nodes becomes a member of the first cluster, and the other node becomes part of

the second cluster. But in hypergraphs, a hyperedge can get cut in multiple ways. When

a hyperedge gets cut, if the majority of its vertices go into the first cluster c1 and only

a smaller fraction of vertices go into the second cluster c2, then it is more likely that

the vertices going into second cluster are similar to the rest and should be drawn into

the first cluster. On the other hand, if a hyperedge gets cut equally across clusters, then

its vertices are equally likely to be part of any cluster; hence it is less informative than

a hyperedge that gets an unbalanced cut. Building on this idea, we would want to cut

the less informative hyperedges (the ones getting balanced cut), and more informative

hyperedges that got unbalanced cut to be left uncut.

This can be done by increasing the weights of hyperedges that get unbalanced cuts,

and (relatively) decreasing the weights of hyperedges that get more balanced cuts. We

know that an algorithm that tries to minimize the volume of the hyperedge boundary

would try to cut as few heavily weighted hyperedges as possible. Since the hyperedges

that had more unbalanced cuts get a higher weight, they are less likely to be cut after

reweighting, and instead would reside inside a cluster. Hyperedges that had more

balanced cuts get a lower weight, and on reweighting, continue to get balanced cuts.

Thus after reweighting and clustering, we would observe fewer hyperedges between

clusters, and more hyperedges pushed into clusters. Moreover, after reweighting, we

expect that the hyperedges getting cut between clusters should get balanced cuts. In the

remaining section, we will formally present the solution mentioned above.
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t =

(
1

2
+

1

18

)
× 20 = 11.111 t =

(
1

10
+

1

10

)
× 20 = 4

Figure 6.1: Reweighting for different hyperedge cuts

Now, we formally develop a reweighting scheme that satisfies the properties described

above - increasing weight for a hyperedge that received a more unbalanced cut, and

decreasing weight for a hyperedge that received a more balanced cut. Considering

the case where a hyperedge gets partitioned into two clusters with k1 and k2 nodes in

each partition (k1, k2 ̸= 0), the following equation operationalizes the above metnioned

scheme -

t =
( 1

k1
+

1

k2

)
× δ(e) (6.5)

Here the multiplicative coefficient, δ(e), seeks to keep t independent of the number of

vertices in the hyperedges. Note that for a hyperedge e with two partitions, δ(e) =

k1 + k2. Figure 6.1 illustrates an example where t takes two different values depending

on the cut.

To see why this satisfies our desired property, note that t is minimized when k1 and k2

are equal. It can be verified by the following proposition.

Proposition 6.2.1. In the function, t =
(

1
k1

+ 1
k2

)
× δ(e), the minimum value of t = 4,

and it is achieved when k1 = k2 =
δ(e)
2

. Here, for a hyperedge e, δ(e) is its cardinality

and ki represents the number of nodes in the ith partition.
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Proof. Let ki ∈ Z+

Then,

t =
( 1

k1
+

1

k2

)
× δ(e)

(by substituting δ(e) = k1 + k2)

=
k2
1

k1k2
+

k2
2

k1k2
+ 2

=
k1
k2

+
k2
k1

+ 2 + (2− 2)

=
(√k1

k2
−
√

k2
k1

)2
+ 4

(√
k1
k2
−
√

k2
k1

)2
is minimized when k1 = k2 and the resultant value of t = 4.

Note: It can be observed that Eq. 6.5 coincides with the ratio between arithmetic mean

(AM) and harmonic mean (HM) of the two numbers k1 and k2. More precisely, we can

write

t = 4× AM(k1, k2)

HM(k1, k2)

By using the fact that AM(k1, k2) ≥ HM(k1, k2), and AM(k1, k2) = HM(k1, k2) only

when k1 = k2, we can obtain the similar result to Proposition 6.2.1.

We can then generalize Eq. 6.5 to c partitions as follows -

w′(e) =
1

m

c∑
i=1

1

ki + 1
[δ(e) + c] (6.6)
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Here, +1 term in the denominator accounts for the cases when ki = 0. To compensate

for this extra +1, +c has been added to the numerator. Additionally, m is the number of

hyperedges, and the division by m is added to normalize the weights (Fig. 6.1). During

the first iteration of the algorithm, we find clusters in the hypergraph using its default

weights. At the end of the first iteration, we find the updated weights using the Eq. 6.6.

It can be seen that for a hyperedge e if it does not get balanced cut, the w′(e) will not be

minimized, and its value will be proportional to the extent to which it gets unbalanced

cut. Thus, updating hyperedge weights by Eq. 6.6 suffices our purpose.

At step t + 1, let wt(e) be the weight of hyperedge e till the previous iteration. Using

Eq. 6.6, w′(e) can be computed for the current iteration. The weight update equation

can be written as,

wt+1(e) = αwt(e) + (1− α)w′(e) (6.7)

Here, α is a hyperparameter which decides the importance to be given to newly

calculated weights over the current weights of hyperedges. The complete algorithm for

modularity maximization on hypergraphs with iterative reweighting, entitled Iteratively

Reweighted Modularity Maximization (IRMM), is described in Algorithm 1. In rest of

the section, we will demonstrate the effectiveness of the hyperedge reweighting scheme

by using a toy example.

Now, we use the Ahyp formulation to define Hypergraph Resource Allocation, which is

further used for hyperedge prediction.
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Algorithm 1: Iteratively Reweighted Modularity Maximization (IRMM)
input : Hypergraph incidence matrix H , vertex degree matrix Dv, hyperedge

degree matrix De, hyperedge weights W
output: Cluster assignments cluster_ids, number of clusters c

1 // Initialize weights as W ← I if the hypergraph is unweighted
2 repeat
3 // Compute reduced adjacency matrix
4 A← HW (De − I)−1HT

5 // Zero out the diagonals of A
6 A← zero_diag(A)
7 // Return number of clusters and cluster assignments
8 cluster_ids, c = LOUVAIN_MOD_MAX(A)
9 // Compute new weight for each hyperedge

10 for e ∈ E do
11 // Compute the number of nodes in each cluster
12 for i ∈ [1, .., c] do
13 // Set of nodes in cluster i
14 Ci ← cluster_assignments[i]
15 ki = |e ∩ Ci|
16 end
17 // Compute new weight
18 w′(e) = 1

m

∑c
i=1

1
ki+1

(δ(e) + c)

19 // Take moving average with previous weight
20 Wprev(e)← W (e)
21 W (e) = α(w′(e) + (1− α)Wprev(e))

22 end
23 until ∥W −Wprev∥ < threshold

6.2.1 Hypergraph Resource Allocation (HRA)

Figure 6.2: Example illustrating resource transfer directly between nodes in a
hypergraph.

HRA index is motivated by the RA index defined for graphs. RA index is defined

for the node-pairs (x, y) which are not directly connected, as these node-pairs are

potential new edges. Unlike graphs, new hyperedges can have nodes that are already
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connected in the hypergraph. Thus, node x can transfer its resources to y by either a

direct connection (HRAdirect) or via common neighbors (HRAindirect). To determine

HRAdirect, assume node x has a resource of d(x) units. Node x uniformly distributes

its resources to all hyperedges that include x. In the next step, the resource allocated to

each hyperedge is uniformly distributed to the nodes of rhe hyperedge apart from x. The

amount of resource node y receives directly from node x is given by HRAdirect(x, y) =∑
e,s.t.,x,y∈e

1
δ(e)−1

(this is equal to Ahyp(x, y)). Figure 6.2 illustrates the direct transfer

of resource between nodes in a toy hypergraph. Initially, v1 distributes its resources to

all three hyperedges uniformly, as shown in Figure 6.2(b). In the next step, the unit

resource allocated to each hyperedge is uniformly distributed to its nodes excluding v1.

To determine HRAindirect, assume node z is a common neighbor of x and y. Node

z receives HRAdirect(x, z) amount of resource from x and then distributes it to all

its neighbors. Node y being a neighbor of z, receives HRAdirect(x, z) × 1
d(z)
×

HRAdirect(z, y) amount of resource. Total resource received by y through all common

neighbors is given by:

HRAindirect(x, y) =
∑

z∈N(x)∩N(y)

HRAdirect(x, z)×
1

d(z)
×HRAdirect(z, y)

Combining HRAdirect score with HRAindirect, we define the similarity between x and

y as,

HRAxy = HRAdirect(x, y) +HRAindirect(x, y)

Notice that the HRA computation depends only on the local neighborhood. Thus, HRA

can be computed efficiently for very large networks.
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6.2.2 Node-Hyperedge Attachment Score (NHAS)

Social networks are known to possess homophily; for instance, consider a musical band

e looking for a guitarist. Assume guitarists x and y are known to be equally good, and

guitarist x has previously worked with few members from e. Then guitarist x is more

likely to be part of e as compared to y. Here, the musical band represents a hyperedge

and band members are the nodes. Following the principles of homophily and using HRA

to capture node-node similarity, we formally define NHAS as follows:

NHASx,e =
1

|e|

(∑
y∈e

HRAxy

)

6.2.3 HPRA: Hyperedge Prediction using Resource Allocation

Figure 6.3: An Illustration of HPRA. (a) cardinality of new hyperedge d is sampled
proportional to hyperedge degree distribution. (b) first node is chosen
based on Preferential Attachment and added to e. (c) subsequent nodes
are sampled from set V\e based on the NHAS scores and added to e. This
step is repeated until d nodes are added to e
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The problem of hyperedge prediction can be disintegrated into the following sub-

problems:

1. What should be the cardinality of the new hyperedge?

2. Once the hyperedge-cardinality is determined, which node should be the first
member of the new hyperedge?

3. What are the other nodes that should be part of the new hyperedge?

We propose HPRA (Algorithm 2), which addresses the aforementioned problems in the

following ways, and also depict the same in Figure 6.3.

Algorithm 2: Hyperedge Prediction using Resource Allocation (HPRA)
Input: Hypergraph Incidence Matrix H, Node set V, Hyperedge Degree

Distribution HDD
Output: Predicted Hyperedge e

1 // Initialize hyperedge e
2 e← {}
3 // Sample hyperedge degree from HDD
4 d← get_degree(hyperedge_degrees, prob = HDD)
5 // Select first node using Preferential Attachment
6 vnew = get_node(V, prob = node_degrees)
7 e.add(vnew)
8 while size(e) < d do
9 // Compute NHAS for remaining nodes

10 scores← NHAS(e, V )
11 // Select a node based on NHAS
12 v ← get_node(V, prob = scores)
13 e.add(v)

14 end

1. A hyperedge prediction algorithm is expected to preserve the structural properties
of the hypergraph (Guo et al. (2016a)). One such structural property is hyperedge
degree distribution. To preserve it, the cardinality of the new hyperedge has
to be in line with the observed hyperedge degree distribution. Therefore, we
sample the cardinality of the new hyperedge from the observed hyperedge degree
distribution. In other words, the higher the number of observed hyperedges with
degree d, the higher the probability that the new hyperedge cardinality is d.
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However, there is a possibility of not encountering the hyperedges of a specific
cardinality in the hypergraph. To handle such scenerios, we smoothen the
hyperedge degree distribution by following a Laplace smoothing operator and
work with the resultant distribution (Valcarce et al. (2016)). Thus, we always
have a fail-safe probability to handle missing cardinalities in the hypergraph.

2. More often than not, social (Guo et al. (2016b)) and web networks (Kunegis et al.
(2013)) evolve by following the principles of preferential attachment, i.e., nodes
with a higher degree are more likely to form new links. Following this, once the
cardinality d of new hyperedge is determined, we choose the first member of the
hyperedge with probability proportional to the node degrees.

3. As the new hyperedge e is initialized with one node vnew, we compute NHAS
(Algorithm 3) of all the remaining nodes and the new hyperedge e. We repeatedly
sample (d− 1) node from the set V \ e based on their NHAS score and add it to e.

Algorithm 3: Node-Hyperedge Attachment Scores
Input: Edge e, Node set V, HRA score matrix HRA
Output: Node-Hyperedge Attachment Scores scores)

1 // Initialize scores
2 scores← zeroes(size(V ))
3 // Compute NHAS for each node in V \ e
4 for vi in V do
5 if vi not in e then
6 for vj in e do
7 scores[i]← scores[i] +HRA(vi, vj)
8 end
9 scores[i]← 1

size(e)
∗ (scores[i])

10 end
11 end

6.3 SUMMARY

In this chapter, we introduced the mathematical framework of hypergraphs and

presented methods for hypergraph clustering and hyperedge prediction. We make use

of the hypergraph reduction equation in the modularity maximization algorithm, and

the same reduction is instrumental in defining the Node Hyperedge Attachment Score

for hyperedge prediction. Now, we are in a position to validate the Algorithm 1 and

Algorithm 2 in the next chapter.
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CHAPTER 7

Applications: Hypergraph clustering and Hyperedge prediction
In this chapter, we present the experimental setup for hypergraph clustering and

hyperedge prediction using the proposed methods. We also present how the existing

methods can be deployed to solve these problems and use these methods as our

baselines. We conduct our experiments on extensive datasets and analyze the results.

We begin with the problem of Hypergraph clustering.

7.1 HYPERGRAPH CLUSTERING

Analogous to the graph clustering task, Hypergraph clustering seeks to discover densely

connected components within a hypergraph (Schaeffer (2007)). This has been the

subject of several research works by various communities with applications to various

problems such as VLSI placement (Karypis and Kumar (1998)), discovering research

groups(Kamiński et al. (2019)), image segmentation (Kim et al. (2011)), de-clustering

for parallel databases (Liu and Wu (2001)) and modeling eco-biological systems

(Estrada and Rodriguez-Velazquez (2005)), among others. A few early works on

hypergraph clustering (Leordeanu and Sminchisescu (2012); Bulo and Pelillo (2013);

Agarwal et al. (2005); Shashua et al. (2006); Liu et al. (2010)) are confined to k-uniform

hypergraphs where each hyperedge connects exactly k number of nodes. However,

most of the real-world hypergraphs have arbitrary-sized hyperedges, which makes these

methods unsuitable for several practical applications. Within the machine learning

community, Zhou et al. (Zhou et al. (2007)), were among the earliest to look at learning

on non-uniform hypergraphs. They sought to support spectral clustering methods (for

example see (Shi and Malik (2000); Ng et al. (2002)) on hypergraphs and defined a



suitable hypergraph Laplacian for this purpose. This effort, like many other existing

methods for hypergraph learning, makes use of a reduction of the hypergraph to a

graph (Agarwal et al. (2006)) and has led to follow-up work (Louis (2015)). Spectral

based methods involve expensive computations to determine the eigenvector (multiple

eigenvectors in case of multiple clusters), which makes these methods less suitable for

large hypergraphs.

An alternative methodology for clustering on simple graphs (those with just dyadic

relations) is modularity maximization (Newman (2006)). This class of methods,

in addition to providing a useful metric for evaluating cluster quality through the

modularity function, also returns the number of clusters automatically and avoids

the expensive eigenvector computation step - typically associated with other popular

methods such as spectral clustering. In practice, a greedy optimization algorithm known

as the Louvain method (Blondel et al. (2008)) is commonly used, as it is known to be

fast and scalable and can operate on large graphs.

However, extending the modularity function to hypergraphs is a non-trivial task, as a

node-degree preserving null model would be required, analogous to the graph setting. A

straightforward procedure would be to leverage clique reduction, to reduce a hypergraph

to a simple graph and then apply a conventional modularity-based solution. Such an

approach ignores the underlying super-dyadic nature of interactions and thus loses

critical information. Additionally, a clique reduction method would not preserve the

node degree sequence of the original hypergraph, which is vital for the null model that

modularity maximization techniques are typically based on.
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Recently, there have been several attempts to define the null models on the hypergraphs.

Chodrow (Chodrow (2020)) proposed a Monte Carlo Markov Chain based method,

in which random hypergraphs are generated by pairwise reshuffling the edges in the

bipartite projection. A more recent study involves the generalization of the celebrated

Chung-Lu random graph model (Chung and Lu (2002)) to hypergraphs, and employs it

to solve the problem of hypergraph clustering (Kamiński et al. (2019)). The hypergraph

modularity objective proposed by Kaminski et al. (Kamiński et al. (2019)) only counts

the participation of hyperedges completely contained inside a cluster. Though this

assumption enables the analytic tractability of the solution, it limits its applicability

to real world hypergraphs where hyperedges can be of arbitrary size. There exists a

parallel line of inquiry where hypergraphs are viewed as simplicial complexes, and null

models are defined through the preservation of topological features of interest (Giusti

et al. (2016); Courtney and Bianconi (2016); Young et al. (2017)). Such models make

a strong assumption - that of subset-inclusion1, which may not hold often in real-world

data. We use the IRMM algorithm defined in the previous chapter for hypergraph

clustering. Now, we discuss the experimental details.

7.1.1 Evaluation on Ground Truth

In this section, we will present the experiments conducted to validate the proposed

methods. We used the Rand Index, average F1 measure (Yang and Leskovec (2012)

and purity, three popular metrics to evaluate the clustering quality. We will start with a

1Subset inclusion assumes that, for each hyperedge, any subset of the nodes is also a
hyperedge. For example, if authors (A, B, C, D) publish a paper together and form a hyperedge
in a co-authorship hypergraph, subset-inclusion would also include all possible subsets such as
(A, B), (B, C, D), etc. as observed hyperedges, which may not hold in the real-world datasets.
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brief introduction to the Louvain method, followed by details on the experimental setup

and datasets used.

The Louvain method: The Louvain method is a greedy optimization method for

detecting communities in large networks (Blondel et al. (2008)). The method works

on the principle of grouping the nodes that maximize the overall modularity. Since

checking all possible cluster assignments is impractical, the Louvain algorithm uses

a heuristic that is known to work well on real-world graphs. The method starts by

assigning each node to its own cluster and merging those clusters, resulting in the

highest modularity gain. Merged clusters are treated as single nodes, and again those

cluster-pairs merge that result in the highest modularity gain. If there are no cluster

pairs left that will further increase the overall network modularity, the algorithm stops

and returns the clusters.

Fixing the number of clusters: We use the Louvain algorithm to maximize the

hypergraph modularity as per Eq 6.4. Since this method uses a node-degree-preserving

graph reduction, we refer to it as NDP-Louvain (Node Degree Preserving Louvain).

Louvain algorithm automatically returns the number of clusters. To get a predefined

number of clusters c, we use agglomerative clustering (Ding and He (2002)) on the

top of clusters obtained by the Louvain algorithm. For the linkage criterion, we use

the average linkage. It is a bottom-up hierarchical clustering method. The algorithm

constructs a dendrogram that exhibits pairwise similarity among clusters. At each step,

two clusters with the shortest distance are merged into a single cluster. The distance
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between any two clusters ci and cj is taken to be the average distance of all distances

d(x, y), where node x ∈ ci and node y ∈ cj .

The proposed methods are shown in the results table as NDP-Louvain and IRMM.

7.1.2 Settings for IRMM

We investigate the effect of the hyperparameter α using a grid search over the set

[0.1, 0.9] with a step size of 0.1. We did not observe any difference in the resultant

Rand Index, purity, and F1 scores. While tuning the α, we witnessed a very minimal

difference in the convergence rate, over a wide range of values (for example, 0.3 to 0.9

on the TwitterFootball dataset). It can be noted that α is a scalar value in a moving

average; it will not cause any significant variation in the resulting weights. In our

experiments, we decided to set it at α = 0.5. We stop the iterations if the difference

between the mod of two subsequent weight assignments is less than a set threshold. In

our experiments, we set chose to set this threshold at threshold = 0.01

7.1.3 Compared Methods

To evaluate the performance of our proposed methods, we compared the following

baselines.

Clique Reductions: We reduced the original hypergraph using a clique reduction (A =

HWHT ) and then applied the Louvain method and Spectral Clustering.

Hypergraph-based Spectral Clustering: We use the hypergraph-based spectral

clustering method, as defined in (Zhou et al. (2007)). The given hypergraph is reduced
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to a graph (A = D
−1
2

v HWD−1
e HTD

−1
2

v ) and its Laplacian is calculated. The top

k eigenvectors of the Laplacian are found and clustered by the bisecting-k-means

clustering procedure. In the results table, this method is referred to as Zhou-Spectral.

PaToH2 and hMETIS3: These are popular hypergraph partitioning algorithms that

work on the principles of coarsening the hypergraph before partitioning. The coarsened

hypergraph is partitioned using expensive heuristics. In our experiments, we used the

original implementations from the corresponding authors.

7.1.4 Datasets
Dataset # nodes # hyperedges Avg. hyperedge degree Avg. node degree # classes
TwitterFootball 234 3587 15.491 237.474 20
Cora 2708 2222 3.443 2.825 7
Citeseer 3264 3702 27.988 31.745 6
MovieLens 3893 4677 79.875 95.961 2
Arnetminer 21375 38446 4.686 8.429 10

Table 7.1: Dataset Description

Dataset statistics are furnished in Table 7.1. For all datasets, we use the largest

connected component of the hypergraph for our experiments. All the datasets are

classification datasets, where the class labels accompany the data points. We use

these class labels as the proxy for clusters. The detailed description of the hypergraph

construction is given below:

MovieLens 4: This is a multi-relational dataset provided by GroupLens research, where

movies are represented by nodes. We construct a co-director hypergraph by using the

director relationship to represent hyperedges. A hyperedge would connect a group of

2http://bmi.osu.edu/umit/software.html
3http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
4http://ir.ii.uam.es/hetrec2011/datasets.html
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nodes if the same individual directed them. Here, the genre of a movie represents the

class of the corresponding node.

Cora and Citeseer: These are bibliographic datasets, where the nodes represent papers.

In each dataset, a set of nodes is connected by a hyperedge if they involve the same set

of words (after removing low frequency and stop words). Different disciplines were

used as clusters. (Sen et al. (2008)).

TwitterFootball: This is a social network taken from the Twitter dataset (Greene et al.

(2012). This dataset involves players of 20 football clubs (classes) of the English

Premier League. Here, the nodes represent players, and if a set of players are co-listed,

then the corresponding nodes are connected by a hyperedge.

Arnetminer: This is a large bibliographic dataset (Tang et al. (2008)). Here, the

nodes represent papers, and a set of nodes are connected if the corresponding papers

are co-cited. The nodes in the hypergraph are accompanied by Computer Science sub-

disciplines. Different sub-disciplines were used as clusters.

7.1.5 Experiments

For the different datasets, we compare the Rand Index (Rand (1971)), purity (Schütze

et al. (2008)), and average F1 scores (Yang and Leskovec (2013)) on all the methods

discussed earlier. The number of clusters was first set to that returned by the Louvain

method, in an unsupervised fashion. This is what would be expected in a real-world

setting, where the number of clusters is not given apriori. Table 7.2 shows the results of

this experiment.
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Citeseer Cora MovieLens TwitterFootball Arnetminer
hMETIS 0.6504 0.7592 0.4970 0.7639 0.0416
PaToH 0.6612 0.6919 0.4987 0.7553 0.0052
Spectral 0.7164 0.2478 0.4806 0.7486 0.0610
Zhou-Spectral 0.8210 0.5743 0.4977 0.9016 0.0628
Louvain 0.7361 0.7096 0.4898 0.6337 0.0384
NDP-Louvain 0.7899 0.8238 0.4988 0.9056 0.0821
IRMM 0.7986 0.8646 0.5091 0.9448 0.0967

(a) Rand Index scores against ground truth.
Citeseer Cora MovieLens TwitterFootball Arnetminer

hMETIS 0.5894 0.6596 0.6893 0.2556 0.6831
PaToH 0.6271 0.5912 0.7017 0.3176 0.3928
Spectral 0.4629 0.3897 0.6832 0.8114 0.9216
Zhou-Spectral 0.5287 0.4145 0.7118 0.8325 0.9378
Louvain 0.7190 0.6836 0.7189 0.8054 0.9138
NDP-Louvain 0.7307 0.7597 0.7245 0.8829 0.9691
IRMM 0.7659 0.8138 0.7291 0.8948 0.9765

(b) Purity scores against ground truth.
Citeseer Cora MovieLens TwitterFootball Arnetminer

hMETIS 0.1087 0.1075 0.1291 0.3197 0.0871
PaToH 0.0532 0.1171 0.1104 0.1132 0.0729
Spectral 0.1852 0.1291 0.1097 0.4496 0.0629
Zhou-Spectral 0.2774 0.2517 0.118 0.5055 0.0938
Louvain 0.1479 0.2725 0.1392 0.2238 0.1378
NDP-Louvain 0.2782 0.3248 0.1447 0.5461 0.1730
IRMM 0.4019 0.3709 0.1963 0.5924 0.1768

(c) Average F1 scores against ground truth.

Table 7.2: Rand Index, Purity and Average F1 scores against ground truth; the
number of clusters for hMETIS, PaToH, Spectral, and Zhou-Spectral
is set to the number of clusters returned by the IRMM method are 13,
79, 8, 18, and 1358 for Citeseer, Cora, Movielens, TwitterFootball, and
Arnetminer, respectively. Louvain, NDP-Louvain, and IRMM return the
number of clusters on their own. IRMM performs significantly (p < 0.1)
better than those baseline methods that are underlined.
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Secondly, we ran the same set of methods with the number of ground truth classes set as

the number of clusters. In the case of Louvain method, the clusters obtained are merged

using the post-processing technique explained earlier. The results of this experiment

are given in Table 7.3. When Louvain method and IRMM return fewer clusters than the

number of ground truth classes, we do not report the results and leave the entries as “-."

We also plotted the results for varying number of clusters using the same methodology

described above, to assess our method’s robustness (Figure 7.1). In all datasets but

Arnetminer, we set the number of clusters to a minimum value such as two and then

increase it by a factor of two. For Arnetminer, IRMM returns a very large number of

clusters; we set the initial number of clusters to ten and increase it by a factor of ten. For

all datasets, the maximum number of clusters is set to the number of clusters returned by

the IRMM method. When Louvain and NDP-Louvain methods return a fewer number

of clusters than IRMM, the corresponding curves in Figure 7.1 are left truncated.

7.1.6 Results and Analysis

We show that the proposed methods - NDP-Louvain and IRMM perform consistently

better on all the datasets (except on one dataset with RI measure). To test the robustness

of the proposed method, we vary the number of clusters and report the results in the

latter half of the section. To investigate the effect of the reweighting scheme, we report

the distribution of the sizes of hyperedges getting cut. This is followed by testing the

scalability of the proposed algorithm against one of the competitive baseline. We will

start by discussing the empirical evaluation of the proposed methods.
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Citeseer Cora MovieLens TwitterFootball Arnetminer
hMETIS 0.6891 0.7853 0.5028 0.7697 0.3116
PaToH 0.7312 0.7208 0.4984 0.7618 0.1820
Spectral 0.7369 0.3117 0.4812 0.7765 0.3762
Zhou-Spectral 0.8267 0.5845 0.5006 0.9112 0.3851
Louvain - 0.7096 0.4982 - 0.4198
NDP-Louvain 0.8197 0.8441 0.5119 - 0.5359
IRMM 0.8245 0.889 0.5347 - 0.5506

(a) Rand Index scores; number of clusters set to the number of ground truth classes
Citeseer Cora MovieLens TwitterFootball Arnetminer

hMETIS 0.5249 0.6359 0.6914 0.2354 0.2984
PaToH 0.5724 0.6498 0.7139 0.2419 0.2391
Spectral 0.4839 0.5819 0.7294 0.7815 0.5169
Zhou-Spectral 0.5374 0.6115 0.742 0.8191 0.5827
Louvain - 0.7136 0.7364 - 0.4837
NDP-Louvain 0.7495 0.7441 0.7429 - 0.5968
IRMM 0.7732 0.779 0.7737 - 0.6173

(b) Cluster purity scores; number of clusters set to the number of ground truth classes
Citeseer Cora MovieLens TwitterFootball Arnetminer

hMETIS 0.1451 0.2611 0.4445 0.3702 0.3267
PaToH 0.0710 0.1799 0.3239 0.1036 0.2756
Spectral 0.2917 0.2305 0.2824 0.4345 0.387
Zhou-Spectral 0.3614 0.2672 0.3057 0.5377 0.4263
Louvain - 0.2725 0.2874 - 0.4587
NDP-Louvain 0.3491 0.3314 0.3411 - 0.4948
IRMM 0.4410 0.3966 0.4445 - 0.5299

(c) Average F1 scores; number of clusters set to the number of ground truth classes

Table 7.3: Rand Index, Purity and Average F1 scores against ground truth; the
number of clusters is set to the number of ground truth classes. Citeseer,
Cora, Movielens, TwitterFootball, and Arnetminer have 6, 7, 2, 20,
and 10 classes, respectively. On some datasets, the Louvain and
IRMM methods return fewer clusters than the number of ground truth
classes. In such cases, we do not report the results and leave the
entries as “-." IRMM performs significantly (p < 0.1) better than
those baseline methods that are underlined.
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(a) Citeseer (b) Cora

(c) MovieLens (d) TwitterFootball

(e) Arnetminer

Figure 7.1: F1 scores for varying number of clusters. Here, x-axis represent the number
of clusters and y-axis indicates F1 score.
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From the Tables 7.2 and 7.3, it is evident that IRMM gives the highest cluster purity

scores and average F1 scores across all the datasets and the highest Rand Index

scores are obtained on all except Citeseer dataset. Besides the fact that IRMM

significantly outperforms over other methods, we want to emphasize on the following

two observations:

Superior performance of hypergraph based methods:

It is evident that hypergraph based methods perform consistently better than their clique

based equivalents. Results indicate that Zhou-Spectral and NDP-Louvain are better than

Spectral and Louvain respectively. Hence, preserving the super-dyadic structure helps

in getting a better cluster assignment.

The proposed iterative reweighting scheme helps to boost up the performance:

The proposed hyperedge reweighting scheme aids in the performance across all

datasets. It must be noted that the first iteration of IRMM is the NDP-Louvain and

IRMM performance is consistently better than the NDP-Louvain method, which shows

that balancing the hyperedge cut enhances the cluster quality.

Effect of Reweighting on Hyperedge Cuts

Consider a hyperedge that is cut into different clusters. Looking at Eq. 6.6, we can

see that w′(e) is minimized when all the partitions are of equal size, and maximized

when one of the partitions is much larger than the other. The iterative reweighting

procedure is designed to increase the number of hyperedges with balanced partitioning,

and decrease the number of hyperedges with unbalanced partitioning. As iterations
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pass, hyperedges that are more unbalanced should be pushed into neighbouring clusters,

and the hyperedges that lie between clusters should be more balanced.

(a) Citeseer (b) Cora

(c) MovieLens (d) TwitterFootball

(e) Arnetminer

Figure 7.2: Effect of iterative hyperedge reweighting: % of hyperedges where the
relative size of its largest partition falls in a given bin vs. no. of iterations
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We analyze the effect of hyperedge reweighting in Figure 7.2. For each hyperedge,

we find the relative proportion of the biggest partition and add them in the bins with

interval size = 0.1. The plot illustrates the variation in the size of each bin over along

with iterations.

relative size(e) = max
i

number of nodes in cluster i
number of nodes in the hyperedge e

If a hyperedge is a balanced cut, then the proportion of its largest partition is low; we

call such hyperedges as fragmented. On the other hand, if a hyperedge has a very high

proportion of its largest partition, then the hyperedge is not a balanced cut; we call such

hyperedges as dominated.

On TwitterFootball dataset, the effect of reweighting is distinctly visible as the number

of fragmented edges increases with iterations. This behavior confirms our intuition of

achieving more balanced cuts with the proposed reweighting procedure. After four

iterations, the method converges as we don’t observe any change in the hyperedge

distribution.

A similar trend is observed with the Cora dataset. Here, the number of fragmented

edges fluctuate before their final convergence.

In the case of Arnetminer dataset, the change in fragmented and dominated edges is

very minimal. One possible reason for such behavior could be its significantly large

size as compared to the number of ground truth clusters.
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In the case of Citeseer and Movielens datasets, we could not see the convergence in

the change of hyperedge weights in a pre-fixed number of iterations. Though the

number of hyperedges seems to fluctuate with iterations, the algorithm tries to find

the best clustering at each step by using the NDP-Louvain algorithm. This results

in the improved performance of the overall algorithm after following the refinement

procedure.

Both in Citeseer and Movielens datasets, IRMM returns lesser number of clusters

than NDP-Louvain. NDP-Louvain returns 16 clusters for Citeseer and 13 clusters for

Movielens dataset. These number of clusters are reduced to 13 and 8 for Citeseer and

Movielens datasets respectively. Thus, the refinement procedure tends to minimize the

cut value along with cut-balacing.

7.1.7 Complexity analysis of the proposed method

Our proposed method, IRMM, comprises three steps - hypergraph reduction, modularity

computation, and hyperedge reweighting. The hypergraph reduction involves matrix-

matrix multiplication, which can be computed with O(n3) complexity. We use

the Louvain method to maximize the modularity of the reduced graph, which has

computational complexity proportional to the number of edges in the reduced graph

Traag (2015), so the overall complexity of the NDP Louvain method remains O(n3).

For hyperedge reweighting, we check every hyperedge that gets cut - this step has an

upper bound of O(m). In IRMM, we iterate over these three steps k times. So the

overall complexity of the proposed algorithm IRMM is O(k(n3 + m)). We don’t get

rid of the term m because, theoretically, m can be as large as 2n. However, in practice,
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we see m and n attain similar values - in that case, the overall complexity of the IRMM

algorithm is O(n3). Empirically, for the largest hypergraph, ArnetMiner, our method

takes around an hour for each iteration. This complexity can be further improved by

using modularized methods Higham (1990) of matrix-matrix multiplication.

To further motivate the extension of modularity maximization methods to the

hypergraph clustering problem, we look at the scalability of the NDP-Louvain method

against the strongest baseline, Zhou-Spectral. Table 7.4 shows the CPU timesfor the

NDP-Louvain and Zhou-Spectral on the real-world datasets. We see that while the

difference is less pronounced on a smaller dataset like TwitterFootball, it is much greater

on the larger datasets. In particular, the runtime on Arnetminer for NDP-Louvain is

lower by a significant margin, not having to compute an expensive eigendecomposition.

Citeseer Cora MovieLens TwitterFootball Arnetminer
Zhou-Spectral 84.16 41.44 155.8 3.88 34790
NDP-Louvain 41.21 24.23 35.9 3.32 4311.2

Table 7.4: CPU times (in seconds) for the hypergraph clustering methods on all datasets

Note: To compute the eigenvectors for spectral clustering based method, we use of the

eig(.) function from MATLAB. The eig(.) function makes use of orthogonal similarity

transformations to convert the matrix into upper Hessenberg matrix followed by QR

algorithm to find its eigenvectors.

Analysis on synthetic hypergraphs: On the real-world data, modularity maximization

showed improved scalability as the dataset size increased. To evaluate this trend, we

compared the CPU times for the Zhou-Spectral and NDP-Louvain methods on synthetic
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hypergraphs of different sizes. For each hypergraph, we first ran NDP-Louvain and

found the number of clusters returned, then ran the Zhou-Spectral method with the

same number of clusters.

Following the hypergraph generation method used in EDRW: Extended Discriminative

Random Walk5 (Satchidanand et al. (2015)), we generated hypergraphs with 2 classes

and a homophily of 0.4 (40% of the hyperedges deviate from the expected class

distribution). The hypergraph followed a modified power-law distribution, where 75%

of its hyperedges contained less than 3% of the nodes, 20% of its hyperedges contained

3%-50% of the nodes, and the remaining 5% contained over half the nodes in the

dataset. To generate a hypergraph, we first set the number of hyperedges to 1.5 times the

number of nodes. For each hyperedge, we sampled its size k from the modified power-

law distribution and chose k different nodes based on the homophily of the hypergraph.

We generated hypergraphs of sizes ranging from 1000 nodes up to 10000 nodes, at

intervals of 500 nodes.

Figure 7.3 shows how the CPU time varies with the number of nodes, on the synthetic

hypergraphs generated as given above.

While NDP-Louvain is shown to run consistently faster than Zhou-Spectral for the same

number of nodes, the difference increases as the hypergraph grows larger. In Figure 7.3,

this is shown by the widening in the gap between the two curves as the number of nodes

increases.
5https://github.com/HariniA/EDRW
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Figure 7.3: CPU time (in secs) on synthetic hypergraphs

7.2 HYPEREDGE PREDICTION

Hyperedge prediction is the problem of finding missing or future hyperedges in a given

hypergraph. The problem has many real-world use cases, including reaction prediction

in a network of metabolites (Zhang et al. (2018a)), predicting collaborations in an actor-

actor network(Sharma et al. (2014)), etc. Despite having significant importance, the

problem of hyperedge prediction hasn’t received adequate attention, mainly because

of its inherent complexity. In a graph with n nodes the number of potential edges

is O(n2), whereas in a hypergraph, the number of potential hyperedges is O(2n). To

avoid searching through the enormous space of hyperedges, current methods restrain the

problem in the following two ways. One class of algorithms assumes the hypergraphs

to be k-uniform. However, many real-world systems are not confined only to have

interactions involving k components. Thus, these algorithms are not suitable for many

real-world applications. The second class of algorithms requires a candidate set of

hyperedges from which the potential hyperedges are chosen. In the absence of domain
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knowledge, the candidate set can have O(2n) possible hyperedges, which makes this

problem intractable. More often than not, domain knowledge is not readily available,

thus limiting these methods. Our proposed method HPRA - Hyperedge Prediction using

Resource Allocation, overcomes these issues and predicts hyperedges of any cardinality

without using any candidate hyperedge set. HPRA is a similarity-based method working

on the principles of the resource allocation process. We also demonstrate that HPRA

can predict future hyperedges in a wide range of hypergraphs. In this chapter, we will

demonstrate an extensive set of experiments to show that HPRA achieves statistically

significant improvements over state-of-the-art methods.

7.3 EXPERIMENTS

We evaluate the performance of HPRA on a broad range of networks. We propose

new baselines by extending state-of-the-art similarity measures to be used with HPRA

framework by replacing the HRA index. Before elaborating on the experimental setup,

we first introduce the baselines and datasets used for evaluation.

7.3.1 Baselines

Coordinated Matrix Minimisation (CMM) (Zhang et al. (2018a)): CMM is based

on matrix factorisation in adjacency space of hypergraph. It uses the EM algorithm to

determine the presence or absence of candidate hyperedges.

Spectral Hypergraph Clustering (SHC) (Zhou et al. (2007)): SHC models the task

of hyperedge prediction as a classification problem. Hypergraph Laplacian is used to

classify the new hyperedges into positive or negative class.
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Common Neighbors (CN) (Newman (2001)), Katz (Katz (1953)) : CN and Katz

are pairwise similarity indices for link prediction. CN is a local measure that assigns

a similarity score based on the common neighbors of two nodes. Katz index is a

global measure that captures the similarity between two nodes by considering paths

connecting the nodes. A damping factor β is used to assign higher importance to

relatively shorter paths. β is determined by searching over {0.005, 0.01, 0.05, 0.1, 0.5}

using cross-validation.

7.3.2 Datasets

Datasets # nodes # hyperedges Average hyperedge
degree

Average node
degree

(a) Citeseer Co-reference 1299 626 4.610 2.222
(b) Citeseer Co-citation 1016 817 3.420 2.750
(c) Cora Co-reference 1961 875 5.259 2.347
(d) Cora Co-citation 1339 1503 3.060 3.458
(e) DBLP Co-authorship 4695 2561 5.618 3.064
(f) Movielens 3893 4677 79.875 95.961
(g) HiggsTwitter 9948 9605 47.741 46.095
(h) Amazon Co-view 18565 10839 13.906 8.119
(i) Amazon Co-purchase 24944 27675 41.759 46.331
(j) ArnetMiner Co-citation 21375 17300 4.130 3.343
(k) ArnetMiner Co-reference 16620 26640 4.539 7.275

Table 7.5: Datasets Description: Datasets used to evaluate the HPRA method.

For our experiments, we only use the largest connected component of the network.

Statistics of the datasets are shown in Table 7.5.

Cora, Citeseer (Sen et al. (2008)) and ArnetMiner (Tang et al. (2008)): We built

two networks from each dataset; co-citation and co-reference where a node represents a

paper. In a co-citation network, a hyperedge connects papers cited together. Similarly,

in a co-reference network, if a set of papers refer to the same paper, they are connected

by a hyperedge.
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HiggsTwitter (De Domenico et al. (2013a)): This dataset captures messages posted

on Twitter about the Higgs boson discovery. We built a social network, where a node

represents a person and hyperedge connects all people following the same person.

DBLP (Ley (2002)): This is a co-authorship dataset. Here, a node represents an author

and hyperedge connects authors of the paper.

Movielens (Harper and Konstan (2015)): This is a multi-relational dataset, where

nodes represent movies and a hyperedge connects movies directed by the same

individual.

Amazon Product Metadata (He and McAuley (2016)): We used metadata of products

from the video games category and built two networks; co-view and co-purchase. In

both networks, nodes represent products. In a co-view network, a hyperedge connects

products viewed by customers at the time of purchase. Similarly, in a co-purchase

network, a hyperedge connects products purchased together by customers.

Katz CN HPRA
(a) 0.1346 ± 0.0366 0.1221 ± 0.0259 0.1449 ± 0.0127
(b) 0.2570 ± 0.0219 0.2568 ± 0.0170 0.2949 ± 0.2030
(c) 0.1199 ± 0.0125 0.1024 ± 0.0177 0.1303 ± 0.0225
(d) 0.3644 ± 0.0110 0.3389 ± 0.0058 0.3866 ± 0.0075
(e) 0.2480 ± 0.0051 0.2215 ± 0.0073 0.2855 ± 0.0077
(f) 0.1050 ± 0.0007 0.1049 ± 0.0008 0.1215 ± 0.0007
(g) 0.1472 ± 0.0071 0.1529 ± 0.0046 0.1921 ± 0.0090
(h) 0.1290 ± 0.0034 0.1469 ± 0.0072 0.2218 ± 0.0061
(i) 0.1405 ± 0.0025 0.1565 ± 0.0033 0.2234 ± 0.0048
(j) 0.2256 ± 0.0059 0.2225 ± 0.0056 0.2495 ± 0.0058
(k) 0.2676 ± 0.0034 0.2530 ± 0.0031 0.2895 ± 0.0027

Table 7.6: Average F1 Scores of HPRA and baselines. First column represents datasets
described in Table 7.5.
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CMM SHC Katz CN HPRA
(a) 0.297 ± 0.034 0.588 ± 0.038 0.840 ± 0.081 0.835 ± 0.015 0.901 ± 0.007
(b) 0.382 ± 0.071 0.751 ± 0.025 0.883 ± 0.017 0.846 ± 0.014 0.900 ± 0.015
(c) 0.407 ± 0.041 0.549 ± 0.017 0.829 ± 0.027 0.788 ± 0.028 0.851 ± 0.022
(d) 0.366± 0.006 0.801 ± 0.020 0.937 ± 0.008 0.907 ± 0.009 0.923 ± 0.010
(e) 0.072 ± 0.027 0.808 ± 0.030 0.989 ± 0.009 0.981 ± 0.010 0.990 ± 0.008
(f) 0.061 ± 0.032 0.658 ± 0.009 0.568 ± 0.097 0.969 ± 0.001 0.994 ± 0.002
(g) - 0.606 ± 0.027 0.476 ± 0.064 0.805 ± 0.012 0.987 ± 0.002
(h) - 0.570 ± 0.012 0.581 ± 0.035 0.986 ± 0.004 0.990 ± 0.003
(i) - 0.594 ± 0.011 0.380 ± 0.144 0.984 ± 0.002 0.998 ± 0.001
(j) - 0.664 ± 0.009 0.929 ± 0.007 0.913 ± 0.006 0.924 ± 0.006
(k) - 0.606 ± 0.006 0.807 ± 0.042 0.908 ± 0.003 0.942 ± 0.003

Table 7.7: AUC results of HPRA and aforementioned baselines. First column
represents datasets described in Table 7.5. The missing entries correspond
to experiments that did not complete even after 24 hours of execution.

CMM SHC Katz CN HPRA
(a) 0.040 ± 0.025 0.124 ± 0.040 0.690 ± 0.091 0.667 ± 0.060 0.780 ± 0.131
(b) 0.150 ± 0.051 0.372 ± 0.031 0.801 ± 0.016 0.734 ± 0.028 0.830 ± 0.033
(c) 0.059 ± 0.028 0.119 ± 0.015 0.697 ± 0.037 0.658 ± 0.054 0.762 ± 0.023
(d) 0.110 ± 0.039 0.458 ± 0.041 0.865 ± 0.016 0.839 ± 0.016 0.859 ± 0.016
(e) 0.007 ± 0.006 0.479 ± 0.053 0.963 ± 0.019 0.915 ± 0.024 0.952 ± 0.010
(f) 0.022 ± 0.008 0.445 ± 0.013 0.332 ± 0.077 0.872 ± 0.008 0.956 ± 0.002
(g) - 0.391 ± 0.013 0.310 ± 0.050 0.555 ± 0.013 0.922 ± 0.005
(h) - 0.453 ± 0.014 0.570 ± 0.035 0.956 ± 0.005 0.970 ± 0.007
(i) - 0.416 ± 0.016 0.352 ± 0.136 0.958 ± 0.003 0.991 ± 0.001
(j) - 0.427 ± 0.020 0.867 ± 0.011 0.817 ± 0.010 0.839 ± 0.011
(k) - 0.478 ± 0.007 0.724 ± 0.036 0.648 ± 0.014 0.858 ± 0.003

Table 7.8: Precision results of HPRA and aforementioned baselines. First column
represents datasets described in Table 7.5. The missing entries correspond
to experiments that did not complete even after 24 hours of execution.
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7.3.3 Evaluation of HPRA

For experimentation, we randomly divide the hyperedges into two sets: Training set

(ET ) and Missing set (EM ). To remove any unwanted bias, we partition the hyperedges

into K subsets. Every time we select one subset as EM and the remaining K−1 subsets

jointly as ET . This way, each hyperedge is used for testing exactly once. However, this

approach has a limitation that after splitting the hyperedge set, few nodes may not be

connected to any other node in the ET . It is not practical to expect the method to predict

hyperedges having such nodes. Therefore, we remove these hyperedges from EM .

Once we have the final ET and EM , we generate |EM | number of new hyperedges by

treating ET as observed hyperedges using HPRA and call it as the predicted hyperedges

set (EP ). We evaluate the performance of our algorithm by computing the Average F1

score (Yang and Leskovec (2013)).

• Average F1 Score: This measure quantifies the closeness of predicted hyperedges
to the missing hyperedge set. Average F1 score is the average of the F1-score of
the best matching missing hyperedge to each predicted hyperedge and the F1-
score of the best-matching predicted hyperedge to each missing hyperedge:

Average F1 Score =
1

2

( 1

|EM |
∑

ei∈EM

F1(ei, êg(i))+

1

|EP |
∑

êi∈EP

F1(eg′(i), êi)
)

where g(i) = argmaxj(F1(ei, êj)) and g′(i) = argmaxj(F1(ej, êi)).

To compare HPRA with Katz and CN, we use the respective pairwise scores instead of

the HRA score in our framework. For datasets (a) to (e), we used 5-fold cross validation.

For rest of the datasets, we used 10-fold cross validation.
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7.3.4 HPRA with a Candidate Hyperedge Set (HPRA-CHS)

To compare the performance against the methods which use a candidate set, we propose

a variant of HPRA. In HPRA-CHS, we select the top |EM | hyperedges based on HRA

score as predictions. For a candidate hyperedge, HRA score is computed by taking the

average of all pairwise (m(m−1)
2

) HRA indices.

Similar to the above setting, for evaluating HPRA-CHS, we divide the hyperedges

into a Training set (ET ) and Missing set (EM ). We build a candidate set consisting

of the missing set EM and a set of distractor hyperedges. Distractor hyperedges are

generated randomly based on the hyperedge degree distribution of the network. In our

experiments, the distractor hyperedges set is ten times the size of missing hyperedges

set. We generalize the Katz and CN pairwise indices using a method similar to HRA. We

evaluate our method using two standard metrics, AUC (Table 7.7) and Precision (Table

7.8), similar to (Lü and Zhou (2011); Zhang et al. (2018a)). In Tables, ‘-’correspond

to experiments that did not complete even after 24 hours of execution on a 64GB, Intel

Xeon processor.

• AUC: AUC score can be interpreted as the probability that a randomly chosen
missing hyperedge is assigned a higher score than a randomly chosen distractor
hyperedge.

• Precision: Given the rank of the hyperedges in the candidate set, precision is
defined as the ratio of actual missing hyperedges to the number of predicted
hyperedges. That is to say, if we choose the top L ones (L is the size of missing
hyperedges set) as predicted hyperedges, among which Lm hyperedges are in
missing hyperedge set, then precision is equal to (Lm

L
).
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Figure 7.4: An illustration of the temporal dataset. Each graph represents the co-citation
hypergraph in the respective year. Here, the task is to predict the hyperedges
in the latter hypergraph (2007 in the figure) by using the information from
previous years.

Existing Future # nodes # existing/future Avg hyperedge Avg node
hyperedges hyperedges hyperedges degree degree

(1) 2000-2002 2003 10140 20234/6941 6.5527 13.0758
(2) 2001-2003 2004 11827 24018/7574 6.8275 13.8652
(3) 2002-2004 2005 13007 33452/15265 6.4968 16.7089
(4) 2003-2005 2006 16903 45090/17489 6.8317 18.2242
(5) 2004-2006 2007 22143 60265/20007 7.1386 19.4288

Table 7.9: Temporal ACM Cocitation Dataset Description.

Average F1 score AUC Precision
Katz CN HPRA CMM SHC Katz CN HPRA CMM SHC Katz CN HPRA

(1) 0.329 0.302 0.366 0.251 0.568 0.933 0.936 0.953 0.309 0.612 0.872 0.880 0.906
(2) 0.317 0.295 0.353 0.241 0.559 0.942 0.944 0.956 0.313 0.637 0.875 0.896 0.917
(3) 0.348 0.319 0.386 - 0.538 0.944 0.945 0.953 - 0.621 0.882 0.909 0.929
(4) 0.331 0.306 0.373 - 0.576 0.954 0.958 0.972 - 0.632 0.893 0.923 0.939
(5) 0.317 0.293 0.357 - 0.581 0.961 0.965 0.978 - 0.642 0.900 0.928 0.939

Table 7.10: AUC, Precision and Average F1 score results. First column represents
datasets described in Table 7.9. The missing entries correspond to
experiments that did not complete even after 24 hours of execution.

7.3.5 Future Hyperedge Prediction with HPRA

In this setting, we consider the task of predicting hyperedges of later years by using

the previous years’ hyperedges, as shown in Figure 7.4. Here, the future hyperedge

set consists of hyperedges only from a particular year, and the similarity scores are

calculated using network snapshots from previous years. We use ACM co-citation

dataset (Tang et al. (2008)) for our experiments, and the dataset statistics are shown in
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Table 7.9. We evaluate both variants of HPRA- with and without a candidate hyperedge

set, and report the results in Table 7.10.

7.3.6 Results and Discussions

From Tables 7.6, 7.7, 7.8 and 7.10, following observations are made:

• HPRA outperforms other baselines on most of the datasets and achieves highly
competitive performance with the best results on the rest. In order to statistically
validate the results, we performed the Wilcoxon rank-sum test (also known as
the Mann-Whitney U test) and observed that in tables 7.7, 7.8 and 7.10, HPRA
performs significantly (p < 0.1) better than all baselines methods.

• None of the other baselines performed consistently well on all datasets, while
HPRA is either the best performing or close to the best on all the datasets.

• Though katz has a reasonably good performance on many datasets, it fails to
perform when hypergraphs have high average hyperedge and node degrees. One
possible reason could be, in such hypergraphs, even a small damping factor may
involve a large proportion of the hypergraph in score calculation, which may lead
to identical similarity scores for multiple node-pairs.

• HPRA performs remarkably well on HiggsTwitter dataset, while other methods
perform poorly. One distinguishing characteristic of this dataset is that the nodes
with a low degree are part of hyperedges with high cardinality, and the nodes with
a high degree participate in low cardinality hyperedges. This distinct pattern of
nodes’ participation causes the CN approach to perform poorly. High average
node degree and hyperedge cardinality of the hypergraph introduces unwanted
influences from a large part of the network, which makes this graph hard for the
Katz method.

• We attribute the poor performance of CMM to the way in which its objective
function is designed. The CMM objective function is designed in a way that,
in the pursuit of optima, it prefers hyperedges of extremely low cardinality
over the rest of the hyperedges. If the candidate hyperedge set has distractor
hyperedges of low cardinality, then CMM chooses these hyperedges over genuine
high cardinality hyperedges. In real-world networks, more often than not, we
observe high hyperedge cardinality (refer Tables 7.5 and 7.9).
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7.3.7 Computational complexity of HPRA

Our proposed algorithm, HPRA, involves computing HRA scores for each node pair

and repeated retrieval from it to find the nodes of the new hyperedge. The HRA matrix

can be computed with time complexity of O(n2). Additionally, finding the cardinality

of the hyperedge can be done in constant time. Therefore, the overall time complexity

of the HPRA algorithm is O(n2). Empirically, for the experiments conducted, it took

us less than ten minutes to find the HRA matrix for Amazon co-purchase, the largest

hypergraph.

Ablation Study: Our definition of HRA has two parts: similarity due to direct

connections and due to common neighbors. To analyze the effect of each part, we

introduce a weight α, and modify the HRA equation as follows:

HRAxy = αHRAdirect + (1− α)HRAindirect

We vary α over [0,1] to examine the effect of each part on the AUC score (Figure

7.5). We observe low AUC scores at both extremes, which reveals that both parts are

essential in precisely predicting the hyperedges.
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Citeseer Coreference

Cora Coreference

Figure 7.5: AUC scores vs α. We observe lower performance at both extremes implying
that both HRAdirect & HRAindirect are essential.
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CHAPTER 8
Conclusion

In this work, we explored two complex network structures, multilayer networks, and

hypergraphs. We worked on the problems of node centrality in multilayer networks,

and clustering and hyperedge prediction in hypergraphs. In multilayer networks and

hypergraphs, we present the problems and solutions in contrast with the traditional

graph modeling, where the multilayer organization of the system and super-dyadic

interactions are not preserved. Our experiments followed by in-depth analysis show

the effectiveness of our proposed solutions.

We begin this work by presenting different coupling schemes in multilayer networks

focusing on the centrality methods. We take a multi-tissue system as an example

where a cross-coupled multilayer network is best suited for modeling. Then we present

a set of centrality measures that can capture different aspects of the node effects

in a multilayer network. We applied our proposed centrality measures to identify

genes involved in tissue-tissue communication. Our results shows that the method

carries excellent potential in unwiring inter-tissue communication paths. The proposed

centrality measures also show desired theoretical properties such as convergence and

decomposability. Our comprehensive analysis of gene rankings revealed that the

centrality scores not only helped us in recovering the hormones-producing/responding

genes from the existing datasets such as HGv1 but also revealed out-of-ground-truth

genes that conform to the existing literature on PubMed. In addition to the protein-

encoding genes, our experiments also revealed some long noncoding RNAs (lncRNAs),

which are gaining the research community’s attention very recently. In the future,

our method can be readily applied to understand the genomic-level changes between



diseased and healthy populations in systems biology, understand the traffic congestion

behavior in multi-mode transport in a city, etc. Our encouraging results also open up

directions for further exploration of other centrality measures for complex networks

such as multilayer graphs.

In the later parts, we discuss another important complex network structure, hypergraphs.

A hypergraph provides a natural representation of the systems that involve super-

dyadic interactions among their constituents. In our work, we focus on modeling

social networks, collaboration networks, and item-purchase networks as hypergraphs

and focus on the problems of hypergraph clustering and hyperedge prediction. In

hypergraph clustering, we work with a reduction mechanism that projects a hypergraph

to a graph and show that maximizing modularity in the reduced graph and original

hypergraph are equivalent. Further, we present a balancing scheme for hyperedge cut

that improves the cluster quality in most datasets. Our work on hypergraph clustering

can be applied in multiple domains, including VLIS to design chip layout, computer

vision for image segmentation, social networks for group identification, etc. Working on

a reduced hypergraph opens up directions for other applications, where it is challenging

to work in the original hypergraph space, and existing network science tools can be

applied after reduction with desired properties. Towards the end, we present, HPRA, an

algorithm to predict hyperedges in a given hypergraph. The proposed method is the

first to predict hyperedges of any cardinality without using any candidate set. Our

results show the superiority of the proposed algorithm on a vast range of datasets.

In the future, a similar pipeline can be used to predict hyperedges in other domains

such as chemical reaction networks, where the principles of social networks may not
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always hold. All the above-discussed problems open up exciting directions for further

exploration of multilayer networks, hypergraphs, and beyond. The universality of

the proposed solutions carries the potential of applying them to areas other than our

discussions.
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