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Complacs News Recommendation Platform

NOAM database: 17 million articles from 2010

Task: Find the best among 2000 news feeds

Reward: Relevancy score of the article

Feature dimension: 80000 (approx)

1In collaboration with Nello Cristianini and Tom Welfare at University of Bristol
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More on relevancy score

Problem: Find the best news feed for Crime stories

Sample scores:

Five dead in Finnish mall shooting Score: 1.93

Holidays provide more opportunities to drink Score: −0.48

Russia raises price of vodka Score: 2.67

Why Obama Care Must Be Defeated Score: 0.43

University closure due to weather Score: −1.06
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A linear bandit algorithm

Choose xn Observe yn

Estimate UCBs

xn := arg max
x∈D

UCB(x) Rewards yn

s.t. E[yn | xn] = xT
nθ
∗

Regression used to compute UCB(x) := xTθ̂n + α

√
xTA−1

n x
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UCB values

Mean-reward estimate

UCB(x) = µ̂(x) + α σ̂(x)

Confidence width

At each round t, select a tap. Optimize the quality of n selected beers
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UCB values

Linearity⇒ No need to estimate mean-reward of all arms,
estimating θ∗ is enough

Regression θ̂n = A−1
n bn

UCB(x) = µ̂(x) + α σ̂(x)

Mahalanobis distance of x from

An:
√

xTA−1
n x

Optimize the beer you drink, before you get drunk

Here An =
n∑

i=1

xixT
i + λId and bn =

n∑
i=1

xiyi
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Performance measure

Best arm: x∗ = arg min
x
{xTθ∗}.

Regret: RT =

T∑
i=1

(x∗ − xi)
Tθ∗

Goal: ensure RT grows sub-linearly with T

Linear bandit algorithms ensure sub-linear regret!
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Complexity of Least Squares Regression

Choose xn Observe yn

Estimate θ̂n

Figure : Typical ML algorithm using Regression

Regression Complexity

O(d2) using the Sherman-Morrison lemma or

O(d2.807) using the Strassen algorithm or O(d2.375) the
Coppersmith-Winograd algorithm

Problem: Complacs News feed platform has high-dimensional features
(d ∼ 105)⇒ solving OLS is computationally costly
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Fast GD for Regression

θn
Pick in uniformly

in {1, . . . , n}

Random Sampling

Update θn

using (xin, yin)

GD Update

θn+1

Solution: Use fast (online) gradient descent (GD)
Efficient with complexity of only O(d) (Well-known)

High probability bounds with explicit constants can be derived (not fully
known)
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Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs
regression in each iteration

Fast GD: provides good approximation to regression (with low
computational cost)

Strongly-Convex Bandits: no loss in regret except log-factors Proved!

Non Strongly-Convex Bandits: Encouraging empirical results for linUCB+fast
GD] on two news feed platforms
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Strongly convex bandits

Outline

1 Strongly convex bandits

2 Non-strongly convex bandits

3 News recommendation application
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Strongly convex bandits

fast GD

θn
Pick in uniformly

in {1, . . . , n}

Random Sampling

Update θn

using (xin, yin)

GD Update

θn+1

Step-sizes

θn = θn−1 + γn
(
yin − θT

n−1xin
)

xin

Sample gradient
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Strongly convex bandits

Assumptions

Setting: yn = xT
nθ
∗ + ξn, where ξn is i.i.d. zero-mean

(A1) sup
n
‖xn‖2 ≤ 1.

(A2) |ξn| ≤ 1,∀n.

(A3) λmin

(
1
n

n−1∑
i=1

xixT
i

)
≥ µ.

Bounded features

Bounded noise

Strongly convex co-variance
matrix (for each n)!

Prashanth L A Fast gradient descent, with application to bandits November 26, 2014 13 / 31



Strongly convex bandits

Assumptions

Setting: yn = xT
nθ
∗ + ξn, where ξn is i.i.d. zero-mean

(A1) sup
n
‖xn‖2 ≤ 1.

(A2) |ξn| ≤ 1,∀n.

(A3) λmin

(
1
n

n−1∑
i=1

xixT
i

)
≥ µ.

Bounded features

Bounded noise

Strongly convex co-variance
matrix (for each n)!

Prashanth L A Fast gradient descent, with application to bandits November 26, 2014 13 / 31



Strongly convex bandits

Assumptions

Setting: yn = xT
nθ
∗ + ξn, where ξn is i.i.d. zero-mean

(A1) sup
n
‖xn‖2 ≤ 1.

(A2) |ξn| ≤ 1,∀n.

(A3) λmin

(
1
n

n−1∑
i=1

xixT
i

)
≥ µ.

Bounded features

Bounded noise

Strongly convex co-variance
matrix (for each n)!

Prashanth L A Fast gradient descent, with application to bandits November 26, 2014 13 / 31



Strongly convex bandits

Assumptions

Setting: yn = xT
nθ
∗ + ξn, where ξn is i.i.d. zero-mean

(A1) sup
n
‖xn‖2 ≤ 1.

(A2) |ξn| ≤ 1,∀n.

(A3) λmin

(
1
n

n−1∑
i=1

xixT
i

)
≥ µ.

Bounded features

Bounded noise

Strongly convex co-variance
matrix (for each n)!

Prashanth L A Fast gradient descent, with application to bandits November 26, 2014 13 / 31



Strongly convex bandits

Why deriving error bounds is difficult?

θn − θ̂n =θn − θ̂n−1 + θ̂n−1 − θ̂n

=θn−1 − θ̂n−1 + θ̂n−1 − θ̂n + γn(yin − θT
n−1xin)xin

= Πn(θ0 − θ∗)︸ ︷︷ ︸
Initial Error

+

n∑
k=1

γkΠnΠ−1
k ∆M̃k︸ ︷︷ ︸

Sampling Error

−
n∑

k=1

ΠnΠ−1
k (θ̂k − θ̂k−1)︸ ︷︷ ︸

Drift Error

,

Present in earlier SGD works
and can be handled easily

Consequence of changing target

Hard to control!

Note: Ān =
1

n

n∑
i=1

xix
T
i , Πn :=

n∏
k=1

(
I − γk Āk

)
, and ∆M̃k is a martingale difference.
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1

n

n∑
i=1

xix
T
i , Πn :=

n∏
k=1

(
I − γk Āk
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1

n

n∑
i=1

xix
T
i , Πn :=

n∏
k=1

(
I − γk Āk
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Strongly convex bandits

Handling Drift Error

Note Fn(θ) :=
1
2

n∑
i=1

(yi − θTxi)
2 and Ān =

1
n

n∑
i=1

xixT
i . Also, E[yn | xn] = xT

nθ
∗.

To control the drift error, we observe that(
∇Fn(θ̂n) = 0 = ∇Fn−1(θ̂n−1)

)
=⇒

(
θ̂n−1 − θ̂n = ξnA−1

n−1xn − (xT
n(θ̂n − θ∗))A−1

n−1xn

)
.

Thus, drift is controlled by the convergence of θ̂n to θ∗

Key: confidence ball result1

1
Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) ”Stochastic Linear Optimization under Bandit Feedback.” In: COLT
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Strongly convex bandits

Error bound
With γn = c/(4(c + n)) and µc/4 ∈ (2/3, 1) we have:

High prob. bound For any δ > 0,

P

 ∥∥∥θn − θ̂n

∥∥∥
2
≤
√

Kµ,c
n

log
1
δ
+

h1(n)√
n

 ≥ 1− δ.

Optimal rate O
(

n−1/2
)

Bound in expectation

E
∥∥∥θn − θ̂n

∥∥∥
2
≤

∥∥∥θ0 − θ̂n

∥∥∥
2

nµc
+

h2(n)√
n
.

Initial error
Sampling error

1
Kµ,c is a constant depending on µ and c and h1(n), h2(n) hide log factors.

2
By iterate-averaging, the dependency of c on µ can be removed.
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Strongly convex bandits

PEGE Algorithm1

Input A basis {b1, . . . , bd} ∈ D for Rd .

Pull each of the d basis
arms once

Using losses, compute
OLS

Use OLS estimate to
compute a greedy
decision

Pull the greedy arm m
times

For each cycle m = 1, 2, . . . do

Exploration Phase
For i = 1 to d

- Choose arm bi
- Observe yi(m).

θ̂md =
1

m

 d∑
i=1

bib
T
i

−1 m∑
i=1

d∑
j=1

biyj(i).

Exploitation Phase

Find x = arg min
x∈D

{θ̂T
mdx}

Choose arm x m times consecutively.

1
P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
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Using losses, compute
OLS

Use OLS estimate to
compute a greedy
decision

Pull the greedy arm m
times

For each cycle m = 1, 2, . . . do

Exploration Phase
For i = 1 to d

- Choose arm bi
- Observe yi(m).

θ̂md =
1

m

 d∑
i=1

bib
T
i

−1 m∑
i=1

d∑
j=1

biyj(i).

Exploitation Phase

Find x = arg min
x∈D

{θ̂T
mdx}

Choose arm x m times consecutively.

1
P. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.

Prashanth L A Fast gradient descent, with application to bandits November 26, 2014 17 / 31



Strongly convex bandits

PEGE Algorithm with fast GD

Input A basis {b1, . . . , bd} ∈ D for Rd .

Pull each of the d basis
arms once

Using losses, update fast
GD iterate

Use fast GD iterate to
compute a greedy
decision

Pull the greedy arm m
times

For each cycle m = 1, 2, . . . do

Exploration Phase
For i = 1 to d

- Choose arm bi
- Observe yi(m).

Update fast GD iterate θmd

Exploitation Phase

Find x = arg min
x∈D

{θT
mdx}

Choose arm x m times consecutively.
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Strongly convex bandits

Regret bound for PEGE+fast GD

(Strongly Convex Arms):
(A3) The function G : θ → arg min

x∈D
{θTx} is J-Lipschitz.

Theorem

Under (A1)-(A3), regret RT :=

T∑
i=1

xT
i θ
∗ −min

x∈D
xTθ∗ satisfies

RT ≤ CK1(n)2d−1(‖θ∗‖2 + ‖θ∗‖−1
2 )
√

T

The bound is worse than that for PEGE by only a factor of O(log4(n))
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Non-strongly convex bandits

Outline

1 Strongly convex bandits

2 Non-strongly convex bandits

3 News recommendation application
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Non-strongly convex bandits

Fast linUCB

Choose xn Observe yn

Use θn to estimate θ̂n

xn := arg max
x∈D

UCB(x) Rewards yn

s.t. E[yn | xn] = xT
nθ
∗

Fast GD used to compute UCB(x) := xTθn + α

√
xTφ

(x)
n
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Non-strongly convex bandits

Adaptive regularization

Problem: In many settings, λmin

(
1
n

n−1∑
i=1

xixT
i

)
≥ µ may not hold.

Solution: Adaptively regularize with λn

θ̃n := arg minθ 1
2n

∑n
i=1(yi − θTxi)

2 + λn ‖θ‖2

θn
Pick in uniformly

in {1, . . . , n}

Random Sampling

Update θn

using (xin , yin)

GD Update

θn+1

GD update:

θn = θn−1 + γn((yin − θT
n−1xin)xin − λnθn−1)
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

θn − θ̃n = Π̃n(θ0 − θ∗)︸ ︷︷ ︸
Initial Error

−
n∑

k=1

Π̃nΠ̃−1
k (θ̃k − θ̃k−1)︸ ︷︷ ︸

Drift Error

+

n∑
k=1

γkΠ̃nΠ̃−1
k ∆M̃k︸ ︷︷ ︸

Sampling Error

, (1)

Need
n∑

k=1

γkλk →∞ to bound the initial error

Set γn = O(n−α) (forcing λn = Ω(n−(1−α)))

Bad news:
This choice when plugged into (1) results in only a constant error bound!

Note: Π̃n :=
n∏

k=1

(
I − γk(Āk + λkI)

)
and θ̃n−1 − θ̃n = Ω(n−1

), whenever α ∈ (0, 1)
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News recommendation application

Outline

1 Strongly convex bandits

2 Non-strongly convex bandits

3 News recommendation application
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News recommendation application

Dilbert’s boss on news recommendation (and ML)
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News recommendation application

Preliminary Results on Complacs News Feed Platform
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News recommendation application

Experiments on Yahoo! Dataset 1

Figure : The Featured tab in Yahoo! Today module

1
Yahoo User-Click Log Dataset given under the Webscope program (2011)
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News recommendation application

Tracking Error

Tracking error: SGD

0 2 4
·104

0

0.5

1

iteration n of flinUCB-GD

∥ ∥ ∥θ n−
θ̃ n

∥ ∥ ∥ SGD

Tracking error: SVRG1
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·104

0

0.5

1

iteration n of flinUCB-SVRG

∥ ∥ ∥θ n−
θ̃ n

∥ ∥ ∥ SVRG

Tracking error: SAG2

0 2 4
·104

0

0.5

1

iteration n of flinUCB-SAG

∥ ∥ ∥θ n−
θ̃ n

∥ ∥ ∥ SAG

1
Johnson, R., and Zhang, T. (2013) “Accelerating stochastic gradient descent using predictive variance reduction”. In: NIPS

2
Roux, N. L., Schmidt, M. and Bach, F. (2012) “A stochastic gradient method with an exponential convergence rate for finite training

sets.” arXiv preprint arXiv:1202.6258.
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News recommendation application

Runtime Performance on two days of the Yahoo! dataset
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0

0.5

1

1.5

·106

1.37 · 106

1.72 · 106

4,933 6,474
81,818 1.07 · 105

44,504 55,630

ru
nt

im
e

(m
s)

LinUCB fLinUCB-GD fLinUCB-SVRG fLinUCB-SAG

Prashanth L A Fast gradient descent, with application to bandits November 26, 2014 29 / 31



For Further Reading
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For Further Reading

Dilbert’s boss (again) on big data!
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