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ABSTRACT

Utility-Based Shortfall Risk (UBSR) is a convex risk measure with many desirable

properties which make it preferable over other commonly used risk measures such

as Value-at-Risk. UBSR makes use of a utility function for penalizing large losses.

We consider the task of optimization of UBSR within a parameterized class of

random variables. Optimization of UBSR is tackled under two different settings.

First, we consider the bandit feedback setting where the optimization problem is

modeled as the problem of minimizing simple regret. We apply Stochastic Risk

Optimistic Optimization (StoROO) algorithm developed for optimizing general

risk measures. We derive upper and lower confidence bounds required by the

algorithm using concentration inequalities derived for UBSR. We also obtain upper

bound on the simple regret.

Next, we consider the optimization of UBSR using stochastic gradient descent

(SGD) algorithm, and derive a non-asymptotic bound for the last iterate of SGD.

We propose a certain step size sequence and batch size sequence to obtain an upper

bound on the error of the order O(1/
√

n) where n is the number of iterations for

which SGD is run. We also consider UBSR optimization when the samples follow

a Markov chain and are not independent and identically distributed (i.i.d). The

derived bound is of the order O(
√

logn/n).
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CHAPTER 1

Introduction

Risk minimization is an important consideration in many financial applications

such as portfolio optimization. A risk measure is usually defined as a property of

the probability distribution of returns/losses. Some of the widely studied risk mea-

sures are Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR) [28], Cumulative

Prospect Theory (CPT) [31]. VaR has been in use for financial applications since the

1990s. In recent years, CVaR has replaced VaR as a preferable risk measure because

of several shortcomings of the latter risk measure. One such problem is that VaR

does not take into account the size of large losses in case of severe default events.

On the other hand, CVaR is a coherent risk measure with desirable properties

such as homogeneity, sub-additivity, translational invariance and monotonicity,

cf. [1]. In [11], the authors propose to replace the properties of homogeneity and

sub-additivity with convexity and thereby define a convex risk measure as a risk

measure with the following properties: (i) convexity; (ii) translational invariance;

and (iii) monotonicity.

Utility-Based Shortfall Risk (UBSR) which was first introduced in [11] is a risk

measure which belongs to the class of convex risk measures as well. For a given

loss function (representing some risk attitude) and a threshold value (risk level),

the UBSR of a financial position is the minimum amount of capital needed to be

added to the position such that the new position’s risk level is below the prescribed

risk level. Apart from being a convex risk measure, UBSR also has the following

properties: (i) UBSR is invariant under randomization i.e, if two random variables



have acceptable levels of risks, then the risk of the diversified position does not

exceed the weighted sum of risks, cf. [13]; and (ii) In UBSR, a convex utility func-

tion is used to penalize the loss, which increases with the increase in loss. This

utility function sometimes also referred to as loss function could be used to encode

investor’s risk preferences. Combined with the fact that CVaR is calculated by

only using the values of the loss distribution beyond a certain quantile, it can be

argued that UBSR as a risk measure is more desirable than CVaR.

In this work, we consider optimization of UBSR within a parameterized class of

random variables. A possible application of this optimization problem is as fol-

lows: suppose a portfolio manager desires to invest a fixed amount of capital in 2

different assets. She has to decide on a ratio in which she would like to distribute

the capital between the assets. For a chosen ratio, say θ, the resulting portfolio

would be exposed to a certain amount of risk which could be quantified using

UBSR. The goal of minimization of the risk becomes the problem of optimizing

UBSR. Refer [17], [5] and [10] for the usage of UBSR in the context of portfolio

optimization.

UBSR optimization is studied under two different settings in this work. First,

we consider the problem under bandit feedback where the optimization problem

is modeled as the problem of minimizing the simple regret. We apply StoROO

(Stochastic Risk Optimistic Optimization) algorithm proposed in [30]. We con-

struct confidence intervals for UBSR using the concentration inequalities derived

in [25]. Regret bounds are obtained based on the generic regret analysis described

in [30].

Next, we propose a Stochastic Gradient Descent (SGD) algorithm and derive non-

asymptotic bounds for the last iterate of SGD. Stochastic gradient methods are very

useful tools in stochastic optimization problems. They have been studied widely

2



in the past couple of decades owing to their applications in large scale machine

learning, refer [7] for a survey on the non-asymptotic analysis of these methods.

In order to estimate the gradient of UBSR, we make use of the sensitivity formula

derived in [17]. UBSR derivative estimate requires one to estimate UBSR value

using a batch of samples. Such an estimate is biased meaning the estimation error

does not have zero expectation. This results in UBSR derivative estimate having a

bias which depends on the batch size used to estimate UBSR derivative.

The non-asymptotic analysis provided here is based on the non-asymptotic analy-

sis of last iterate SGD provided in [18]. Here, the authors assume that the gradient

estimate is unbiased and propose a new step size sequence for obtaining infor-

mation theoretically optimal bounds of the order O(1/
√

n) where n is the number

of iterations for which SGD is run. In this work, we propose a modified batch

size sequence for estimation purposes along with the modified step size sequence

for obtaining non-asymptotic bounds of the order O(1/
√

n). We also derive non-

asymptotic bounds in the case where the samples are not i.i.d. but follow a Markov

chain. The resulting bounds are of the order of O(
√

logn/n).

The rest of the report is organized as follows: In Chapter 2, we discuss the liter-

ature related to our work. In Chapter 3, we provide formal definition of the risk

measure UBSR followed by its estimation methods. In Chapter 4, we describe

the optimization of UBSR using bandit feedback. In Chapter 5, we describe the

optimization of UBSR using stochastic gradient descent. In Chapter 6, we provide

concluding remarks.
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CHAPTER 2

Literature Survey

2.1 Risk Estimation

The estimation and optimization of risk measures such as Mean-Variance, VaR,

CVaR, CPT, UBSR have been explored in the past couple of decades. In [16], the

authors provide a review of Monte Carlo methods for the estimation of VaR and

CVaR. [28] deals with the optimization of Conditional Value-at-Risk. In [26], the

authors derive concentration bounds for the estimation of CVaR for both light-

tailed and heavy-tailed distributions. In [10], the authors make use of stochastic

root finding and importance sampling schemes for the estimation of utility-based

shortfall risk. [17] provide Monte Carlo techniques for estimating UBSR. They also

provide framework for the optimization of UBSR. In [21], the authors explore the

estimation and optimization of UBSR where the data arrives in an online fashion.

2.2 Risk-Aware Bandits

In [20], [15] and [12] the authors consider the CVaR optimization problem in a

best-arm identification framework under a fixed budget. [2] and [29] focus on the

optimization of empirical variance in the multi-armed bandits setting. Optimiza-

tion of weighted bandits with the weight distortion function based on Cumulative

Prospect Theory (CPT) has been dealt with in [14]. The StoROO algorithm devel-

oped in [30] is a modified version of Stochastic Optimistic Optimization (StoOO)



proposed in [23]. StoOO deals with maximizing conditional expectation. In [30],

the authors provide confidence bounds for optimizing conditional quantiles (VaR)

and CVaR.

2.3 Risk Optimization using SGD

In [8], the author provides various results and theorems on convex optimization

and gradient descent schemes. In [22], the authors derive non-asymptotic bounds

for both last iterate SGD (Robins-Munro algorithm) and SGD where the iterates

are averaged (Polyak-Rupert averaging) assuming both strongly and non strongly

convex objectives. However, it is assumed that the gradient estimate is unbiased.

[9], [3] consider finite-sample analysis of zeroth order stochastic approximation,

but they assume zero-mean noise on the function measurements, which is not

the case for UBSR optimization considered here. [4] and [24] consider stochastic

approximation of an abstract objective function where the function measurements

are biased, and the bias can be controlled through a batch size. In [25], the authors

use the estimation scheme from [17] to establish concentration inequalities for

UBSR estimation.
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CHAPTER 3

Utility-Based Shortfall Risk

3.1 Definition

For the definition of the risk measure UBSR, a convex utility function ℓ(.) and a

risk level λ need to be specified. An acceptance set A for a random variable X is

defined as follows:

A := {X ∈ L∞ : E[ℓ(−X)] ≤ λ} (3.1)

where L∞ denotes the set of bounded random variables and the expectation is

taken with respect to the distribution of the random variable X.

Using the definition of the acceptance set, for a given utility function and a risk

level, the utility-based shortfall risk (UBSR) is defined as

SRℓ,λ(X) := in f {t ∈ R : t + X ∈ A} (3.2)

In financial terms, UBSR can be defined as the minimum cash needed to be added

to the financial position to make the risk fall below the prescribed level i.e, make

the new position acceptable.

An interesting thing which can be observed about UBSR is that by defining the

utility function as ℓ(x) = 1{x>0}, Value-at-Risk can be written in terms of UBSR as

follows:

VaR1−λ(X) = in f {t ∈ R : E[ℓ(−t − X)] ≤ λ} (3.3)



From the utility function used for VaR, it can be seen that VaR penalizes all positive

losses equally whereas UBSR uses a non-decreasing convex function to penalize the

loss resulting in large penalties for large losses. Two widely used utility functions

are exponential function, ℓ(x) = exp(βx), β > 0 and the piecewise polynomial

function, ℓ(x) = η−1([x]+)η, η > 1.

3.2 UBSR Estimation using Sample Average Approxi-

mation

Define the function

g(t) := E[ℓ(−t − X)] − λ. (3.4)

The following assumption on g is necessary for the next claim.

Assumption 1. There exists tl, tu such that g(tl) > 0 and g(tu) < 0.

Using the above assumption and convexity and monotonicity of ℓ(.), it is shown in

[10] that SRℓ,λ(X) is the unique root of the equation g(t∗) = 0, i.e., SRℓ,λ(X) = t∗. For

the estimation of UBSR, [17] propose the following procedure based on Sample

Average Approximation (SAA). Define ξ = −X where ξ represents random loss.

Given n i.i.d. samples ξ1, ξ2, ..., ξm of ξ, the estimate of UBSR is the solution to

the following optimization problem

min
t∈T

t

subject to
1
m

m∑
j=1

ℓ(ξ j − t) ≤ λ.
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If ℓ is increasing, The estimate tm of UBSR is the unique root of the equation

1
m

m∑
j=1

ℓ(ξ j − t) = λ. (3.5)

Bisection Search method as proposed in [17] can be used to solve (3.5).

Algorithm 1 Bisection Search

Input: risk level λ; m; Samples ξ1, ξ2,....,ξm;
Define: Utility function ℓ()
Initialization: tl such that g(tl) > λ; tu such that g(tu) < λ; e = 1;
while |e| > 10−6 do

ti = (tl + tu)/2
e = λ − 1

m

∑m
j=1 ℓ(ξ j − ti)

if e < 0 then
tl = ti

else
tu = ti

end if
end while
Return ti

3.3 UBSR Estimation using Stochastic Approximation

Stochastic root-finding problems can be solved using stochastic approximation al-

gorithms, see [6]. The following stochastic approximation update (Robins-Munro

Algorithm) is proposed by [10] for estimating UBSR:

tk+1 = Π(tk + ak(ĝ(tk))), (3.6)

where ak is the step-size, ĝ(tk) = ℓ(ξk − tk) − λ is an estimate of g(t) obtained using

the sample sequence {ξi} and Π : R→ [tl, tu] is a projection operator.

8



CHAPTER 4

UBSR Optimization in a X-Armed Bandits Framework

4.1 Problem Formulation

The optimization problem under the bandit framework is the problem of choosing

the best arm which minimizes the simple regret. In contrast to K-armed bandits

problem, instead of choosing the best arm out of a finite set of arms, the best

arm, x is chosen from a continuous input space X ⊂ [0, 1]D. In each time step

t, arm xt is chosen and we obtain the value f (xt, ωt) where f is an unknown

function outputting the value of the financial position for the chosen xt and ωt ∈ Ω

whereΩ denotes the probability space representing uncontrollable variables. The

distribution corresponding to f (x, .) is denoted by Px. A risk measure h can be

defined as some function ψ of the probability distribution Px as Γ(x) = ψ(Px). It is

assumed that there exists at least one x∗ ∈ X such that Γ(x∗) = supx∈X Γ(x). The goal

is to minimize the simple regret rT = Γ(x∗) − Γ(xT) with xT the value returned after

using a budget T.

4.2 Hierarchical Partitioning

In bandit algorithms, an Upper Confidence Bound(UCB) is maintained for each

arm and the algorithm chooses the arm with the highest UCB in each round. Since

inX-armed bandits setting, arm needs to be chosen from a continuous input space



X, a technique known as Hierarchical partitioning is used to partition the input

space in each round and the candidate arms are the centers of all the existing

partitions. Depending on certain conditions, a partition(cell) can be expanded into

K sub-regions.

Let Ph, j denote j-th cell at depth h. Then

P0,1 = X, Ph, j =

K−1⋃
i=0

Ph+1, j−i (4.1)

The following assumptions are made while applying the hierarchical partitioning:

Assumption 2. There exists a decreasing sequence δ(h), such that for any h ≥ 0 and for

any cell Ph, j, supx∈Ph, j ||x − xh, j||∞ ≤ δ(h) with xh, j the center of Ph, j.

Assumption 3. There exists ν > 0 such that every cell of depth h contains a ball of radius

νδ(h).

Tt denotes the resulting tree after having expanded some cells till time step t. The

nodes of the tree correspond to different cells. Lt denotes the set of leaf nodes

of Tt. The Upper Confidence Bound(UCB) is defined using a piecewise constant

function U. For all x ∈ Ph, j, define Ūh, j such that U(x) = Ūh, j.

The following smoothness property in the neighborhood of the global maxima is

assumed:

∀x ∈ X, Γ(x∗) − Γ(x) ≤ β||x − x∗||γ with β, γ > 0 (4.2)

In order to create confidence bounds for each cell, the algorithm samples the

nodes in Lt at their centers. Then using the deviation inequalities corresponding

to the chosen risk measure, Uh, j is calculated. However this value is the UCB

corresponding to only the center of the cell (h, j). In order to create UCB for the
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entire cell Ūh, j, a bias term Bh, j is added. The resulting UCB is given as:

Ūh, j = Uh, j + Bh, j, Bh, j = β̂δ(h)γ̂, β̂ ≥ β, γ̂ ≤ γ (4.3)

For each cell, the algorithm also needs a lower confidence bound(LCB) in order to

provide guarantees on the value of Γ. It is denoted by Lh, j.

4.3 Stochastic Risk Optimistic Optimization (StoROO)

Algorithm

The StoROO algorithm requires the following inputs: (i) error probability η, (ii)

number of children K, (iii) time horizon T, (iv) β̂, (v) γ̂ and (vi) functions to

calculate UCB and LCB. Initially, the input space is expanded into K sub-regions

and sampled once. Lt represents the set of leaf nodes after t rounds. For each cell

(h, j) in Lt, Ūh, j(t) is computed. The cell with the maximum Ūh, j(t) is selected. It is

denoted byPht, jt . There are two possibilities for the selected cell. The algorithm can

either sample again from the selected cell which results in reduction in variance or

expand this cell which causes reduction in bias. The algorithm decides to expand

the cell when the following condition holds:

Uht, jt − Lht, jt ≤ β̂δ(h)γ̂ (4.4)

Denote the set of nodes having the highest LCB among the expanded nodes by LT.

When the budget T gets over, StoROO returns the node with the highest Γ̂ among

the deepest nodes of LT.

11



Algorithm 2 StoROO

Input: error probability η > 0; number of children K; time horizon T; β̂ > 0;
γ̂ > 0;
Define: UCB and LCB
Initialization: n = 1; t = 1;
Expand into K sub-regions the root node (0, 0) and sample one time each child
while n ≤ T do

for (h, j) ∈ Lt do
compute Ūh, j(t)

end for
Select (h̃, j̃) = argmax(h, j)∈LtŪh, j(t)
Compute the LCB Lh̃, j̃(t)
if Uh̃, j̃ − Lh̃, j̃ ≤ β̂δ(h)γ̂ then

expand the node, remove h̃, j̃ from Lt, add to Lt the K sub-cells of Ph̃, j̃
and sample each new node once, n = n + K, t = t + 1

else
sample the state xt = xh̃, j̃ and collect the observation Yxht , jt

, n = n + 1,
t = t + 1

end if
end while
Return the node according to the returning rule

4.4 Generic Regret Bound

Define the eventAη in the following way:

Aη =
⋂

T≥t≥1

⋂
Ph, j∈Tt

{Uη
h, j(t) ≥ Γ(xh, j),L

η
h, j(t) ≤ Γ(xh, j)} (4.5)

The regret bounds can be derived only if one can construct the confidence bounds

such that the probability of eventAη is at least 1 − η.

The following definition of the event Bη and the vector of safe constants will be

useful in deriving the regret bound based on the number of times a node has to be

sampled before expansion.

Definition 1. Let mη,h(θ, κ, α) = log(θT2/η)
(

κ
β̂δ(h)γ̂

)α
and Nh, j(t) =

∑t
s=1 1X(s)∈Ph, j , a vector

of safe constants ν = (θ, κ, α) is composed of constants θ > 0, κ > 0, and α > 0 such that

12



the event

Bη =
⋂

T≥t≥1

⋂
Nh, j≥mη,h(θ,κ,α)

⋂
Ph, j∈Tt

{Uη
h, j(t) − Lηh, j(t) ≤ β̂δ(h)γ̂}

has a probability at least 1 − η

The following definition of the ν-near optimality dimension is used to calculate

the minimum depth reached by StoROO with a budget T.

Definition 2. The ν-near optimality dimension is the smallest d ≥ 0 such that for all

ϵ ≥ 0, there exists C ≥ 0 such that the maximal number of disjoint lβ̂,γ̂-balls of radius νϵ

with center in Xϵ is less than Cϵ−d.

In the above definition, lβ̂,γ̂ is the Holderian semi-metric given by lβ̂,γ̂(x, x′) =

β̂||x − x′||γ̂. It is shown in [23] that the near optimality dimension is given by

d = D(1/γ̂ − 1/γ), where γ depends on the smoothness property of the function g

under consideration as defined in (4.2) and D is the dimension of the parameter

spaceX. If one has the smoothness information about the function, i.e., if we know

the value of γ, by setting γ̂ = γ, we can make d = 0.

The following theorem as proposed in [30] provides a generic regret bound for

StoROO algorithm.

Theorem 1. Assume that δ(h) = cρh for some c ≥ 0 and ρ < 1, and assume that

ν = (θ, κ, α). Thus with probability P(Aη ∩ Bη), the regret of StoROO is bounded as

rT ≤ c1

[
log(θT2/η)

T

] 1
d+α

with c1 = 2β̂
[
KCκα[2β̂]−d

(1 − ρdγ̂+γ̂α)

] 1
d+α

(4.6)

The reader is advised to refer [30] for more details on the analysis of the algorithm.
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4.5 Regret Bound for UBSR

In this section, we apply the StoROO algorithm for optimizing the risk measure

UBSR. It involves using concentration inequalities derived for UBSR and to arrive

at the upper and lower confidence bounds for StoROO algorithm. Using the UCB,

LCB and the definition of the probability of event Bη, we arrive at the vector of

safe constants (θ, κ, α). Plugging the vector of safe constants into the generic regret

bound expression, we get the regret bound for UBSR. Here we are dealing with the

problem of minimizing UBSR. The algorithm is developed for maximizing Γ(x).

Hence we define Γ(x) = −SRλ(X).

The algorithmic procedure for optimizing UBSR involves running algorithm 2 with

the UCB and LCB derived for UBSR. The pseudocode for the estimation of UBSR

using Bisection Search is provided in algorithm 1.

For deriving confidence intervals, we use the deviation inequalities provided in

[25].

Theorem 2. Let Y be a r.v. satisfying the Bernstein’s condition with parameters σ2, b.

Let the utility function in the definition of SRλ(Y) be L1-Lipschitz. Let ξn,λ be the solution

to the constrained problem in (3.5). Then, for any ϵ
L1
> 32σ2

√
n

P(|ξn,λ − SRλ(Y)| > ϵ) ≤ exp

−n
(
ϵ
L1
−

32σ2

√
n

)2 (4.7)

The following proposition is the main contribution of our work.

Proposition 1. For any η > 0, for all h ≥ 0, for all 0 ≤ j ≤ Kh and for all 1 ≤ t ≤ T,

14



define

Uη
h, j(t) = −ξ

t
n,λ(h, j) + L1


√

log(T2/η) + 32σ2√
Nh, j(t)

 (4.8)

Lηh, j(t) = −ξ
t
n,λ(h, j) − L1


√

log(T2/η) + 32σ2√
Nh, j(t)

 (4.9)

with ξt
n,λ(h, j) as the solution to (3.5)

Proof. Consider the event,

ξη = {∀h ≥ 0,∀0 ≤ j ≤ Kh, 1 ≤ t ≤ T, |ξt
n,λ(h, j) − SRλ(Yxh, j)| ≥ ϵ

η
Nh, j(t)
}

P(ξη) = P(∀h ≥ 0,∀0 ≤ j ≤ Kh, 1 ≤ t ≤ T, |ξt
n,λ(h, j) − SRλ(Yxh, j)| ≥ ϵ

η
Nh, j(t)

)

Let m ≤ T be the total number of nodes present in Tt after the budget is exhausted.

For some 1 ≤ w ≤ m, ζs
w denote the s-th time when the cell w has been sampled.

Let Yw(ζs
w) denote the reward obtained by playing the arm xw. Using this,

P
(
|ξt

n,λ(h, j) − SRλ(Yxh, j)| ≥ ϵ
η
Nh, j(t)

)
= P

 1
Nh, j(t)

|in f {z ∈ R |
1

Nh, j(t)

Nh, j(t)∑
s=1

l(Yh, j(ζs
h, j) − z) ≤ λ} − SRλ(Yxh, j)| ≥ ϵ

η
Nh, j(t)


With this, we get:

P(ξη) ≤ P(∃1 ≤ w ≤ T,∃1 ≤ u ≤ T, | in f {z ∈ R |
1
u

u∑
s=1

l(Yw(ζs
w) − z) ≤ λ} − SRλ(Yxw)| ≥ ϵηu)

≤

T∑
w=1

T∑
u=1

P(in f {z ∈ R |
1
u

u∑
s=1

l(Yw(ζs
w) − z) ≤ λ} − SRλ(Yxw)| ≥ ϵηu)

≤

T∑
w=1

T∑
u=1

exp

−u
(
ϵηu
L1
−

32σ2

√
u

)2
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Substituting ϵηu = L1

(√
log(T2/η)+32σ2

√
u

)
we get,

P(ξη) ≤
T∑

w=1

T∑
u=1

η

T2 = η

□

We now state the regret bound of StoROO for UBSR optimization.

Theorem 3. Assume that δ(h) = cρh for some c ≥ 0 and ρ < 1, and assume that

ν = (θ, κ, α). Thus with probability P(Aη∩Bη), the regret of StoROO for the optimization

of utility-based shortfall risk is bounded as

rT ≤ c1

[
log(T2/η)

T

] 1
d+2

with c1 = 2β̂
[
KCκ2[2β̂]−d

(1 − ρdγ̂+2γ̂)

] 1
d+2

and κ = 2L1

1 +
32σ2√

log(T2/η)

 (4.10)

Proof. Using the UCB and LCB, we obtain the vector of safe constants which can

be plugged into the generic regret bound to get the regret bound for UBSR. The

node (h, j) is expanded when Uη
h, j(t) − Lηh, j(t) ≤ β̂δ(h)γ̂. Substituting the values,

β̂δ(h)γ̂ ≥ 2L1


√

log(T2/η) + 32σ2√
Nh, j(t)


Nh, j(t) ≥

(
2L1

β̂δ(h)γ̂

)2 (√
log(T2/η) + 32σ2

)2

Nh, j(t) ≥
(

2L1

β̂δ(h)γ̂

)2

log(T2/η)

1 +
32σ2√

log(T2/η)

2

(4.11)

The node expansion is done when Nh, j(t) ≥ mη,h(θ, κ, α) where

mη,h(θ, κ, α) = log(θT2/η)
(

κ

β̂δ(h)γ̂

)α
(4.12)
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Comparing (4.11) and (4.12), we get the vector of safe constants

(θ, κ, α) =

1, 2L1

1 +
32σ2√

log(T2/η)

 , 2

 (4.13)

Using the vector of safe constants and Theorem 1, we obtain the regret bound for

UBSR. □

Assuming the knowledge of the function smoothness near optimum, we can set

d = 0 and the regret bound turns out to be of the order O
(√

log(T2)
T

)
. The order

of the regret bound for UBSR optimization is comparable to the optimization of

quantile (VaR) and CVaR as derived in [30].
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CHAPTER 5

UBSR optimization using Stochastic Gradient Descent

In this chapter, we consider the problem of optimization of UBSR assuming con-

vexity of SRλ(X(θ)) as a function of θ. It is also assumed that we only have access

to the values {ξi} taken from the distribution of −X(θ) in each iteration given a

parameter θ. The Stochastic Gradient Descent (SGD) update for the optimization

of UBSR is given as follows:

θk+1 = ΠΘ(θk − akh′m(θk)) (5.1)

where ak is a step-size parameter, h′m(θk) is an estimate of dSRλ(θ)
dθ using m samples

and ΠΘ is the projection on to the set Θ. Note that we don’t have direct access to

the gradient of UBSR. One has to compute an estimate of dSRλ(θ)
dθ using the samples

{ξi, ξ2, ...., ξm} before running the update in (5.1).

In the next section, we describe the scheme for the estimation of UBSR derivative

followed by a lemma on the rate at which the derivative estimate converges to the

UBSR derivative.

5.1 Estimation of UBSR Derivative

The expression for the derivative of SRλ(X(θ)) with respect to θ is derived by [17].

dSRλ(θ)
dθ

=
A(θ)
B(θ)

, (5.2)



where A(θ) = E[ℓ′(ξ(θ) − SRλ(θ)))ξ′(θ)], and B(θ) = E[(ℓ′(ξ(θ) − SRλ(θ))].

[17] also provide a scheme for estimating the UBSR derivative. The expression for

the same is given as follows:

h′m(θ) =
Am

Bm
, (5.3)

where Am(θ) = 1
m

m∑
i=1
ℓ′(ξi(θ) − tm(θ))ξ′i(θ), Bm(θ) = 1

m

m∑
i=1
ℓ′(ξi(θ) − tm(θ)).

It is important to note that Am(θ) and Bm(θ) are not unbiased estimates of A(θ) and

B(θ), since the UBSR estimate tm(θ) is biased. This results in h′m(θ) being a biased

estimate of dSRλ(θ)
dθ .

The analysis on the consistency property of the UBSR derivative estimate is done

by [21]. Here we provide the assumptions required for the analysis. Recall that

ξ = −X and g(t) := E[ℓ(−t − X)] − λ.

Assumption 4. supθ∈Θ E(ξ(θ)2) ≤M1.

Assumption 4 requires the second moment of ξ to be bounded for all θ ∈ Θwhich

is necessary to ensure that the sample-based estimate is asymptotically consistent.

Assumption 5. Assumptions 1 holds for every θ ∈ Θ.

Assumption 5 is necessary so that the UBSR can be estimated by solving (3.5).

Assumption 6. The partial derivatives ∂ℓ(ξ(θ− t(θ))))/∂θ, ∂ℓ(ξ(θ)− t(θ))/∂t exist w.p.

1, and there exists a β1 > 0 such that

E
[
(ℓ′(ξ(θ) − SRλ(θ)))2

]
≤ β1 < ∞,∀θ ∈ Θ.

Assumption 6 is necessary so that Am and Bm converge asymptotically to A and B

respectively and the error is normally distributed, see [17].
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Assumption 7. The loss function ℓ(·) satisfies w.p. 1

|ℓ′(ξ(θ) − t)| ≤ L1, |ℓ
′′(ξ(θ) − t)| ≤ L2,∀(θ, t) ∈ Θ × [tl, tu].

Assumption 7 is required for deriving the expression in (5.2).

Assumption 8. The loss function ℓ(·) is twice differentiable, and for any θ ∈ Θ, ℓ′(ξ(θ)−

SRλ(θ)) > η w.p. 1.

Assumption 9. supθ∈Θ |ξ
′(θ)| ≤M2, and ξ′ is L3-Lipschitz for all θ ∈ Θ w.p. 1.

Assumptions 7–9 are necessary to ensure that ℓ′(ξ(θ)−SRλ(θ))ξ′(θ) is Lipschitz. We

now state the lemma corresponding to the consistency property of UBSR derivative

as provided in [21].

Lemma 1. Under Assumptions 4–9, for all m ≥ 1, the UBSR derivative estimator (5.3)

satisfies

E
∣∣∣∣∣h′m(θ) −

dSRλ(θ)
dθ

∣∣∣∣∣ ≤ C1
√

m
, and E

∣∣∣∣∣h′m(θ) −
dSRλ(θ)

dθ

∣∣∣∣∣2 ≤ C2,

where C1 =

√
β1ςM1(L1L3+2M2L2)

η2 and C2 =
16β2

1M2
2

η4 . Here the constants β1,L1,L2, L3,M1,M2

and η are as specified in assumptions 4–9 above and ς is a universal constant.

5.2 Non-Asymptotic Bound for UBSR Optimization

Assuming Convexity

We make the following additional assumptions regarding the compactness of set

Θ and convexity of SRλ(θ).
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Assumption 10. The set Θ satisfies |θ1 − θ2| ≤ D, ∀ θ1, θ2 ∈ Θ, for some D > 0.

Assumption 11. For any θ ∈ Θ, the function h(θ) = SRλ(θ) satisfies h′′(θ) ≥ 0.

Let n be the number of iterations for which SGD is run. It is assumed that n is

known beforehand. The horizon n is split into p phases.

Let p := inf{i : n · 2−i
≤ 1},

ni := n − ⌈n · 2−i
⌉, 0 ≤ i ≤ p, and np+1 := n. (5.4)

For notational conveninece, let h(θ) = SRλ(θ) and h′(θ) = dSRλ(θ)
dθ .

Theorem 4. Suppose Assumptions 4–11 hold and suppose the update in (5.1) is performed

for n iterations with step-size ak and batch size mk set as follows:

ak :=
a0 · 2−i

√
n
, and mk := 2i

· n, (5.5)

for some constant a0 when ni < k ≤ ni+1, 0 ≤ i ≤ p with ni, p as defined in (5.4). Then for

any n ≥ 4,

E[h(θn) − h(θ∗)] ≤
K1
√

n
+
K2

n
, (5.6)

whereK1 = 4D2/a0 + 39DC1 + (10C2 + 11B2)a0,K2 = 16a0BC1 and B = L1M2/η.

Proof. The proof technique is similar to the one used in [4]. However, in our case

the expression for the gradient estimate of UBSR is known. The bias term in the

gradient estimate depends on the batch size used to estimate UBSR (see Lemma

1).

Before proving the claim of Theorem 4, we state and prove the following lemmas.
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Lemma 2. Under Assumptions 4–9, for all m ≥ 1,

E[h′m(θ)2] ≤ C2 +
2BC1
√

m
+ B2. (5.7)

Proof. The proof of this lemma follows directly from Lemma 1. Let h′(θ) = dSRλ(θ)
dθ .

We first bound |h′(θ)| as follows:

|h′(θ)| =
|E[(l′(ξ(θ) − h(θ))ξ′(θ)]|
|E[(l′(ξ(θ) − h(θ))]|

≤
|E[(l′(ξ(θ) − h(θ))ξ′(θ)]|

η

≤
|E[(l′(ξ(θ) − h(θ))|ξ′(θ)|]|

η
≤

L1M2

η
= B. (5.8)

Using the fact that |x| − |y| ≤ |x − y| for any x, y ∈ R followed by an application of

Lemma 1, we obtain

E[|h′m(θ)|] ≤ E[|h′m(θ) − h′(θ)|] + E[|h′(θ)|] ≤
C1
√

m
+ |h′(θ)|. (5.9)

Using (|x| − |y|)2
≤ (x − y)2 for any x, y ∈ R, we obtain

E[h′m(θ)2] ≤ E[(h′m(θ) − h′(θ))2] + 2E[|h′m(θ)|]|h′(θ)| − E[h′(θ)2]

≤ C2 + 2
(

C1
√

m
+ |h′(θ)|

)
|h′(θ)| − h′(θ)2

= C2 + 2
C1
√

m
|h′(θ)| + h′(θ)2

≤ C2 +
2BC1
√

m
+ B2,

where the second inequality follows from Lemma 1 and (5.9). The last inequality

follows from (5.8). □

Lemma 3. Suppose Assumptions 4–11 hold. Suppose that the update in (5.1) is performed
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for n steps with step-size sequence {ak}
n
k=1. Then for any 1 < k0 < k1 ≤ n,

k1∑
k=k0

2akE[h(θk) − h(θk0)] ≤
k1∑

k=k0

(2akDAk + a2
kBk), (5.10)

whereAk =
C1
√

mk
, Bk = C2 + 2BAk + B2.

Proof. Let δk = h′m(θk)− h′(θk) and ζk = |θk − θk0 |. Using the expression for gradient

update in (5.1),

ζ2
k+1 = (ΠΘ(θk − akh′m(θk)) − θk0)

2

≤ (θk − akh′m(θk) − θk0)
2 (5.11)

= ζ2
k − 2akh′m(θk)(θk − θk0) + a2

kh′m(θk)2

= ζ2
k − 2ak(δk + h′(θk))(θk − θk0) + a2

kh′m(θk)2

= ζ2
k − 2akδk(θk − θk0) − 2akh′(θk)(θk − θk0) + a2

kh′m(θk)2.

The inequality in (5.11) holds because θk0 belongs to set Θ and the distance of

any θ outside the set from θk0 would be less than or equal to the distance of its

corresponding projection, ΠΘ(θ) from θk0 . Taking expectation on both sides and

using Lemma 2, we obtain

E[ζ2
k+1] ≤ E[ζ2

k] − 2akE[h′(θk)(θk − θk0)] − 2akE[δk(θk − θk0)] + a2
k[C2 +

2BC1
√

mk
+ B2]

≤ E[ζ2
k] − 2akE[h′(θk)(θk − θk0)] + 2ak

C1
√

mk
|θk − θk0 | + a2

k[C2 +
2BC1
√

mk
+ B2]

= E[ζ2
k] − 2akE[h′(θk)(θk − θk0)] + 2akAkζk + a2

k[C2 + 2BAk + B2]

≤ E[ζ2
k] − 2akE[h(θk) − h(θk0)] + 2akAkζk + a2

kBk,
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where the second inequality follows from Lemma 1 where as the last inequality

follows from the convexity assumption. Rearranging the terms,

2akE[h(θk) − h(θk0)] ≤ E[ζ2
k] − E[ζ2

k+1] + 2akAkζk + a2
kBk.

By taking summation over k = k0 to k1 and using 10 to bound ζk with D, we get

(5.10). □

Lemma 4. Suppose Assumptions 4–11 hold. Then, with ak = a and mk = m, ∀k ≥ 1,

n∑
k=1

E[h(θk) − h(θ∗)] ≤
D2

2a
+ 2nDA +

naB2

2
, (5.12)

whereA = C1
√

m .

Proof. Let δk = h′m(θk) − h′(θk) and ρk+1 = θk − ak(h′(θk) + δk). Using convexity of

h(θ), we obtain

h(θk) − h(θ∗) ≤ h′(θk)(θk − θ
∗) =

(
θk − ρk+1

ak
− δk

)
(θk − θ

∗)

=
1
ak

(θk − ρk+1 − akδk)(θk − θ
∗)

=
1

2ak

(
(θk − θ

∗)2 + (θk − ρk+1 − akδk)2
− (ρk+1 − θ

∗ + akδk)2
)

(5.13)

=
1

2ak

(
(θk − θ

∗)2
− (ρk+1 − θ

∗ + akδk)2
)
+

ak

2
h′(θk)2,

where the equality in (5.13) is obtained using a ·b = 1
2 (a2+b2

− (a−b)2). Substituting

h′(θk)2
≤ B2, we obtain

h(θk) − h(θ∗) ≤
1

2ak

(
(θk − θ

∗)2
− (ρk+1 − θ

∗)2
− a2

kδ
2
k − 2ak(ρk+1 − θ

∗)δk

)
+

ak

2
B2

≤
1

2ak

(
(θk − θ

∗)2
− (ρk+1 − θ

∗)2
− 2ak(ρk+1 − θ

∗)δk

)
+

ak

2
B2.
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Taking expectations, and using (ρk+1 − θ∗)2
≥ (θk+1 − θ∗)2, we obtain

E[h(θk) − h(θ∗)] ≤
1

2ak

(
E[(θk − θ

∗)2] − E[(θk+1 − θ
∗)2] − 2akE[|θk+1 − θ

∗
||δk|]

)
+

ak

2
B2

≤
1

2ak

(
E[(θk − θ

∗)2] − E[(θk+1 − θ
∗)2] + 2akAkE[|θk+1 − θ

∗
|]
)
+

ak

2
B2.

(5.14)

By summing (5.14) over k, and using ak = a and mk = m along with the inequality

|θk − θ∗| ≤ D, ∀k ≥ 1, we obtain (5.12). □

Proof of Theorem 4:

For 0 ≤ i ≤ p + 1, define νi as follows:

νi = arg inf
ni<k≤ni+1

E[h(θk)], i ∈ [p + 1], and ν0 = arg inf
⌈

n
4 ⌉<k≤n1

E[h(θk)]. (5.15)

The horizon n is split into p phases with each phase having a constant step-size and

batch-size. We need to show that the final iterate θn is close to optima θ∗. Using

νp+1 = n, we obtain

E[h(θn)] = E[h(θν0)] +
p∑

i=0

E[h(θνi+1) − h(θνi)]. (5.16)

In order to bound E[h(θνi+1) − h(θνi)], consider the case when i ≥ 1. Using Lemma

3 with k0 = νi and k1 = ni+2, we obtain

∑ni+2
k=νi

2akE[h(θk) − h(θνi)]

ni+2 − νi + 1
≤

∑ni+2
k=νi

(2akDAk + a2
kBk)

ni+2 − νi + 1

≤ 2ani+1DAni+1 + a2
ni+1Bni+1. (5.17)
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The inequality in (5.17) follows from the fact that ak is a non increasing sequence

and mk is a non decreasing sequence resulting in Ak and Bk being non increasing

sequences as well. Also note that νi ≥ ni + 1. Now we define the step-size ak and

the batch size mk as some polynomial function of n as follows:

ak = a0
2−i

nα1
, and mk = 2i

· nα2 , (5.18)

for some constant a0 and some positive constants α1 and α2 when ni < k ≤ ni+1,

0 ≤ i ≤ p. Substituting ak and mk in (5.17), we get

∑ni+2
k=νi

2akE[h(θk) − h(θνi)]

ni+2 − νi + 1
≤

2DC1a02−3i/2

nα1+α2/2
+

a2
02−2i

n2α1

[
C2 +

2BC1

2i/2nα2/2
+ B2

]
. (5.19)

Now we provide a lower bound for the expression on the left hand side of (5.19).

Using E[h(θk) − h(θνi)] ≥ 0 whenever ni < k ≤ ni+1. Therefore

∑ni+2
k=νi

2akE[h(θk) − h(θνi)]

ni+2 − νi + 1
≥

∑ni+2
k=ni+1+1 2akE[h(θk) − h(θνi)]

ni+2 − νi + 1

≥ 2ani+2

ni+2 − ni+1

ni+2 − ni
E[h(θνi+1) − h(θνi)]

≥
2ani+2

5
E[h(θνi+1) − h(θνi)]

=
2−ia0

5nα1
E[h(θνi+1) − h(θνi)], (5.20)

where the second inequality follows from the assumption E[h(θνi+1) − h(θνi)] ≥ 0,

and the fact that ni+2 − ni+1 ≥ ni+2 − νi + 1. The last inequality follows from Lemma

4 of [4]. Combining the inequalities in (5.19) and (5.20), we obtain

E[h(θνi+1) − h(θνi)] ≤
10DC12−i/2

nα2/2
+

5a02−i

nα1

[
C2 +

2BC1

2i/2nα2/2
+ B2

]
. (5.21)
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The proof for the case when i = 0 is similar to the above proof resulting in the same

inequality except that i = 0. Substituting the inequality (5.21) in (5.16), we obtain

E[h(θn)] ≤ E[h(θν0)] +
p∑

i=0

(
10DC12−i/2

nα2/2
+

5a02−i

nα1

[
C2 +

2BC1

2i/2nα2/2
+ B2

])
≤ E[h(θν0)] +

∞∑
i=0

(
10DC12−i/2

nα2/2
+

5a02−i

nα1

[
C2 +

2BC1

2i/2nα2/2
+ B2

])
= E[h(θν0)] +

10DC1

nα2/2(1 − 1/
√

2)
+

5(C2 + B2)a0

nα1(1 − 1/2)
+

10BC1a0

nα1+α2/2(1 − 2−3/2)

≤ inf
⌈

n
4 ⌉≤k≤n1

E[h(θk)] +
35DC1

nα2/2
+

10(C2 + B2)a0

nα1
+

16BC1a0

nα1+α2/2
. (5.22)

For k ≤ n1, ak =
a0

nα1 and mk = nα2 . Using the fact that infimum is smaller than the

weighted average, we get

inf
⌈

n
4 ⌉≤k≤n1

E[h(θk) − h(θ∗)] ≤
1

n1 − ⌈
n
4 ⌉ + 1

n1∑
k=⌈ n

4 ⌉

E[h(θk) − h(θ∗)]

≤
2
n1

n1∑
k=1

E[h(θk) − h(θ∗)] (5.23)

≤
2
n1

[
D2nα1

2a0
+

2n1DC1

nα2/2
+

n1a0B2

2

]
(5.24)

≤
4D2

a0n1−α1
+

4DC1

nα2/2
+

a0B2

nα1
, (5.25)

where (5.23) follows from n1 ≤ 2(n1 − ⌈
n
4 ⌉ + 1), (5.24) follows from Lemma 4 and

(5.25) follows from the fact that n1 ≥
n
4 . Plugging (5.25) in (5.22), we obtain the

following:

E[h(θn) − h(θ∗)] ≤
4D2

a0n1−α1
+

39DC1

nα2/2
+

(10C2 + 11B2)a0

nα1
+

16BC1a0

nα1+α2/2
. (5.26)

The values for α1 and α2 which will result in the tightest bound are 1/2 and 1

respectively. Substituting these values, we get the main claim of Theorem 4. □
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5.3 Non-Asymptotic Bound for UBSR Optimization

with Markov Sampling

The non-asymptotic bound for UBSR optimization provided in the previous section

assumed that the samples used to estimate UBSR, ξ1, ξ2, ..., ξm are i.i.d samples

obtained from the distribution of −X. In this section, we generalize the bound

for the case when the samples are obtained from a Markov chain with stationary

distribution µ and transition kernel (Markov kernel) P. The Markov chain under

consideration here has a continuous state space and is supported on a compact set

K ⊂ R.

Definition 3. (Empirical stationary distribution) Let ξ0, ξ1, .... be a Markov chain

with stationary distribution µ. For m ∈ N, empirical distribution µm is given by

µm =
1
m

m∑
i=1

δξi , (5.27)

where δξi is the Kronecker delta function.

It can be shown that µm converges to µ as m→∞ under suitable conditions.

Definition 4. (1-Wasserstein Distance) Let µ and ν be probability measures on R.

Wasserstein distance of order 1 between µ and ν is given by

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
R×R
|x − y| dπ(x, y), (5.28)

where Π(µ, ν) is defined as a set of all couplings between µ and ν.

In order to derive the non-asymptotic bound for the optimization of UBSR, it is

required to first obtain the convergence rate of the UBSR derivative estimate in
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case of Markov sampling. For that, we need the rate of convergence of empirical

distribution µm to the stationary distribution µ in expectation with respect to the

1-Wasserstein distance. We refer to [27] for the same. Here, we state the necessary

assumption and the rate of convergence result provided there.

The following assumption is required in order to provide the rate of convergence

of empirical distribution.

Assumption 12. There are constants D ≥ 1 and κ ∈ (0, 1) such that

W1(Pm(x, .),Pm(y, .)) ≤ Dκm
|x − y| (5.29)

for all m ∈ N and x, y ∈ R.

The above assumption can be understood in this way: two Markov chains starting

at x and y can be coupled in such a way that they approach each other as m→∞.

The following lemma is obtained from Theorem 1.1 of [19].

Lemma 5. Suppose Assumption 12 holds and the Markov chain is supported on a compact

set K ⊂ R, then there is a constant C3 depending on K and D such that for all m large

enough

E[W1(µ, µm)] ≤ C3

√
log((1 − κ)m)

(1 − κ)m
(5.30)

Next, we derive the consistency property of UBSR derivative estimate with Markov

sampling in a manner similar to the derivation of Lemma 1.

Lemma 6. Suppose the samples used to estimate UBSR and its derivative follow a Markov

chain with stationary distribution µ and transition kernel P and supported on a compact

set K ⊂ R. Under Assumptions 4–9 and 12, the UBSR derivative estimator (5.3) satisfies
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for all m large enough

E
∣∣∣∣∣h′m(θ) −

dSRλ(θ)
dθ

∣∣∣∣∣ ≤ C4

√
log((1 − κ)m)

m
, and E

∣∣∣∣∣h′m(θ) −
dSRλ(θ)

dθ

∣∣∣∣∣2 ≤ C2,

where C4 =
C3
√
β1(L1L3+2M2L2)
√

1−κη2 and C2 =
16β2

1M2
2

η4 . Here the constants β1,L1,L2, L3,M1,M2,

η, C3 and κ are as specified in assumptions 4–9 and 12.

Proof. For some t ∈ [tl, tu], define

um(t) =
1
m

m∑
i=1

ℓ′(ξi(θ) − t), and u(t) = E[ℓ′(ξ(θ) − t)].

One can write u(t) and um(t) in the following manner:

um(t) =
∫
ℓ′dµm, and u(t) =

∫
ℓ′dµ.

Since ℓ′ is L2 Lipschitz, using Assumption 7, we get

|um(t) − u(t)| ≤ L2W1(µm, µ), (5.31)

Using Lemma 5, we obtain

E |um(t) − u(t)| ≤ L2C3

√
log((1 − κ)m)

(1 − κ)m
, (5.32)

Next, we define

ũm(t) =
1
m

m∑
i=1

ℓ′ (ξi(θ) − t) ξ′(θ), and ũ(t) = E[ℓ′(ξ(θ) − t)ξ′(θ)].
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In a similar manner, we get

E |ũm(t) − ũ(t)| ≤ (L1L3 +M2L2)C3

√
log((1 − κ)m)

(1 − κ)m
. (5.33)

E
∣∣∣∣∣h′m(θ) −

dSRλ(θ)
dθ

∣∣∣∣∣ = E
∣∣∣∣∣Am(θ)
Bm(θ)

−
A(θ)
B(θ)

∣∣∣∣∣
≤
|B(θ)|E[|Am(θ) − A(θ)|] + |A(θ)|E[|Bm(θ) − B(θ)|]

η2

≤

(
|B(θ)| supt∈[tl,tu] E|ũm(t) − ũ(t)|]

η2 +
|A(θ)| supt∈[tl,tu] E[|um(t) − u(t)|]

η2

)
≤

C3
√
β1(L1L3 + 2M2L2)

√
log((1 − κ)m)√

(1 − κ)mη2
.

The proof of the second claim is same as that for Lemma 1 and hence omitted

here. □

The following theorem provides non-asymptotic bound for UBSR optimization in

case of Markov sampling.

Theorem 5. Suppose the samples used to estimate UBSR and its derivative follow a

Markov chain with stationary distribution µ, transition kernel P and supported on a

compact set K ⊂ R. Suppose Assumptions 4–12 hold and suppose the update in (5.1) is

performed for n iterations with step-size ak and batch size mk set as follows:

ak :=
a0 · 2−i

√
n
, and mk := 2i

· n, (5.34)

for some constant a0 when ni < k ≤ ni+1, 0 ≤ i ≤ p with ni, p as defined in (5.4). Then for

any n ≥ 4,

E[h(θn) − h(θ∗)] ≤
K3
√

n
+
K4

n
, (5.35)

31



whereK3 = 4D2/a0 +DC4(39
√

log((1 − κ)n) + 35) + (10C2 + 11B2)a0,

K4 = a0BC4(16
√

log((1 − κ)n) + 6) and B = L1M2/η.

Proof. The proof follows similarly to the proof of Theorem 4. Throughout the

proof until equation (5.21) constant C1 is replaced by C4
√

log((1 − κ)m). (5.21) is

rewritten in case of Markov sampling as

E[h(θνi+1) − h(θνi)] ≤
10DC4

√
log((1 − κ)2inα2)2−i/2

nα2/2
+

5a02−i

nα1

C2 +
2BC4

√
log((1 − κ)2inα2)
2i/2nα2/2

+ B2

 . (5.36)

Substituting the inequality (5.36) in (5.16), we obtain

E[h(θn)]

≤ E[h(θν0)] +
p∑

i=0

10DC4
√

log((1 − κ)2inα2)2−i/2

nα2/2
+

5a02−i

nα1

C2 +
2BC4

√
log((1 − κ)2inα2)
2i/2nα2/2

+ B2


≤ E[h(θν0)] +

∞∑
i=0

10DC4
√

log((1 − κ)2inα2)2−i/2

nα2/2
+

5a02−i

nα1

C2 +
2BC4

√
log((1 − κ)2inα2)
2i/2nα2/2

+ B2


≤ inf
⌈

n
4 ⌉≤k≤n1

E[h(θk)] +
10DC4(3.5

√
log((1 − κ)nα2) + 3.5)

nα2/2
+

10(C2 + B2)a0

nα1
+

10Ba0C4(1.6
√

log((1 − κ)nα2) + 0.6)
nα1+α2/2

. (5.37)

The inequality in (5.25) becomes

inf
⌈

n
4 ⌉≤k≤n1

E[h(θk) − h(θ∗)] ≤
4D2

a0n1−α1
+

4DC4
√

log((1 − κ)nα2)
nα2/2

+
a0B2

nα1
. (5.38)
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Combining the inequalities in (5.37) and (5.38), we obtain

E[h(θn) − h(θ∗)]

≤
4D2

a0n1−α1
+

DC4(39
√

log((1 − κ)nα2) + 35)
nα2/2

+
(10C2 + 11B2)a0

nα1
+

BC4(16
√

log((1 − κ)nα2) + 6)a0

nα1+α2/2
. (5.39)

The values for α1 and α2 which will result in the tightest bound are 1/2 and 1

respectively. Substituting these values, we get the main claim of Theorem 5. □
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CHAPTER 6

Conclusions and Future Work

We considered the problem of optimization of UBSR under two different settings.

In the first setting i.e., under bandit feedback, we derived UCB and LCB required

for the StoROO algorithm followed by the upper bound on simple regret. Next, we

proposed a stochastic gradient descent scheme for UBSR optimization. Here, we

made use of the UBSR derivative estimate whose bias depends on the batch size.

We proposed a decreasing step size sequence and a batch size sequence for obtain-

ing non asymptotic bound of the order O(1/
√

n). We also derived non-asymptotic

bounds when the samples are not i.i.d., instead they follow a Markov chain. The

resulting bound is of the order of O(
√

logn/n). The technique used here for the

optimization of UBSR is also applicable in optimizing general convex functions

whose bias in the gradient estimate is a function of the batch size used to estimate

the gradient.

In the future, one could explore the optimization of UBSR in a risk sensitive rein-

forcement learning setting. UBSR optimization with linear bandit feedback could

be an interesting problem to solve as well. Optimization of UBSR with a constraint

on the expected return is another possible research topic with many potential ap-

plications. Optimization of other risk measures such as CPT and exponential cost

function in various settings provides many future research possibilities.
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