Simultaneous perturbation methods for stochastic non-convex optimization

Prashanth L.A.
Department of Computer Science \& Engg
Indian Institute of Technology Madras
prashla@cse.iitm.ac.in

Outline

Simulation optimization: problem setting, practical motivation, challenges
First-order methods: gradient estimation, (near) unbiasednes, convergence
Second-order methods: why?, Hessian estimation, (near) unbiasednes, convergence
Applications: Service systems, transportation

Motivation

Application I: Service System

Table 1: Workers $W_{i, j}$

	Skill levels		
Shift	High	Med	Low
S1	1	3	7
S2	0	5	2
S3	3	1	2

Table 2: SLA targets $\gamma_{i, j}$

	Customers	
Priority	Bossy Corp	Cool Inc
P_{1}	4 h	5 h
P_{2}	8 h	12 h
P_{3}	24 h	48 h
P_{4}	18 h	144 h

Aim: Find the optimal number of workers for each shift and of each skill level

- that minimizes the labor cost and
- satisfies SLA requirements

Application II: Transportation

On a good day, the traffic is ...

And on a bad day, it can be ...

Aim: Maximize traffic flow
Input:
Output:
Coarse congestion estimates

Input: Coarse congestion estimates Sensor loops at two points along the road

$\xrightarrow[\text { Low }]{\stackrel{\text { L1 }}{ }} \stackrel{\text { Medium }}{\substack{\mathrm{L} 2 \\ \longleftrightarrow}}$

How to switch traffic lights given L1 and L2?
Aim: Maximize traffic flow
Input:
Output:
Coarse congestion estimates

Input: Coarse congestion estimates Sensor loops at two points along the road

$\xrightarrow[\text { Low }]{\stackrel{\text { L1 }}{ }} \stackrel{\text { Medium }}{\substack{\mathrm{L} 2 \\ \longleftrightarrow}}$

How to switch traffic lights given L1 and L2?

Input: Coarse congestion estimates
Sensor loops at two points along the road

How to switch traffic lights given L1 and L2?

Input: Coarse congestion estimates Sensor loops at two points along the road

How to switch traffic lights given L1 and L2?
How to choose L1 and L2 for a given policy and road network?

Application III: Intrusion detection using sensor networks

Aim:

- minimize the energy consumption of the sensors, while
- keeping tracking error to a minimum

Common application traits

Stochastic: noisy observations

Model-free:

sample access to objective * gradients unavailable

High-dimensional:
brute-force search infeasible

Solution:
Simultaneous perturbation
methods

The framework

Basic optimization problem

$$
\text { Aim: } \quad \theta^{*}=\underset{\theta \in \Theta}{\arg \min }\{f(\theta) \triangleq \mathbb{E}[F(\theta, \xi)]\},
$$

- $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is the performance measure
- f *not* assumed to be convex
- $F(\theta, \xi)$ is the sample performance
- ξ is the noise factor that captures stochastic nature of the problem
- θ is the (vector) parameter of interest
- $\Theta \subseteq \mathbb{R}^{N}$ is the feasible region in which θ takes values.

Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically.
- Many simplifying assumptions are required.

A good alternative of modeling and analysis is "Simulation"

Stochastic optimization via simulation

Stochastic optimization deals with highly nonlinear and high dimensional systems. The challenges with these problems are:

- Too complex to solve analytically.
- Many simplifying assumptions are required.

A good alternative of modeling and analysis is "Simulation"

Figure 1: Simulation optimization

Noise controls

Recall: $f(\theta)=\mathbb{E}[F(\theta, \xi)]$.

Two settings for noise:
Controlled noise ξ can be kept fixed between queries to obtain $F\left(\theta_{1}, \xi\right)$ and $F\left(\theta_{2}, \xi\right)$
Uncontrolled noise $F(\theta, \xi)$ can be obtained at any point, but ξ is not controllable

Noise controls

Recall: $f(\theta)=\mathbb{E}[F(\theta, \xi)]$.

Two settings for noise:
Controlled noise ξ can be kept fixed between queries to obtain $F\left(\theta_{1}, \xi\right)$ and $F\left(\theta_{2}, \xi\right)$
Uncontrolled noise $F(\theta, \xi)$ can be obtained at any point, but ξ is not controllable

Challenges in simulation optimization

Deterministic optimization problem

- focus is on
search for better
solutions
- Complete information about objective function f, esp. gradients

Stochastic optimization problem

- fcannot be obtained directly, but we are given sample access, i.e., $f(\theta) \equiv E_{\xi}[F(\theta, \xi)]$
- Each sample $F(0, \xi)$ is obtained from an expensive simulation experiment or a (real) field test
- focus is on both search and evaluation
- Tradeoff between evaluating better vs. finding more candidate solutions

Challenge: to find $\theta^{*}=\underset{\theta \in \Theta}{\arg \min } f(\theta)$, given only noisy function evaluations.

Challenges in simulation optimization

Deterministic optimization problem

- focus is on
search for better
solutions
- Complete information about objective function f, esp. gradients

Stochastic optimization problem

- f cannot be obtained directly, but we are given sample access, i.e.,

$$
f(\theta) \equiv E_{\xi}[F(\theta, \xi)]
$$

- Each sample $F(\theta, \xi)$ is obtained from an expensive simulation experiment or a (real) field test
- focus is on both search and evaluation
- Tradeoff between evaluating better vs. finding more candidate solutions

Challenge: to find $\theta^{*}=\underset{\theta \in \Theta}{\arg \min } f(\theta)$, given only noisy function evaluations.

Some more applications

Energy Demand management

- Consumer demand, energy generation are uncertain.
- Objective is to minimize the difference.

Transportation

- route choice
- traffic assignment model

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems
- risk management, retirement planning (portfolio opt)

Applications (contd)

- Service systems
- banks, restaurants, call centers, amusement parks
- Transportation systems
- airports: air space, runways, baggage, roads, queues
- Manufacturing systems
- Semiconductor fabrication facilities
- Supply chain management
- Communication networks
- Financial systems
- risk management, retirement planning (portfolio opt)

Some real-world examples

- Kroger (Edelman 2013 finalist, gradient-based) Kroger Uses Simulation-Optimization to Improve Pharmacy Inventory Management
- www. youtube.com/watch?v=BNyDbBy-KYY (start at 0:45)
- https://www.informs.org/About-INFORMS/News-Room/

Press-Releases/Edelman-2013-Announcement
The Franz Edelman Award recognizes outstanding examples of innovative operations research and analytics that improves organizations and often change people's lives.

- Financial engineering
- Monte Carlo simulation used widely on Wall Street.
- Gradient estimates needed for hedging.
- Hot research area: several research papers continue to be published

First-order methods

Stochastic analog of gradient descent

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} G_{n} \tag{1}
\end{equation*}
$$

Suppose that

- G_{n} is an noisy estimate of the gradient $\nabla f\left(\theta_{n}\right)$, i.e.,

$$
\mathbb{E}\left(G_{n}\right)=\nabla f\left(\theta_{n}\right) .
$$

- $\left\{a_{n}\right\}$ are pre-determined step-sizes satisfying:

$$
\sum_{n=1}^{\infty} a_{n}=\infty, \quad \sum_{n=1}^{\infty} a_{n}^{2}<\infty
$$

- iterates are stable: $\sup \left\|\theta_{n}\right\|<\infty$.

Theorem (Variant of Robbins Monro stochastic approximation)
Letting $K:=\{\theta \mid \nabla f(\theta)=0\}$, we have

$$
\theta_{n} \rightarrow K \text { a.s. as } n \rightarrow \infty .
$$

Stochastic analog of gradient descent

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} G_{n} \tag{1}
\end{equation*}
$$

Suppose that

- G_{n} is an noisy estimate of the gradient $\nabla f\left(\theta_{n}\right)$, i.e., $\mathbb{E}\left(G_{n}\right)=\nabla f\left(\theta_{n}\right)$.
- $\left\{a_{n}\right\}$ are pre-determined step-sizes satisfying:

$$
\sum_{n=1}^{\infty} a_{n}=\infty, \quad \sum_{n=1}^{\infty} a_{n}^{2}<\infty
$$

- iterates are stable: sup $\left\|\theta_{n}\right\|<\infty$.

Theorem (Variant of Robbins Monro stochastic approximation)
Letting $K:=\{\theta \mid \nabla f(\theta)=0\}$, we have

$$
\theta_{n} \rightarrow K \text { a.s. as } n \rightarrow \infty
$$

Stochastic analog of gradient descent

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} G_{n} \tag{1}
\end{equation*}
$$

Suppose that

- G_{n} is an noisy estimate of the gradient $\nabla f\left(\theta_{n}\right)$, i.e.,

$$
\mathbb{E}\left(G_{n}\right)=\nabla f\left(\theta_{n}\right)
$$

- $\left\{a_{n}\right\}$ are pre-determined step-sizes satisfying:

$$
\sum_{n=1}^{\infty} a_{n}=\infty, \quad \sum_{n=1}^{\infty} a_{n}^{2}<\infty
$$

- iterates are stable: $\sup _{n}\left\|\theta_{n}\right\|<\infty$.

Theorem (Variant of Robbins Monro stochastic approximation)
Letting $K:=\{\theta \mid \nabla f(\theta)=0\}$, we have

Stochastic analog of gradient descent

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} G_{n} \tag{1}
\end{equation*}
$$

Suppose that

- G_{n} is an noisy estimate of the gradient $\nabla f\left(\theta_{n}\right)$, i.e.,

$$
\mathbb{E}\left(G_{n}\right)=\nabla f\left(\theta_{n}\right)
$$

- $\left\{a_{n}\right\}$ are pre-determined step-sizes satisfying:

$$
\sum_{n=1}^{\infty} a_{n}=\infty, \quad \sum_{n=1}^{\infty} a_{n}^{2}<\infty
$$

- iterates are stable: sup $\left\|\theta_{n}\right\|<\infty$.

Theorem (Variant of Robbins Monro stochastic approximation)
Letting $K:=\{\theta \mid \nabla f(\theta)=0\}$, we have

$$
\theta_{n} \rightarrow K \text { a.s. as } n \rightarrow \infty
$$

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} G_{n} . \tag{2}
\end{equation*}
$$

How to keep iterates stable?
Project θ_{n} onto a compact and convex set $\Theta \leftarrow$ Projected stochastic approximation

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} G_{n} . \tag{2}
\end{equation*}
$$

How to estimate the gradient of f from samples?

Simultaneous perturbation methods.

Stochastic approximation (SA) alphabet soup

FDSA Finite difference stochastic approximation
SPSA Simultaneous perturbation stochastic approximation

SFSA Smoothed functional stochastic approximation
RDSA Random direction stochastic approximation

In the next few slides

Q1) How to form G_{n} from function samples so that $G_{n} \approx \nabla f\left(\theta_{n}\right)$ Q2) Such a G_{n} - is it unbiased?
Q3) Does $\theta_{n+1}=\theta_{n}-a_{n} G_{n}$ converge to θ^{*} with such a G_{n} ?
Q4) If answer is yes to above, what is the convergence rate?

Outline

Motivation
The framework
First-order methodsHow are Gradients Estimated?
Analysis
Commercials
Second-order methods
Applications

Perfect measurements \Leftrightarrow No noise

Finite-difference stochastic approximation (FDSA) (Kiefer and Wolfowitz, 1952):

$$
g^{i}=\frac{1}{\delta}\left(f\left(\theta+\delta e_{i}\right)-f(\theta)\right), \quad i=1, \ldots, N .
$$

Assume $f \in \mathcal{C}^{3}$
Taylor-series expansion:

$$
f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right)
$$

$$
\text { Accuracy: }\|g-\nabla f(\theta)\|_{2}=O(\delta)
$$

Perfect measurements \Leftrightarrow No noise

Finite-difference stochastic approximation (FDSA) (Kiefer and Wolfowitz, 1952):

$$
g^{i}=\frac{1}{\delta}\left(f\left(\theta+\delta e_{i}\right)-f(\theta)\right), \quad i=1, \ldots, N .
$$

Assume $f \in \mathcal{C}^{3}$
Taylor-series expansion:

$$
f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right)
$$

$$
\text { Accuracy: }\|g-\nabla f(\theta)\|_{2}=O(\delta)
$$

FDSA with two-sided Differences

Improved estimate:

$$
g^{i}=\frac{1}{2 \delta}\left(f\left(\theta+\delta e_{i}\right)-f\left(\theta-\delta e_{i}\right)\right), \quad i=1, \ldots, N
$$

Taylor-series expansions:

$$
\begin{aligned}
& f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) . \\
& f\left(\theta-\delta e_{i}\right)=f(\theta)-\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) .
\end{aligned}
$$

Accuracy: $\|g-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right)$.

Needs $2 N$ queries.

FDSA with two-sided Differences

Improved estimate:

$$
g^{i}=\frac{1}{2 \delta}\left(f\left(\theta+\delta e_{i}\right)-f\left(\theta-\delta e_{i}\right)\right), \quad i=1, \ldots, N
$$

Taylor-series expansions:

$$
\begin{aligned}
& f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) . \\
& f\left(\theta-\delta e_{i}\right)=f(\theta)-\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) .
\end{aligned}
$$

$$
\text { Accuracy: }\|g-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right) .
$$

Needs $2 N$ queries.

FDSA + Two-sided Differences + Noise

Improved estimate:

$$
G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N .
$$

Taylor-series expansions:

$$
\begin{aligned}
& f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) . \\
& f\left(\theta-\delta e_{i}\right)=f(\theta)-\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right)
\end{aligned}
$$

Assumption: $\mathbb{E}\left[\xi^{ \pm}\right]=0, \mathbb{E}\left[\left(\xi^{ \pm}\right)\right] \leq \sigma^{2}<+\infty$.
$\mathbb{E}\left[G^{i}\right]=g^{i}$. Hence

$$
\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right) \cdot \longleftarrow \text { bias }
$$

FDSA + Two-sided Differences + Noise

Improved estimate:

$$
G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N .
$$

Taylor-series expansions:

$$
\begin{aligned}
& f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) . \\
& f\left(\theta-\delta e_{i}\right)=f(\theta)-\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) .
\end{aligned}
$$

Assumption: $\mathbb{E}\left[\xi^{ \pm}\right]=0, \mathbb{E}\left[\left(\xi^{ \pm}\right)\right] \leq \sigma^{2}<+\infty$.
$\mathbb{E}\left[G^{i}\right]=g^{i}$. Hence

$$
\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right) \cdot \longleftarrow \text { bias }
$$

FDSA + Two-sided Differences + Noise

Improved estimate:

$$
G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N .
$$

Taylor-series expansions:

$$
\begin{aligned}
& f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) . \\
& f\left(\theta-\delta e_{i}\right)=f(\theta)-\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right)
\end{aligned}
$$

Assumption: $\mathbb{E}\left[\xi^{ \pm}\right]=0, \mathbb{E}\left[\left(\xi^{ \pm}\right)\right] \leq \sigma^{2}<+\infty$.
$\mathbb{E}\left[G^{i}\right]=g^{i}$. Hence

$$
\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right) \cdot \longleftarrow \text { bias }
$$

FDSA + Two-sided Differences + Noise

Improved estimate:

$$
G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N .
$$

Taylor-series expansions:

$$
\begin{aligned}
& f\left(\theta+\delta e_{i}\right)=f(\theta)+\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right) . \\
& f\left(\theta-\delta e_{i}\right)=f(\theta)-\delta \nabla f(\theta) e_{i}+\delta^{2} e_{i}^{\top} \nabla^{2} f(\theta) e_{i}+O\left(\delta^{3}\right)
\end{aligned}
$$

Assumption: $\mathbb{E}\left[\xi^{ \pm}\right]=0, \mathbb{E}\left[\left(\xi^{ \pm}\right)\right] \leq \sigma^{2}<+\infty$.
$\mathbb{E}\left[G^{i}\right]=g^{i}$. Hence

$$
\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right) \cdot \longleftarrow \text { bias }
$$

So far: with FDSA, we can get a gradient estimate

$$
G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N . \text { with }
$$

bias $O\left(\delta^{2}\right)$
what is second moment: $\mathbb{E}\left[\|G\|_{2}^{2}\right]=$?
$G_{i}=g_{i}+\frac{\xi_{i}^{+}-\xi_{i}^{-}}{2 \delta}$, hence $\mathbb{E}\left[G_{i}^{2}\right]=g_{i}^{2}+\frac{2 \sigma^{2}}{4 \delta^{2}}=g_{i}^{2}+\frac{\sigma^{2}}{2 \delta^{2}}$

$$
\mathbb{E}\left[\|G\|_{2}^{2}\right]=\|g\|_{2}^{2}+O\left(\frac{N}{N}\right) .
$$

So far: with FDSA, we can get a gradient estimate

$$
G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N . \text { with }
$$

$$
\operatorname{bias} O\left(\delta^{2}\right)
$$

what is second moment: $\mathbb{E}\left[\|G\|_{2}^{2}\right]=$?
$G_{i}=g_{i}+\frac{\xi_{i}^{+}-\xi_{i}^{-}}{2 \delta}$, hence $\mathbb{E}\left[G_{i}^{2}\right]=g_{i}^{2}+\frac{2 \sigma^{2}}{4 \delta^{2}}=g_{i}^{2}+\frac{\sigma^{2}}{2 \delta^{2}}$

$$
\mathbb{E}\left[\|G\|_{2}^{2}\right]=\|g\|_{2}^{2}+O\left(\frac{N}{N}\right)
$$

So far: with FDSA, we can get a gradient estimate
$G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N$. with bias $O\left(\delta^{2}\right)$
what is second moment: $\mathbb{E}\left[\|G\|_{2}^{2}\right]=$?
$G_{i}=g_{i}+\frac{\xi_{i}^{+}-\xi_{i}^{-}}{2 \delta}$, hence $\mathbb{E}\left[G_{i}^{2}\right]=g_{i}^{2}+\frac{2 \sigma^{2}}{4 \delta^{2}}=g_{i}^{2}+\frac{\sigma^{2}}{2 \delta^{2}}$

$$
\mathbb{E}\left[\|G\|_{2}^{2}\right]=\|g\|_{2}^{2}+O\left(\frac{N}{}\right)
$$

So far: with FDSA, we can get a gradient estimate
$G^{i}=\frac{1}{2 \delta}\left\{f\left(\theta+\delta e_{i}\right)+\xi_{i}^{+}-\left(f\left(\theta-\delta e_{i}\right)+\xi_{i}^{-}\right)\right\}, \quad i=1, \ldots, N$. with bias $O\left(\delta^{2}\right)$
what is second moment: $\mathbb{E}\left[\|G\|_{2}^{2}\right]=$?
$G_{i}=g_{i}+\frac{\xi_{i}^{+}-\xi_{i}^{-}}{2 \delta}$, hence $\mathbb{E}\left[G_{i}^{2}\right]=g_{i}^{2}+\frac{2 \sigma^{2}}{4 \delta^{2}}=g_{i}^{2}+\frac{\sigma^{2}}{2 \delta^{2}}$ and

$$
\mathbb{E}\left[\|G\|_{2}^{2}\right]=\|g\|_{2}^{2}+O\left(\frac{N}{\delta^{2}}\right) .
$$

FDSA perturbed dimensions one-at-a-time, leading to 2 N queries. Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)
Function measurements
$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}$

Gradient estimate
$G^{i}=\left\lceil\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n} d_{n}}\right\rceil$

$$
\text { How to choose } d_{n}^{i}, i=1, \ldots, N \text { ? }
$$

FDSA perturbed dimensions one-at-a-time, leading to 2 N queries.
Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements
$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}$

Gradient estimate

$$
G^{i}=\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n} d_{n}^{i}}\right] .
$$

How to choose $d_{n}^{i}, i=1, \ldots, N$?

Only 2-queries, regardless of N !
$\mathbb{E}\left[G^{i}\right]=g^{i}$! Hence, $\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right)$.

FDSA perturbed dimensions one-at-a-time, leading to 2 N queries.
Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements

$$
y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}
$$

Gradient estimate
$G^{i}=\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n} d_{n}^{i}}\right]$.

How to choose $d_{n}^{i}, i=1, \ldots, N$?

Only 2-queries, regardless of N!
$\mathbb{E}\left[G^{i}\right]=g^{i}$! Hence, $\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right)$.

FDSA perturbed dimensions one-at-a-time, leading to 2 N queries.
Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements
$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}$

Gradient estimate
$G^{i}=\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n} d_{n}^{i}}\right]$.
How to choose $d_{n}^{i}, i=1, \ldots, N$?

Only 2-queries, regardless of N!
$\mathbb{E}\left[G^{i}\right]=g^{i}$! Hence, $\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right)$.

FDSA perturbed dimensions one-at-a-time, leading to 2 N queries.
Can we reduce the number of queries?

Idea: Simultaneously randomly perturb all dimensions! (Spall, 1992)

Function measurements
$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}$

Gradient estimate
$G^{i}=\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n} d_{n}^{i}}\right]$.

How to choose $d_{n}^{i}, i=1, \ldots, N$?

Only 2-queries, regardless of N!
$\mathbb{E}\left[G^{i}\right]=g^{i}$! Hence, $\|\mathbb{E}[G]-\nabla f(\theta)\|_{2}=O\left(\delta^{2}\right)$.

"Mother" of all two-point sim-pert estimates

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)-\left(f(\theta-U)+\xi^{-}\right)}{2 \delta} V
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$.

One-point estimate!

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)}{\delta} V
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$. Works??
$\mathbb{E}[G]=\mathbb{E}\left[G-\frac{f(\theta)}{\delta} V\right]=\mathbb{E}\left[\frac{\left(f(\theta+U)+\xi^{+}\right)-f(\theta)}{\delta} V\right]$

"Mother" of all two-point sim-pert estimates

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)-\left(f(\theta-U)+\xi^{-}\right)}{2 \delta} V
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$.

One-point estimate!

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)}{\delta} V
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$. Works??
$\mathbb{E}[G]=\mathbb{E}\left[G-\frac{f(\theta)}{\delta} V\right]=\mathbb{E}\left[\frac{\left(f(\theta+U)+\xi^{+}\right)-f(\theta)}{\delta} V\right]$

"Mother" of all two-point sim-pert estimates

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)-\left(f(\theta-U)+\xi^{-}\right)}{2 \delta} V
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$.

One-point estimate!

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)}{\delta} V
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$. Works??
$\mathbb{E}[G]=\mathbb{E}\left[G-\frac{f(\theta)}{\delta} V\right]=\mathbb{E}\left[\frac{\left(f(\theta+U)+\xi^{+}\right)-f(\theta)}{\delta} V\right]$

"Mother" of all two-point sim-pert estimates

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)-\left(f(\theta-U)+\xi^{-}\right)}{2 \delta} V .
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$.

One-point estimate!

$$
G=\frac{\left(f(\theta+U)+\xi^{+}\right)}{\delta} V
$$

Choose U, V such that $\mathbb{E}\left[V U^{\top}\right]=I, \mathbb{E}[V]=0$. Works??
$\mathbb{E}[G]=\mathbb{E}\left[G-\frac{f(\theta)}{\delta} V\right]=\mathbb{E}\left[\frac{\left(f(\theta+U)+\xi^{+}\right)-f(\theta)}{\delta} V\right]$.

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, \mid), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise controlled or not)

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- SPSA by Spall (1992).
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- SPSA by Spall (1992).
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- SPSA by Spall (1992).
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, I), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- SPSA by Spall (1992).
- Deterministic perturbations by Bhatnagar et al. (2003)
- ...

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise

Family of "Sim-pert" Gradient Estimates

- $U \sim \delta \mathcal{N}(0, \mid), V=\delta^{-1} U$
- Smoothed functional by Katkovnik and Kulchitsky (1972);
- Refined by Polyak and Tsybakov (1990); also studied by Dippon (2003); Nesterov and Spokoiny (2011).
- $U \sim \delta \operatorname{Unif}\left(\mathbb{S}_{N}\right), V=N \delta^{-1} U$
- RDSA by Kushner and Clark (1978); Enhanced by Prashanth et al. (2017)
- Rediscovered by Flaxman et al. (2005)
- $U_{i} \sim \delta$ Rademacher $(\pm 1), V=\delta^{-1} U$
- SPSA by Spall (1992).
- Deterministic perturbations by Bhatnagar et al. (2003)

Does it matter which of these we select? Not really: Bias is always $O\left(\delta^{2}\right)$, while variance is $O(1)$ or $O\left(\delta^{-2}\right)$ (noise controlled or not)

What we have learned so far?

For performing gradient descent:

$$
\theta_{n+1}=\theta_{n}-a_{n} G_{n},
$$

we can construct nearly unbiased gradient estimate G_{n} using simultaneous perturbation trick

Noise \rightarrow Gradient estimate \downarrow	Controlled	Uncontrolled
Bias	$C_{1} \delta^{2}$	$C_{1} \delta^{2}$
Variance	C_{2}	$\frac{C_{2}}{\delta^{2}}$

This assumed $f \in \mathcal{C}^{3}$. Holds also for f convex, smooth.

A few answers so far. . .

> Q1) How to form G_{n} from function samples so that $G_{n} \approx \nabla f\left(\theta_{n}\right)$
> Use simultaneous perturbation trick
> Q2) Such a G_{n} - is it unbiased?
> Almost ... what we get is an asymptotically
> unbiased estimate?
> Q3) Does $\theta_{n+1}=\theta_{n}-a_{n} G_{n}$ converge to θ^{*} with such a G_{n} ?
> ??
> Q4) If answer is yes to above, what is the convergence rate?
> ??

A few answers so far...

Q1) How to form G_{n} from function samples so that $G_{n} \approx \nabla f\left(\theta_{n}\right)$
Use simultaneous perturbation trick
Q2) Such a G_{n} - is it unbiased?
Almost ... what we get is an asymptotically unbiased estimate?

Q3) Does $\theta_{n+1}=\theta_{n}-a_{n} G_{n}$ converge to θ^{*} with such a G_{n} ?
??
Q4) If answer is yes to above, what is the convergence rate?
??

A few answers so far...

Q1) How to form G_{n} from function samples so that $G_{n} \approx \nabla f\left(\theta_{n}\right)$
 Use simultaneous perturbation trick
 Q2) Such a G_{n} - is it unbiased?
 Almost ... what we get is an asymptotically
 unbiased estimate?

Q3) Does $\theta_{n+1}=\theta_{n}-a_{n} G_{n}$ converge to θ^{*} with such a G_{n} ?
??
Q4) If answer is yes to above, what is the convergence rate?
??

Outline

Motivation
 The framework

First-order methods
How are Gradients Estimated?
Analysis

Commercials

Second-order methods

xkcd on real analysis

Function measurements

$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}$

RDSA Gradient estimate

$$
G_{n}=\frac{1}{1+\epsilon} d_{n}\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n}}\right] .
$$

Asymmetric Bernoulli distribution for $d_{n}^{i}, i=1, \ldots, N$:

Assumptions

Smoothness $f \in \mathcal{C}^{3}$, i.e., f is three times continuously differentiable

Zero-mean noise $\mathbb{E}\left[\xi_{n}^{+}-\xi_{n}^{-} \mid d_{n}, \mathcal{F}_{n}\right]=0$, where $\mathcal{F}_{n}=\sigma\left(\theta_{m}, m<n\right)$.
Need these to establish (asymptotic) unbiasedness of gradient estimate

Second moment bound $\mathbb{E}\left|\xi_{n}^{\#}\right|^{2} \leq \alpha_{1}, \mathbb{E}\left|f\left(x_{n} \pm \delta_{n} d_{n}\right)\right|^{2} \leq \alpha_{2}$
Step-sizes $a_{n}, \delta_{n} \rightarrow 0$ as $n \rightarrow \infty, \sum_{n} a_{n}=\infty$ and $\sum_{n}\left(\frac{a_{n}}{\delta_{n}}\right)^{2}<\infty$.
Stable iterates $\sup \left\|\theta_{n}\right\|<\infty$ w.p. 1 .

Assumptions

Smoothness $f \in \mathcal{C}^{3}$, i.e., f is three times continuously differentiable

Zero-mean noise $\mathbb{E}\left[\xi_{n}^{+}-\xi_{n}^{-} \mid d_{n}, \mathcal{F}_{n}\right]=0$, where $\mathcal{F}_{n}=\sigma\left(\theta_{m}, m<n\right)$.

Second moment bound $\mathbb{E}\left|\xi_{n}^{ \pm}\right|^{2} \leq \alpha_{1}, \mathbb{E}\left|f\left(x_{n} \pm \delta_{n} d_{n}\right)\right|^{2} \leq \alpha_{2}$

$$
\text { Step-sizes } a_{n}, \delta_{n} \rightarrow 0 \text { as } n \rightarrow \infty, \sum_{n} a_{n}=\infty \text { and } \sum_{n}\left(\frac{a_{n}}{\delta_{n}}\right)^{2}<\infty \text {. }
$$

So that the noise effects vanish asymptotically

Stable iterates $\sup \left\|\theta_{n}\right\|<\infty$ w.p. 1 .

Assumptions

Smoothness $f \in \mathcal{C}^{3}$, i.e., f is three times continuously differentiable

Zero-mean noise $\mathbb{E}\left[\xi_{n}^{+}-\xi_{n}^{-} \mid d_{n}, \mathcal{F}_{n}\right]=0$, where $\mathcal{F}_{n}=\sigma\left(\theta_{m}, m<n\right)$.

Second moment bound $\mathbb{E}\left|\xi_{n}^{ \pm}\right|^{2} \leq \alpha_{1}, \mathbb{E}\left|f\left(x_{n} \pm \delta_{n} d_{n}\right)\right|^{2} \leq \alpha_{2}$ Step-sizes $a_{n}, \delta_{n} \rightarrow 0$ as $n \rightarrow \infty, \sum_{n} a_{n}=\infty$ and $\sum_{n}\left(\frac{a_{n}}{\delta_{n}}\right)^{2}<\infty$.

Stable iterates $\sup \left\|\theta_{n}\right\|<\infty$ w.p. 1 .
Needed to establish convergence of gradient-descent scheme. Trick: use projection

Ordinary differential equations (ODE) approach for stochastic approximation

$$
\begin{aligned}
& \theta_{n+1}=\theta_{n}-a_{n} G_{n} \text { is equivalent to } \theta_{n+1}=\theta_{n}-a_{n}\left(\nabla f\left(x_{n}\right)+\eta_{n}+\beta_{n}\right) \\
& \eta_{n}=G_{n}-\mathbb{E}\left(G_{n} \mid \mathcal{F}_{n}\right) \leftarrow \text { martingale difference, } \\
& \beta_{n}=\mathbb{E}\left(G_{n} \mid \mathcal{F}_{n}\right)-\nabla f\left(x_{n}\right) \leftarrow \text { gradient estimation bias }=O\left(\delta_{n}^{2}\right) \\
& \text { Mean ODE } \left.\dot{\theta}_{t}=-\nabla f\left(\theta_{t}\right) \text { with limit set } K=\{\theta: \nabla f(\theta))=0\right\}
\end{aligned}
$$

"If" there is no bias and no noise, then it is straightforward(?) to see that θ_{n} converges a.s. to K.

Can we conclude the same with bias and noise elements?
$\theta_{n+1}=\theta_{n}-a_{n}\left(\nabla f\left(x_{n}\right)+\eta_{n}+\beta_{n}\right)$
$\eta_{n}=G_{n}-\mathbb{E}\left(G_{n} \mid \mathcal{F}_{n}\right) \leftarrow$ martingale difference $\quad \beta_{n}=\mathbb{E}\left(G_{n} \mid \mathcal{F}_{n}\right)-\nabla f\left(x_{n}\right) \leftarrow$ gradient estimation bias $=O\left(\delta_{n}^{2}\right)$
To apply Kushner-Clark lemma we verify a few conditions:

1) " $\beta_{n} \rightarrow 0$ almost surely" \leftarrow holds since we assume $\delta_{n} \rightarrow 0$ and $\beta_{n}=O\left(\delta_{n}^{2}\right)$
2) $" \forall \epsilon>0, \lim _{n \rightarrow \infty} P \underbrace{P\left(\sup _{m \geq n}\left\|\sum_{i=n}^{m} a_{i} \eta_{i}\right\| \geq \epsilon\right)}_{(*)}=0$."

$$
(*) \leq \frac{1}{\epsilon^{2}} \mathbb{E}\left\|\sum_{i=n}^{\infty} a_{i} \eta_{i}\right\|^{2}=\frac{1}{\epsilon^{2}} \sum_{i=n}^{\infty} a_{i}^{2} \mathbb{E}\left\|\eta_{i}\right\|^{2} \leq \frac{C}{\epsilon^{2}} \lim _{n \rightarrow \infty} \sum_{i=n}^{\infty} \frac{a_{i}^{2}}{\delta_{i}^{2}} \rightarrow 0
$$

Thus,

$$
\theta_{n} \rightarrow K \text { a.s. as } n \rightarrow \infty
$$

A few answers so far...

> Q1) How to form G_{n} from function samples so that $G_{n} \approx \nabla f\left(\theta_{n}\right)$

> Use simultaneous perturbation trick
> Q2) Such a G_{n} - is it unbiased?
> Almost ... what we get is an asymptotically
> unbiased estimate
> Q3) Does $\theta_{n+1}=\theta_{n}-a_{n} G_{n}$ converge to θ^{*} with such a G_{n} ?

> Yes!
> Q4) If answer is yes to above, what is the
> convergence rate?
> Asymptotic normality

A few answers so far...

> Q1) How to form G_{n} from function samples so that $G_{n} \approx \nabla f\left(\theta_{n}\right)$
> Use simultaneous perturbation trick
> Q2) Such a G_{n} - is it unbiased?
> Almost ... what we get is an asymptotically
> unbiased estimate
> Q3) Does $\theta_{n+1}=\theta_{n}-a_{n} G_{n}$ converge to θ^{*} with
> such a G_{n} ?
> Yes!

Q4) If answer is yes to above, what is the convergence rate?
Asymptotic normality

Asymptotic normality

$$
n^{\beta / 2}\left(x_{n}-x^{*}\right) \xrightarrow{\text { dist }} \mathcal{N}\left(\mu, P M P^{\top}\right)
$$

where $\beta=2 / 3$ and μ, M depend on a_{n}, d_{n} and f at θ^{*}.
Under some conditions, this implies

$$
n^{\beta} \mathbb{E}\left\|x_{n}-x^{*}\right\|^{2} \rightarrow \mu^{\top} \mu+\operatorname{trace}\left(P M P^{\top}\right) \text { as } n \rightarrow \infty
$$

asymptotic mean square error (AMSE) is the limit above

To achieve a given accuracy, the number of samples needed by
1SPSA $\left(n_{1 S P S A}\right)$ to that of 1FDSA $\left(n_{1 F D S A}\right)$ is $\frac{n_{1 \mathcal{S P S A}}}{n_{1 \mathcal{F S A}}}=\frac{1}{N}$

Bottomline: Simultaneously randomly perturbing all dimensions is equivalent to perturbing dimensions one-at-a-time!

Function measurements

$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}$

RDSA Gradient estimate

$$
G_{n}=\frac{1}{1+\epsilon} d_{n}\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n}}\right] .
$$

Asymmetric Bernoulli
distribution for $d_{n}^{i}, i=1, \ldots, N$:

SPSA Gradient estimate

$$
G_{n}=d_{n}^{-1}\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n}}\right]
$$

Symmetric Bernoulli distribution for $d_{n}^{i}, i=1, \ldots, N$:

So, which perturbation choice works best?

The competitors

Samples $y_{n}^{ \pm}$at $x_{n} \pm \delta_{n} d_{n}$

Algorithm	d_{n}	G_{n}
1SPSA	Rademacher	$d_{n}^{-1}\left[\frac{y_{n}^{+}-y_{n}^{-}}{\delta_{n}}\right]$
1RDSA-Gaussian	Standard Gaussian	$d_{n}\left[\frac{y_{n}^{+}-y_{n}^{-}}{\delta_{n}}\right]$
1RDSA-Unif	$U[-1,1]$	$3 d_{n}\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n}}\right]$
1RDSA-AsymBer	Asymmetric Bernoulli	$\frac{1}{1+\epsilon} d_{n}\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n}}\right]$

So, which perturbation choice works best?

Letting (A) and (B) denote problem-dependent quantities, we have
Fact 1: $\frac{\text { AMSE }_{1 \text { RDSA-Gaussian }}}{A M S E_{\text {1SPSA }}}=\frac{9(A)+(B)}{(A)+(B)}$
Fact 2: $\frac{\text { AMSE }_{1 \text { RDSA }- \text { Unif }}}{A M S E_{1 S P S A}}=\frac{3.24(A)+(B)}{(A)+(B)}$
Fact 3: With $\epsilon=0.01$,

$$
\frac{\text { AMSE }_{1 \text { RDSA-ASymBer }}}{A M S E_{1 S P S A}}=\frac{1.00019(A)+(B)}{(A)+(B)}
$$

Commercials

For deep-dive into simultaneous perturbation methods

434

> Rigorous treatment of SPSA and friends
> includes both first as well as second-order schemes
S. Bhatnagar
H.L. Prasad
L.A. Prashanth

Stochastic Recursive
Algorithms for
Optimization
Simultaneous Perturbation Methods
Prerequisities: probability theory, stochastic approximation (short appendices cover the main results)

For a broader view

NichるelCFu foivo

Handbook of Simulation Optimization

$$
\begin{aligned}
& \text { Chapter } 3 \text { : Ranking \& } \\
& \text { Selection aka Best-arm } \\
& \text { identification in multi-armed } \\
& \text { bandits }
\end{aligned}
$$

Chapter 5: Stochastic Gradient Estimation

Chapter 6: An Overview of Stochastic Approximation

Chapter 10: Solving Markov
Decision Processes via Simulation

For a even more broader view

8) WILEY

> INTRODUGTION to STOCHASTIC SEAROH and OPTIMIZATION

Estimation, Simulation, and Control

JAMES C. SPALL
wnw

1) Random search
2) Machine (reinforcement) learning
3) Recursive linear estimation
4) Model selection
5) Stochastic approximation
6) Simulation-based optimization
7) Simulated annealing
8) Markov chain Monte Carlo
9) Genetic and evolutionary algorithms
10) Optimal experimental design

Some more books and other references

1. Spall, J. C. (1998), An Overview of the Simultaneous Perturbation Method for Efficient Optimization, Johns Hopkins APL Technical Digest, vol. 19(4), pp. 482-492.
2. Michael Fu (2002) Optimization for Simulation: Theory vs. Practice (Feature Article), INFORMS Journal on Computing, Vol.14, No.3, 192-215.
3. Henderson/Nelson (editors) (2006) Handbook of Operations Research and Management Science: Simulation Vol. 13

- Chapters 17-21: Selecting the Best System, Metamodel-Based Simulation Optimization, Gradient Estimation, Random Search, Metaheuristics

4. SPSA web site www. jhuapl. edu/SPSA
5. Vivek Borkar (2008), Stochastic approximation: a dynamical systems viewpoint, Cambridge university press

Software

1. OptQuest (Arena, Crystal Ball, et al.)

- standalone module, most widely implemented - scatter search, tabu search, neural networks

2. Simulation Optimization Testbed: http://simopt.org
3. AutoStat (AutoMod from Autosimulations, Inc.)

- part of a complete statistical output analysis package dominates semiconductor industry
- evolutionary (variation of genetic algorithms)

4. SimRunner (ProModel): evolutionary
5. Optimizer (WITNESS): simulated annealing, tabu search
6. Risk Solver (Excel):
www.solver.com/simulation-optimization

Second-order methods

Why second-order methods?

$$
\begin{aligned}
& \text { Gradient-descent (GD) } \\
& \theta_{n+1}=\theta_{n}-a_{n} \nabla f\left(\theta_{n}\right)
\end{aligned}
$$

- optimum convergence speed requires knowledge of curvature of f
- declines fast initially, but slows down towards the end (when near θ^{*})
- *not* scale invariant:
change $\theta \rightarrow B \theta$, GD update would depend on B
- Efficient update \Leftrightarrow low per-iteration cost

Newton methods
$\theta_{n+1}=\theta_{n}-a_{n}\left(\nabla^{2} f\left(\theta_{n}\right)\right)^{-1} \nabla f\left(\theta_{n}\right)$

- optimum speed of convergence without knowledge of $\lambda_{\min }\left(\nabla^{2} f\left(\theta^{*}\right)\right)$.
- faster convergence in final phase; equivalent to minimizing a quadratic model of f
- scale invariant:
auto-adjusts to the scale of θ
- high per-iteration cost \leftarrow matrix inversion, more samples for estimation

Why second-order methods?

Gradient-descent (GD)
$\theta_{n+1}=\theta_{n}-a_{n} \nabla f\left(\theta_{n}\right)$

- optimum convergence
speed requires knowledge
of curvature of f
- declines fast initially, but slows down towards the end (when near θ^{*})
- *not* scale invariant:
change $\theta \rightarrow B \theta$, GD update would depend on B
- Efficient update \Leftrightarrow low per-iteration cost

Newton methods

$$
\theta_{n+1}=\theta_{n}-a_{n}\left(\nabla^{2} f\left(\theta_{n}\right)\right)^{-1} \nabla f\left(\theta_{n}\right)
$$

- optimum speed of convergence without knowledge of $\lambda_{\min }\left(\nabla^{2} f\left(\theta^{*}\right)\right)$.
- faster convergence in final phase; equivalent to minimizing a quadratic model of f
- scale invariant:
auto-adjusts to the scale of θ
- high per-iteration cost \leftarrow matrix inversion, more samples for estimation

Why second-order methods?

Gradient-descent (GD)
$\theta_{n+1}=\theta_{n}-a_{n} \nabla f\left(\theta_{n}\right)$

- optimum convergence speed requires knowledge of curvature of f
- declines fast initially, but slows down towards the end (when near θ^{*})
- *not* scale invariant: change $\theta \rightarrow B \theta$, GD update would depend on B
- Efficient update \Leftrightarrow low per-iteration cost

Newton methods

$$
\theta_{n+1}=\theta_{n}-a_{n}\left(\nabla^{2} f\left(\theta_{n}\right)\right)^{-1} \nabla f\left(\theta_{n}\right)
$$

- optimum speed of convergence without knowledge of $\lambda_{\min }\left(\nabla^{2} f\left(\theta^{*}\right)\right)$.
- faster convergence in final phase; equivalent to minimizing a quadratic model of f
- scale invariant: auto-adjusts to the scale of θ
- high per-iteration cost \leftarrow matrix inversion, more samples for estimation

Why second-order methods?

Gradient-descent (GD)
$\theta_{n+1}=\theta_{n}-a_{n} \nabla f\left(\theta_{n}\right)$

- optimum convergence speed requires knowledge of curvature of f
- declines fast initially, but slows down towards the end (when near θ^{*})
- *not* scale invariant:
change $\theta \rightarrow B \theta$, GD update would depend on B
- Efficient update \Leftrightarrow low per-iteration cost

Newton methods

$$
\theta_{n+1}=\theta_{n}-a_{n}\left(\nabla^{2} f\left(\theta_{n}\right)\right)^{-1} \nabla f\left(\theta_{n}\right)
$$

- optimum speed of convergence without knowledge of $\lambda_{\min }\left(\nabla^{2} f\left(\theta^{*}\right)\right)$.
- faster convergence in final phase; equivalent to minimizing a quadratic model of f
- scale invariant: auto-adjusts to the scale of θ
- high per-iteration cost \leftarrow matrix inversion, more samples for estimation

Stochastic analog of Newton-Raphson method

- Matrix projection
- Gradient estimate

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} \Upsilon\left(\bar{H}_{n}\right)^{-1} G_{n}, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\bar{H}_{n}=\left(1-\frac{1}{n+1}\right) \bar{H}_{n-1}+\frac{1}{n+1} \widehat{H}_{n} \tag{4}
\end{equation*}
$$

- Averaging

- Hessian estimate

Stochastic analog of Newton-Raphson method

- Matrix projection
- Gradient estimate

$$
\begin{equation*}
\theta_{n+1}=\theta_{n}-a_{n} \Upsilon\left(\bar{H}_{n}\right)^{-1} G_{n}, \tag{3}
\end{equation*}
$$

- Averaging

$$
\begin{equation*}
\bar{H}_{n}=\left(1-\frac{1}{n+1}\right) \bar{H}_{n-1}+\frac{1}{n+1} \widehat{H}_{n}, \tag{4}
\end{equation*}
$$

- Hessian estimate

Overall flow

What's up next

Second-order FDSA Fabian (1971) requires $O\left(N^{2}\right)$ samples to estimate Hessian

Simultaneous perturbation in action:

(Spall 2000)	Second-order SPSA (2SPSA)	4 simulations/iteration
(Prashanth L.A. et al 2016)	Second-order RDSA (2RDSA)	3 simulations/iteration

[^0]
RDSA gradient estimate

Function measurements
$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, \quad y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}$
Gradient estimate

$$
\begin{equation*}
G_{n}=\frac{1}{1+\epsilon} d_{n}\left[\frac{y_{n}^{+}-y_{n}^{-}}{2 \delta_{n}}\right] . \tag{5}
\end{equation*}
$$

Asymmetric Bernoulli distribution for $d_{n}^{i}, i=1, \ldots, N$:

2RDSA Hessian estimate

Function measurements
$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}, y_{n}=f\left(\theta_{n}\right)+\xi_{n}$
Hessian estimate \widehat{H}_{n}

$$
\begin{align*}
& \left.\qquad \begin{array}{rl}
\widehat{H}_{n} & =M_{n}\left(\frac{y_{n}^{+}+y_{n}^{-}-2 y_{n}}{\delta_{n}^{2}}\right) \\
& =M_{n}\left[\left(\frac{f\left(\theta_{n}+\delta_{n} d_{n}\right)+f\left(\theta_{n}-\delta_{n} d_{n}\right)-2 f\left(\theta_{n}\right)}{\delta_{n}^{2}}\right)\right. \\
& \left.+\left(\frac{\xi_{n}^{+}+\xi_{n}^{-}-2 \xi_{n}}{\delta_{n}^{2}}\right)\right] \\
& =M_{n}\left(\frac{d_{n}^{\top} \nabla^{2} f\left(\theta_{n}\right) d_{n}}{\uparrow}+O\left(\delta_{n}^{2}\right)+\left(\frac{\xi_{n}^{+}+\xi_{n}^{-}-2 \xi_{n}}{\delta_{n}^{2}}\right)\right) \\
\text { nt to recover } \\
\nabla^{2} f\left(\theta_{n}\right) \text { from this }
\end{array}\right]
\end{align*}
$$

2RDSA Hessian estimate

Function measurements

$y_{n}^{+}=f\left(\theta_{n}+\delta_{n} d_{n}\right)+\xi_{n}^{+}, y_{n}^{-}=f\left(\theta_{n}-\delta_{n} d_{n}\right)+\xi_{n}^{-}, y_{n}=f\left(\theta_{n}\right)+\xi_{n}$ Hessian estimate \widehat{H}_{n}

$$
\begin{align*}
& \qquad \begin{aligned}
& \hat{H}_{n}=M_{n}\left(\frac{y_{n}^{+}+y_{n}^{-}-2 y_{n}}{\delta_{n}^{2}}\right) \\
&= M_{n}\left[\left(\frac{f\left(\theta_{n}+\delta_{n} d_{n}\right)+f\left(\theta_{n}-\delta_{n} d_{n}\right)-2 f\left(\theta_{n}\right)}{\delta_{n}^{2}}\right)\right. \\
&\left.+\left(\frac{\xi_{n}^{+}+\xi_{n}^{-}-2 \xi_{n}}{\delta_{n}^{2}}\right)\right] \\
&=M_{n}\left(\frac{d_{n}^{\top} \nabla^{2} f\left(\theta_{n}\right) d_{n}}{\uparrow}+O\left(\delta_{n}^{2}\right)+\left(\frac{\xi_{n}^{+}+\xi_{n}^{-}-2 \xi_{n}}{\delta_{n}^{2}}\right)\right) \\
& \text { Want to recover } \\
& \nabla^{2} f\left(\theta_{n}\right) \text { from this }
\end{aligned}
\end{align*}
$$

How to choose M_{n} ?

Asymmetric Bernoulli Perturbation

$$
M_{n}=\left[\begin{array}{ccc}
\frac{1}{\kappa}\left(\left(d_{n}^{1}\right)^{2}-(1+\epsilon)\right) & \cdots & \frac{1}{2(1+\epsilon)^{2}} d_{n}^{1} d_{n}^{N} \tag{7}\\
\frac{1}{2(1+\epsilon)^{2}} d_{n}^{2} d_{n}^{1} & \cdots & \frac{1}{2(1+\epsilon)^{2}} d_{n}^{2} d_{n}^{N} \\
\cdots & \cdots & \cdots \\
\frac{1}{2(1+\epsilon)^{2}} d_{n}^{N} d_{n}^{1} & \cdots & \frac{1}{\kappa}\left(\left(d_{n}^{N}\right)^{2}-(1+\epsilon)\right)
\end{array}\right]
$$

where $\kappa=\tau\left(1-\frac{(1+\epsilon)^{2}}{\tau}\right)$ and $\tau=E\left(d_{n}^{i}\right)^{4}=\frac{(1+\epsilon)\left(1+(1+\epsilon)^{3}\right)}{(2+\epsilon)}$, for any $i=1, \ldots, N$.

2SPSA - Hessian estimation - main idea

Suppose $G_{n}\left(\theta_{n} \pm \delta_{n} d_{n}\right)$ are approximations to the gradient of f at $\theta_{n} \pm \delta_{n} d_{n}$. Let $\Delta G_{n}=G_{n}\left(\theta_{n}+\delta_{n} d_{n}\right)-G_{n}\left(\theta_{n}-\delta_{n} d_{n}\right)$.

Simultaneous perturbation trick suggests

$$
\widehat{H}_{n}=\frac{\Delta G_{n}}{4 \delta_{n} d_{n}}
$$

What remains to be specified: G_{n}
Use Simultaneous perturbation trick again!

$$
G_{n}\left(\theta_{n} \pm \delta_{n} d_{n}\right)=d_{n}^{-1} \frac{y\left(\theta_{n} \pm \delta_{n} d_{n}+\delta_{n} \hat{d}_{n}\right)-y\left(\theta_{n} \pm \delta_{n} d_{n}\right)}{\delta_{n}}
$$

where \hat{d}_{n} are another independent set of perturbations having same distribution as d_{n}.

Convergence analysis

Under regularity conditions that aren't too far from those for 1SPSA/1RDSA, we have

Bias in Hessian estimate For $i, j=1, \ldots, N$,

$$
\begin{equation*}
\left|\mathbb{E}\left[\widehat{H}_{n}(i, j) \mid \mathcal{F}_{n}\right]-\nabla_{i j}^{2} f\left(\theta_{n}\right)\right|=O\left(\delta_{n}^{2}\right) . \tag{8}
\end{equation*}
$$

Strong Convergence of Hessian

$$
\theta_{n} \rightarrow \theta^{*}, \bar{H}_{n} \rightarrow \nabla^{2} f\left(\theta^{*}\right) \text { a.s. as } n \rightarrow \infty .
$$

[^1]
2SPSA vs. 2RDSA: An asymptotic mean-square error (AMSE) comparison

Letting (A) and (B) denote problem-dependent quantities and with $\epsilon=0.01$ for 2RDSA-AsymBer, we have

$$
\frac{\mathcal{A M S E}_{2 R D S A-A s y m B e r}}{\mathcal{A M S E}_{2 S P S A}}=\frac{1.00019(A)+(B)}{(A)+(B)}
$$

However, 2SPSA uses 4 samples/iteration, while 2RDSA-AB uses 3. So,
$\frac{\hat{n}_{2 R D S A-A \text { AymBer }}}{\hat{n}_{2 S P S A}}=\frac{3}{4} \times \frac{\mathcal{A M S E}_{2 R D S A-A s y m B e r}}{\mathcal{A M S E}_{2 S P S A}}=\frac{3.00057(A)+3(B)}{4(A)+4(B)}<1$

Bottomline: 2RDSA with asymmetric Bernoulli perturbations is better than 2SPSA on all problem instances!

2SPSA vs. 2RDSA: An asymptotic mean-square error (AMSE) comparison
Letting (A) and (B) denote problem-dependent quantities and with $\epsilon=0.01$ for 2RDSA-AsymBer, we have

$$
\frac{\mathcal{A M S E}_{2 R D S A-A s y m B e r}}{\mathcal{A M S E}_{2 S P S A}}=\frac{1.00019(A)+(B)}{(A)+(B)}
$$

However, 2SPSA uses 4 samples/iteration, while 2RDSA-AB uses 3. So,

$$
\frac{\hat{n}_{2 \mathcal{R D S A} A-A s y m B e r}}{\hat{n}_{2 \mathcal{S P S A}}}=\frac{3}{4} \times \frac{\mathcal{A} \mathcal{M S E} \mathcal{E}_{2 R D S A-A \text { SymBer }}}{\mathcal{A} \mathcal{M S E}_{2 \mathcal{S P S A}}}=\frac{3.00057(A)+3(B)}{4(A)+4(B)}<1
$$

Bottomline: 2RDSA with asymmetric Bernoulli perturbations is better than 2SPSA on all problem instances!

Some questions before diving into applications...

Q1) Can I solve constrainted optimization problems using simultaneous perturbation methods?

Yes! See service systems application next
Q2) So far, the focus has been on continuous optimization problems. Can SPSA/its friends be used for discrete parameter optimization?

Yes! See (again) service systems application next
Q3) Analysis showed convergence to local optima. Is global convergence achievable?

Yes. See (Maryak and Chin, 2008)
Q4) Instead of full inverted Hessian, can we
subsample/use a sparse representation and still approximate Hessian inverse well?

Some questions before diving into applications. . .

Q1) Can I solve constrainted optimization problems using simultaneous perturbation methods?

Yes! See service systems application next
Q2) So far, the focus has been on continuous optimization problems. Can SPSA/its friends be used for discrete parameter optimization?

Yes! See (again) service systems application next
Q3) Analysis showed convergence to local optima. Is global convergence achievable?

Yes. See (Maryak and Chin, 2008)
Q4) Instead of full inverted Hessian, can we
subsample/use a sparse representation and still approximate Hessian inverse well?

Some questions before diving into applications...

Q1) Can I solve constrainted optimization problems using simultaneous perturbation methods? Yes! See service systems application next

Q2) So far, the focus has been on continuous optimization problems. Can SPSA/its friends be used for discrete parameter optimization?

Yes! See (again) service systems application next
Q3) Analysis showed convergence to local optima. Is global convergence achievable?
Yes. See (Maryak and Chin, 2008)
Q4) Instead of full inverted Hessian, can we
subsample/use a sparse representation and still
approximate Hessian inverse well?

Some questions before diving into applications...

Q1) Can I solve constrainted optimization problems using simultaneous perturbation methods?

Yes! See service systems application next
Q2) So far, the focus has been on continuous optimization problems. Can SPSA/its friends be used for discrete parameter optimization? Yes! See (again) service systems application next

Q3) Analysis showed convergence to local optima. Is global convergence achievable?

Yes. See (Maryak and Chin, 2008)
Q4) Instead of full inverted Hessian, can we subsample/use a sparse representation and still approximate Hessian inverse well?

Applications

Outline

Motivation
 The framework
 First-order methods
 Commercials
 Second-order methods

Applications
Service Systems
Traffic light control

Service Systems

An organization composed of the resources that support, and the processes that drive service interactions so that the outcomes meet customer expectations
call centers, BPOs, data-center management

Challenges

- Each customer has unique environments, expectations (SLAs)
- Randomness in service times, arrivals of service requests
- Not all service workers can support many customers / types of work
- Continuous change in scope of work, number/skills of workers

How do we staff such SS?

Service Systems

Examples: call centers, BPOs, data-center management Challenges:

- Each customer has unique environments, expectations (SLAs)
- Randomness in service times, arrivals of service requests
- Not all service workers can support many customers / types of work
- Continuous change in scope of work, number/skills of workers

How do we staff such SS?

Service Systems

Examples: call centers, BPOs, data-center management Challenges:

- Each customer has unique environments, expectations (SLAs)
- Randomness in service times, arrivals of service requests
- Not all service workers can support many customers / types of work
- Continuous change in scope of work, number/skills of workers

How do we staff such SS?

Application I: Service System

Table 3: Workers $W_{i, j}$

	Skill levels		
Shift	High	Med	Low
S1	1	3	7
S2	0	5	2
S3	3	1	2

Table 4: SLA targets $\gamma_{i, j}$

	Customers	
Priority	Bossy Corp	Cool Inc
P_{1}	4 h	5 h
P_{2}	8 h	12 h
P_{3}	24 h	48 h
P_{4}	18 h	144 h

Aim: Find the optimal number of workers for each shift and of each skill level

- that minimizes the labor cost
- subject to SLA constraints

Labor Cost Optimization

The problem we are looking at
Find the optimal number of workers for each shift and of each skill level

- that minimizes the average labor cost; and
- satisfies service level agreement (SLA) constraints
how do we solve it?
Simulation optimization!
Challenges
- discrete worker parameter
- SLA constraints

Labor Cost Optimization

The problem we are looking at
Find the optimal number of workers for each shift and of each skill level

- that minimizes the average labor cost; and
- satisfies service level agreement (SLA) constraints
how do we solve it?
Simulation optimization!

Challenges

- discrete worker parameter
- SLA constraints

Labor Cost Optimization

The problem we are looking at
Find the optimal number of workers for each shift and of each skill level

- that minimizes the average labor cost; and
- satisfies service level agreement (SLA) constraints
how do we solve it?
Simulation optimization!

Challenges

- discrete worker parameter
- SLA constraints

Notation: Shifts A, Skills B, Customers C, Priorities P
State:

$$
X_{n}=(\underbrace{\mathcal{N}_{1}(n), \ldots, \mathcal{N}_{|B|}(n)}_{\text {complexity queue lengths }}, \underbrace{u_{1,1}(n), \ldots \ldots, u_{|A|,|B|}(n)}_{\text {worker utilizations }}, \underbrace{\gamma_{1,1}^{\prime}(n), \ldots \ldots, \gamma_{|C|,|P|}^{\prime}(n)}_{\text {SLAs attained }}, q(n)),
$$

Single-stage cost:

over/under-achievement of SLAs

Constraints:

$$
\begin{align*}
& g_{i, j}\left(x_{n}\right)=\gamma_{i, j}-\gamma_{i, j}^{\prime}(n) \leq 0, \forall i, j \tag{SLAattainments}\\
& h\left(x_{n}\right)=1-q(n) \leq 0,
\end{align*}
$$

(Queue Stability)

Notation: Shifts A, Skills B, Customers C, Priorities P

State:

$$
X_{n}=(\underbrace{\mathcal{N}_{1}(n), \ldots, \mathcal{N}_{|B|}(n)}_{\text {complexity queue lengths }}, \underbrace{u_{1,1}(n), \ldots \ldots, u_{|A|,|B|}(n)}_{\text {worker utilizations }}, \underbrace{\gamma_{1,1}^{\prime}(n), \ldots \ldots \ldots, \gamma_{|C|,|P|}^{\prime}(n)}_{\text {SLAs attained }}, q(n)),
$$

Single-stage cost:
$c\left(X_{n}\right)=\left(\begin{array}{|l}\left(1-\sum_{i=1}^{|A|} \sum_{j=1}^{|B|} \alpha_{i, j} \times u_{i, j}(n)\right) \\ \left(\sum_{i=1}^{|C|} \sum_{j=1}^{|P|}\left|\gamma_{i, j}^{\prime}(n)-\gamma_{i, j}\right|\right) \\ \text { under-utilization of workers }\end{array}\right.$
over/under-achievement of SLAs

Constraints:

$$
\begin{aligned}
& g_{i, j}\left(x_{n}\right)=\gamma_{i, j}-\gamma_{i, j}^{\prime}(n) \leq 0, \forall i, j \\
& h\left(x_{n}\right)=1-q(n) \leq 0,
\end{aligned}
$$

Notation: Shifts A, Skills B, Customers C, Priorities P

State:

$$
X_{n}=(\underbrace{\mathcal{N}_{1}(n), \ldots, \mathcal{N}_{|B|}(n)}_{\text {complexity queue lengths }}, \underbrace{u_{1,1}(n), \ldots \ldots, u_{|A|,|B|}(n)}_{\text {worker utilizations }}, \underbrace{\gamma_{1,1}^{\prime}(n), \ldots \ldots, \gamma_{|C|,|P|}^{\prime}(n)}_{\text {SLAs attained }}, q(n))
$$

Single-stage cost:
$c\left(X_{n}\right)=\left(1-\sum_{i=1}^{|A|} \sum_{j=1}^{|B|} \alpha_{i, j} \times u_{i, j}(n)\right)+\left(\sum_{i=1}^{|C|} \sum_{j=1}^{|P|}\left|\gamma_{i, j}^{\prime}(n)-\gamma_{i, j}\right|\right)$
under-utilization of workers
over/under-achievement of SLAS

Constraints:

$$
\begin{aligned}
g_{i, j}\left(X_{n}\right) & =\gamma_{i, j}-\gamma_{i, j}^{\prime}(n) \leq 0, \forall i, j \\
h\left(X_{n}\right) & =1-q(n) \leq 0
\end{aligned}
$$

(SLA attainments)
(Queue Stability)

Constrained Optimization Problem

Parameter

$$
\theta=(\underbrace{W_{1,1}, \ldots \ldots \ldots, W_{|A|,|B|}}_{\text {number of workers }})^{T}
$$

Average Cost $\quad J(\theta) \triangleq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} E\left[c\left(X_{m}\right)\right]$
subject to
SLA constraints $G_{i, j}(\theta) \triangleq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} E\left[g_{i, j}\left(X_{m}\right)\right] \leq 0$,
Queue Stability $H(\theta) \triangleq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=0}^{n-1} E\left[h\left(X_{m}\right)\right] \leq 0$
θ^{*} cannot be found by traditional methods - not a closed form formula!

Lagrange Theory and a Three-Stage Solution

$$
\max _{\lambda} \min _{\theta} L(\theta, \lambda) \triangleq \jmath(\theta)+\sum_{i=1}^{|C|} \sum_{j=1}^{|P|} \lambda_{i, j} G_{i, j}(\theta)+\lambda_{f} H(\theta)
$$

Three-Stage Solution:

inner-most stage simulate the SS for several time steps
intermediate stage estimate $\nabla_{\theta} L(\theta, \lambda)$ using simulation results and then update θ along descent direction
outer-most stage update the Lagrange multipliers λ in the ascent direction using the constraint sample

SASOC Algorithm

Multi-timescale stochastic approximation SASOC runs all three loops simultaneously with varying step-sizes

SPSA for estimating $\nabla L(\theta, \lambda)$ using simulation results
Lagrange theory SASOC does gradient descent on the primal using SPSA and dual-ascent on the Lagrange multipliers

Generalized projection All SASOC algorithms involve a certain generalized smooth projection operator that helps imitate a continuous parameter system

Update rule

$$
W_{i}(n+1)=\bar{\Gamma}_{i}\left[W_{i}(n)+b(n)\left(\frac{\bar{L}(n K)-\bar{L}^{\prime}(n K)}{\delta \Delta_{i}(n)}\right)\right], \forall i=1,2, \ldots, N
$$

where for $m=0,1, \ldots, K-1$,

$$
\begin{aligned}
\bar{L}(n K+m+1) & =\bar{L}(n K+m)+d(n)\left(l\left(X_{n K+m}, \lambda(n K)\right)-\bar{L}(n K+m)\right), \\
\bar{L}^{\prime}(n K+m+1) & =\bar{L}^{\prime}(n K+m)+d(n)\left(l\left(\hat{X}_{n K+m}, \lambda(n K)\right)-\bar{L}^{\prime}(n K+m)\right), \\
\lambda_{i, j}(n+1) & =\left(\lambda_{i, j}(n)+a(n) g_{i, j}\left(X_{n}\right)\right)^{+}, \forall i=1,2, \ldots,|C|, j=1,2, \ldots,|P|, \\
\lambda_{f}(n+1) & =\left(\lambda_{f}(n)+a(n) h\left(X_{n}\right)\right)^{+} .
\end{aligned}
$$

In the above, $l(X, \lambda)=c(X)+\sum_{i=1}^{|C|} \sum_{j=1}^{|P|} \lambda_{i, j} g_{i, j}(X)+\lambda_{f} h(X)$.

Work arrival patterns over a week for five real-life SS supporting IBM's customers

- SASOC is compared against OptQuest - a state-of-the-art optimization package
- on five real-life SS via AnyLogic Simulation Toolkit
- SASOC is an order of magnitude faster than OptQuest and finds better solutions

Outline

Motivation
 The framework
 First-order methods

Commercials

Second-order methods

Applications
Service Systems
Traffic light control

Dilbert on AI

Dilbert.com DilbertCartoonist@gmail.com

Al that benefits humans

Sequential decision making (RL/bandits) setting with rewards evaluated by humans

Going to office

On every day

1. Pick a route to office
2. Reach office and record
(suffered) delay

Why not distort?

Delays are stochastic

In choosing between routes, humans *need not* minimize expected delay

Plans based on average assumptions are wrong on average. - Sam L. Savage

Two-route scenario: Average delay(Route 2) slightly below that of Route 1
Route 2 has a *small* chance of *very* high delay, e.g. jammed traffic

I might prefer Route 1

In choosing between routes,
humans *need not* minimize expected delay

Prospect Theory and its refinement (CPT)

Amos Tversky

Daniel Kahneman

Kahneman \& Tversky (1979) "Prospect Theory: An analysis of decision under risk" is the second most cited paper in economics during the period, 1975-2000

Cumulative prospect theory - Tversky \& Kahneman (1992)
Rank-dependent expected utility - Quiggin (1982)

CPT-value

For a given r.v. X, CPT-value $\mathbb{C}(X)$ is

$$
\mathbb{C}(X):=\underbrace{\int_{0}^{\infty} w^{+}\left(\mathbb{P}\left(u^{+}(X)>z\right)\right) d z}_{\text {Gains }}-\underbrace{\int_{0}^{\infty} w^{-}\left(\mathbb{P}\left(u^{-}(X)>z\right)\right) d z}_{\text {Losses }}
$$

Utility functions $u^{+}, u^{-}: \mathbb{R} \rightarrow \mathbb{R}_{+}, u^{+}(x)=0$ when $x \leq 0, u^{-}(x)=0$ when $x \geq 0$
Weight functions $w^{+}, w^{-}:[0,1] \rightarrow[0,1]$ with $w(0)=0, w(1)=1$

Connection to expected value:

$$
\begin{aligned}
\mathbb{C}(X) & =\int_{0}^{\infty} \mathbb{P}(X>z) d z-\int_{0}^{\infty} \mathbb{P}(-x>z) d z \\
& =\mathbb{E}\left[(X)^{+}\right]-\mathbb{E}\left[(X)^{-}\right]
\end{aligned}
$$

$(a)^{+}=\max (a, 0),(a)^{-}=\max (-a, 0)$

CPT-value

For a given r.v. X, CPT-value $\mathbb{C}(X)$ is

$$
\mathbb{C}(X):=\underbrace{\int_{0}^{\infty} w^{+}\left(\mathbb{P}\left(u^{+}(X)>z\right)\right) d z}_{\text {Gains }}-\underbrace{\int_{0}^{\infty} w^{-}\left(\mathbb{P}\left(u^{-}(X)>z\right)\right) d z}_{\text {Losses }}
$$

Utility functions $u^{+}, u^{-}: \mathbb{R} \rightarrow \mathbb{R}_{+}, u^{+}(x)=0$ when $x \leq 0, u^{-}(x)=0$ when $x \geq 0$
Weight functions $w^{+}, w^{-}:[0,1] \rightarrow[0,1]$ with $w(0)=0, w(1)=1$

Connection to expected value:

$$
\begin{aligned}
\mathbb{C}(X)= & \int_{0}^{\infty} \mathbb{P}(X>z) d z-\int_{0}^{\infty} \mathbb{P}(-X>z) d z \\
& =\mathbb{E}\left[(X)^{+}\right]-\mathbb{E}\left[(X)^{-}\right]
\end{aligned}
$$

$(a)^{+}=\max (a, 0),(a)^{-}=\max (-a, 0)$

Utility and weight functions

Utility functions

For losses, the disutility $-u^{-}$is convex, for gains, the utility u^{+}is concave

Weight function

Overweight low probabilities, underweight high probabilities

CPT-value estimation

Problem: Given samples X_{1}, \ldots, X_{n} of X, estimate

$$
\mathbb{C}(X):=\int_{0}^{\infty} w^{+}\left(\mathbb{P}\left(u^{+}(X)>z\right)\right) d z-\int_{0}^{\infty} w^{-}\left(\mathbb{P}\left(u^{-}(X)>z\right)\right) d z
$$

Nice to have: Sample complexity $O\left(1 / \epsilon^{2}\right)$ for accuracy ϵ

Empirical distribution function (EDF): Given samples X_{1}, \ldots, X_{n} of X,

$$
\hat{F}_{n}^{+}(x)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left(u^{+}\left(x_{i}\right) \leq x\right)}, \quad \text { and } \quad \hat{F}_{n}^{-}(x)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left(u-\left(x_{i}\right) \leq x\right)}
$$

Using EDFs, the CPT-value $\mathbb{C}(X)$ is estimated by

$$
\overline{\mathbb{C}}_{n}=\underbrace{\int_{0}^{\infty} w^{+}\left(1-\hat{F}_{n}^{+}(x)\right) d x}_{\text {Part (I) }}-\underbrace{\int_{0}^{\infty} w^{-}\left(1-\hat{F}_{n}^{-}(x)\right) d x}_{\text {Part (II) }}
$$

Computing Part (I): Let $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$ denote the order-statistics

$$
\operatorname{Part}(I)=\sum_{i=1}^{n} u^{+}\left(X_{[i]}\right)\left(w^{+}\left(\frac{n+1-i}{n}\right)-w^{+}\left(\frac{n-i}{n}\right)\right)
$$

Empirical distribution function (EDF): Given samples X_{1}, \ldots, X_{n} of X,

$$
\hat{F}_{n}^{+}(x)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left(u^{+}\left(x_{i}\right) \leq x\right)}, \quad \text { and } \quad \hat{F}_{n}^{-}(x)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left(u-\left(x_{i}\right) \leq x\right)}
$$

Using EDFs, the CPT-value $\mathbb{C}(X)$ is estimated by

$$
\overline{\mathbb{C}}_{n}=\underbrace{\int_{0}^{\infty} w^{+}\left(1-\hat{F}_{n}^{+}(x)\right) d x}_{\text {Part (I) }}-\underbrace{\int_{0}^{\infty} w^{-}\left(1-\hat{F}_{n}^{-}(x)\right) d x}_{\text {Part (II) }}
$$

Computing Part (I): Let $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$ denote the order-statistics

$$
\operatorname{Part}(I)=\sum_{i=1}^{n} u^{+}\left(X_{[i]}\right)\left(w^{+}\left(\frac{n+1-i}{n}\right)-w^{+}\left(\frac{n-i}{n}\right)\right),
$$

(A1). Weights w^{+}, w^{-}are Hölder continuous, i.e., $\left|w^{+}(x)-w^{+}(y)\right| \leq H|x-y|^{\alpha}, \forall x, y \in[0,1]$
(A2). Utilities $u^{+}(X)$ and $u^{-}(X)$ are bounded above by $M<\infty$

Sample Complexity:

Under (A1) and (A2), for any $\epsilon, \delta>0$, we have

$$
\mathbb{P}\left(\left|\overline{\mathbb{C}}_{n}-\mathbb{C}(X)\right| \leq \epsilon\right)>1-\delta, \forall n \geq \ln \left(\frac{1}{\delta}\right) \cdot \frac{4 H^{2} M^{2}}{\epsilon^{2 / \alpha}}
$$

Special Case: Lipschitz weights ($\alpha=1$)
Sample complexity $O\left(1 / \epsilon^{2}\right)$ for accuracy ϵ
(A1). Weights w^{+}, w^{-}are Hölder continuous, i.e., $\left|w^{+}(x)-w^{+}(y)\right| \leq H|x-y|^{\alpha}, \forall x, y \in[0,1]$
(A2). Utilities $u^{+}(X)$ and $u^{-}(X)$ are bounded above by $M<\infty$

Sample Complexity:

Under (A1) and (A2), for any $\epsilon, \delta>0$, we have

$$
\mathbb{P}\left(\left|\overline{\mathbb{C}}_{n}-\mathbb{C}(X)\right| \leq \epsilon\right)>1-\delta, \forall n \geq \ln \left(\frac{1}{\delta}\right) \cdot \frac{4 H^{2} M^{2}}{\epsilon^{2 / \alpha}}
$$

Special Case: Lipschitz weights ($\alpha=1$)
Sample complexity $0\left(1 / \epsilon^{2}\right)$ for accuracy $\boldsymbol{\epsilon}$

CPT-value optimization

$$
\text { Find } \theta^{*}=\underset{\theta \in \Theta}{\arg \max } \mathbb{C}\left(X^{\theta}\right)
$$

RL application: $\theta=$ policy parameter, $X^{\theta}=$ return

Two-Stage Solution:
inner stage Obtain samples of X^{θ} and estimate $\mathbb{C}\left(X^{\theta}\right)$;
outer stage Update θ using gradient ascent
$\nabla_{i} \mathbb{C}\left(X^{\theta}\right)$ is not given

Challenge: estimating $\nabla_{i} \mathbb{C}\left(X^{\theta}\right)$ given only biased estimates of $\mathbb{C}\left(X^{\theta}\right)$ Solution: use SPSA [Spall'92]

$$
\widehat{\nabla}_{i} \mathbb{C}\left(X^{\theta}\right)=\frac{\overline{\mathbb{C}}_{n}^{\theta_{n}+\delta_{n} \Delta_{n}}-\overline{\mathbb{C}}_{n}^{\theta_{n}-\delta_{n} \Delta_{n}}}{2 \delta_{n} \Delta_{n}^{i}}
$$

$\mathbb{C}_{n}^{\theta_{n} \pm \delta_{n} \Delta_{n}}$ are estimates of CPT-value for policies $\theta_{n} \pm \delta_{n} \Delta_{n}$.
Δ_{n} is a vector of independent Rademacher r.v.s and $\delta_{n}>0$ vanishes asymptotically.

$$
\widehat{\nabla}_{i} \mathbb{C}\left(X^{\theta}\right)=\frac{\overline{\mathbb{C}}_{n}^{\theta_{n}+\delta_{n} \Delta_{n}}-\overline{\mathbb{C}}_{n}^{\theta_{n}-\delta_{n} \Delta_{n}}}{2 \delta_{n} \Delta_{n}^{i}}
$$

$\mathbb{C}_{n}^{\theta_{n} \pm \delta_{n} \Delta_{n}}$ are estimates of CPT-value for policies $\theta_{n} \pm \delta_{n} \Delta_{n}$.
Δ_{n} is a vector of independent Rademacher r.v.s and $\delta_{n}>0$ vanishes asymptotically.

Simulation optimization

CPT-value optimization

Figure 2: Overall flow of CPT-SPSA

How to choose m_{n} to ignore estimation bias? Ensure $\frac{1}{m_{n}^{\alpha / 2} \delta_{n}} \rightarrow 0$

Figure 2: Overall flow of CPT-SPSA

How to choose m_{n} to ignore estimation bias? Ensure $\frac{1}{m_{n}^{\alpha / 2} \delta_{n}} \rightarrow 0$

Application: Traffic signal control

- For any path $i=1, \ldots, \mathcal{M}$ and policy θ, let
- X_{i}^{θ} be the delay r.v.
- B_{i} be the reference delay, calculated with a pre-timed traffic light controller
- μ^{i} be the proportion of traffic on path i
- CPT captures the road users' evaluation of the delay

Goal: $\max _{\theta \in \Theta} \operatorname{CPT}\left(X_{1}^{\theta}, \ldots, X_{\mathcal{M}}^{\theta}\right)=\sum_{i=1}^{\mathcal{M}} \mu_{i}^{\theta} \mathbb{C}\left(B_{i}-X_{i}^{\theta}\right)$

Figure 3: Histogram of the sample delays for the path from node 0 to 1 for AVG-SPSA that minimizes overall expected delay and CPT-SPSA that maximizes CPT-value of differential delay.

Conclusions

Simultaneous perturbation methods can make a difference!

- Simulation: problem cannot be solved via closed-form expressions. System too complex.
- Optimization: hand-tuning too difficult, classic gradient-based approaches are *not* directly applicable
- Simultaneous perturbation methods: widely applicable, easy to implement, handles noisy samples, efficient in high-dimensions!
- Gradient/Hessian Estimation via simultaneous perturbation trick
- Theoretical guarantees: nearly unbiased gradient/Hessian estimates, proven convergence to local optima
- Applications: from queueing networks to transportation to finance.

Acknowledgments

Shalabh Bhatnagar

H L Prasad
(Astrome Tech)

Michael Fu (UMD)

Steve Marcus
(UMD)

Csaba Szepesvari
(U Alberta)

Thank you

Selected publications

Prashanth L.A., S. Bhatnagar, Michael Fu and Steve Marcus (2015), Adaptive system optimization using random directions stochastic approximation, IEEE transactions on Automatic Control.

Prashanth L.A. and M. Ghavamzadeh (2013), Actor-Critic Algorithms for Risk-Sensitive MDPs, NIPS (Full oral) (Longer version in MLJ).
S. Bhatnagar and Prashanth L.A. (2015), Simultaneous Perturbation Newton Algorithms for Simulation Optimization, Journal of Optimization Theory and Applications.

Prashanth L.A., A. Chatterjee and S. Bhatnagar (2014), Two Timescale Convergent Q-learning for Sleep-Scheduling in Wireless Sensor Networks, Wireless Networks.

Prashanth L.A., H.L. Prasad, N. Desai, S. Bhatnagar and G.Dasgupta (2015), Simultaneous Perturbation Methods for Adaptive Labor Staffing in Service Systems, Simulation.
H.L. Prasad, Prashanth L.A., S. Bhatnagar, and N. Desai (2013), Adaptive smoothed functional algorithms for optimal staffing levels in service systems, Service Science (INFORMS).

Xiaowei Hu, Prashanth L.A., András György and Csaba Szepesvári (2016), (Bandit)
Convex Optimization with Biased Noisy Gradient Oracles, AISTATS.

References

Bhatnagar, S., Fu, M. C., Marcus, S. I., Wang, I., et al. (2003). Two-timescale simultaneous perturbation stochastic approximation using deterministic perturbation sequences. ACM TOMACS, 13(2):180-209.
Dippon, J. (2003). Accelerated randomized stochastic optimization. The Annals of Statistics, 31(4):1260-1281.

Fabian, V. (1971). Stochastic approximation. In Optimizing Methods in Statistics (ed. J.J.Rustagi), pages 439-470, New York. Academic Press.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. (2005). Online convex optimization in the bandit setting: gradient descent without a gradient. In SODA, pages 385-394.

Katkovnik, V. Y. and Kulchitsky, Y. (1972). Convergence of a class of random search algorithms. Automation Remote Control, 8:1321-1326.
Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3):462-466.
Kushner, H. J. and Clark, D. S. (1978). Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer Verlag, New York.

Maryak, J. L. and Chin, D. C. (2008). Global random optimization by simultaneous perturbation stochastic approximation. IEEE Transactions on Automatic Control, 53:780-783.

Nesterov, Y. and Spokoiny, V. (2011). Random gradient-free minimization of convex functions. Foundations of Computational Mathematics, pages 1-40.
Polyak, B. and Tsybakov, A. (1990). Optimal orders of accuracy for search algorithms of stochastic optimization. Problems in Information Transmission, pages 126-133.

Prashanth, L. A., Bhatnagar, S., Fu, M., and Marcus, S. (2017). Adaptive system optimization using random directions stochastic approximation. IEEE Transactions on Automatic Control.

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control, 37(3):332-341.

Bonus Application:
 Risk-Sensitive Reinforcement Learning

Risk-Sensitive Sequential Decision-Making

- a criterion that penalizes the variability induced by a given policy
- minimize some measure of risk as well as maximizing a usual optimization criterion

Risk-Sensitive Sequential Decision-Making

Objective: to optimize a risk-sensitive criterion such as

- expected exponential utility (Howard \& Matheson 1972)
- variance-related measures (Sobel 1982; Filar et al. 1989)
- percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria
mainly negative results:
(e.g., Sobel 1982; Filar et al., 1989; Mannor \& Tsitsiklis, 2011)

Discounted Reward MDPs

A class of parameterized stochastic policies $\left\{\pi(\cdot \mid x ; \theta), x \in \mathcal{X}, \theta \in \Theta \subseteq \Re^{\kappa_{1}}\right\}$

$$
\text { Return: } D^{\theta}(x)=\sum_{n=0}^{\infty} \gamma^{n} r\left(x_{n}, a_{n}\right) \mid x_{0}=x, \theta
$$

$$
\text { Mean of Return: } V^{\theta}(x)=\mathbb{E}\left[D^{\theta}(x)\right]
$$

$$
\text { Variance of Return: } \Lambda^{\theta}(x)=\mathbb{E}\left[D^{\theta}(x)^{2}\right]-V^{\theta}(x)^{2}=U^{\theta}(x)-V^{\theta}(x)^{2}
$$

Optimization Problem

$$
\begin{gathered}
\max _{\theta} V^{\theta}\left(x^{0}\right) \text { s.t. } \Lambda^{\theta}\left(x^{0}\right) \leq \alpha \\
\mathbb{\Vdash} \\
\max _{\lambda} \min _{\theta} L(\theta, \lambda) \triangleq-V^{\theta}\left(x^{0}\right)+\lambda\left(\Lambda^{\theta}\left(x^{0}\right)-\alpha\right)
\end{gathered}
$$

Figure 4: Solving the risk-sensitive MDP

Why Estimating the Gradient is Challenging?

The Gradient $\nabla_{\theta} L(\theta, \lambda)$

$$
\begin{aligned}
(1-\gamma) \nabla_{\theta} V^{\theta}\left(x^{0}\right) & =\sum_{x, a} d_{\gamma}^{\theta}\left(x, a \mid x^{0}\right) \nabla_{\theta} \log \pi(a \mid x ; \theta) Q^{\theta}(x, a) \\
\left(1-\gamma^{2}\right) \nabla_{\theta} U^{\theta}\left(x^{0}\right) & =\sum_{x, a} \widetilde{d}_{\gamma}^{\theta}\left(x, a \mid x^{0}\right) \nabla_{\theta} \log \pi(a \mid x ; \theta) W^{\theta}(x, a) \\
& +2 \gamma \sum_{x, a, x^{\prime}} \widetilde{d}_{\gamma}^{\theta}\left(x, a \mid x^{0}\right) P\left(x^{\prime} \mid x, a\right) r(x, a) \nabla_{\theta} V^{\theta}\left(x^{\prime}\right)
\end{aligned}
$$

$d_{\gamma}^{\theta}\left(x, a \mid x^{0}\right)$ and $\widetilde{d}_{\gamma}^{\theta}\left(x, a \mid x^{0}\right)$ are γ and γ^{2} discounted visiting state distributions of the Markov chain under policy θ

Why Simultaneous Perturbation?

Challenge: estimating $\nabla_{\theta} L(\theta, \lambda)$

- two different sampling distributions (d_{γ}^{θ} and $\tilde{d}_{\gamma}^{\theta}$) used for $\nabla V^{\theta}\left(x^{0}\right)$ and $\nabla U^{\theta}\left(x^{0}\right)$
- $\nabla V^{\theta}\left(x^{\prime}\right)$ appears in the second sum of $\nabla U^{\theta}\left(x^{0}\right)$ equation

Solution: use SPSA (Spall 1992)

$$
\nabla_{i} V^{\theta_{n}}\left(x^{0}\right) \approx \frac{V^{\theta_{n}+\beta_{n} \Delta_{n}}\left(x^{0}\right)-V^{\theta_{n}}\left(x^{0}\right)}{\beta_{n} \Delta_{n}^{(i)}}, \quad i=1, \ldots, \kappa_{1}
$$

$\Delta_{n}=\left(\Delta_{n}^{(1)}, \ldots, \Delta_{n}^{\left(\kappa_{1}\right)}\right)^{\top}$ is a vector of independent Rademacher random variables and
β_{n} are perturbation constants that vanish asymptotically

Traffic Control Application

Traffic Signal Control MDP:

State. $\quad x_{n}=(\underbrace{q_{1}(n), \cdots, q_{N}(n)}_{\text {queue lengths }}, \underbrace{t_{1}(n), \cdots, t_{N}(n)}_{\text {elapsed times }})$
Actions. $a_{n}=\left\{\right.$ feasible sign configurations in state $\left.s_{n}\right\}$
Cost. $r\left(x_{n}, a_{n}\right)=-\left[\xi_{1} \times\left(\sum_{\left.i \in\right|_{p}}\left(q_{i}(n)+t_{i}(n)\right)\right)+\xi_{2} \times\right.$

$$
\left.\left(\sum_{\left.i \notin\right|_{p}}\left(q_{i}(n)+t_{i}(n)\right)\right)\right]
$$

Aim: find a risk-sensitive control strategy that minimizes the total delay experienced by road users, while also reducing the variations

Simulation Results

(a) Distribution of $D^{\theta}\left(x^{0}\right)$

(b) Total Arrived Road Users

[^0]: ${ }^{1}$ J. C. Spall (2000), "Adaptive stochastic approximation by the simultaneous perturbation method," IEEE TAC.
 ${ }^{2}$ Prashanth L. A. et al. (2016) "Adaptive system optimization using random directions stochastic approximation," IEEE TAC.

[^1]: ${ }^{1}$ Here $\widehat{H}_{n}(i, j)$ and $\nabla_{i j}^{2} f(\cdot)$ denote the (i, j) th entry in the Hessian estimate \widehat{H}_{n} and the true Hessian $\nabla^{2} f(\cdot)$, respectively.

