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Complacs News Recommendation Platform

@ NOAM database: 17 million articles from 2010

'Tn collaboration with Nello Cristianini and Tom Welfare at University of Bristol
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Complacs News Recommendation Platform

@ NOAM database: 17 million articles from 2010
o Task: Find the best among 2000 news feeds
o Reward: Relevancy score of the article

@ Feature dimension: 80000 (approx)

'Tn collaboration with Nello Cristianini and Tom Welfare at University of Bristol
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More on relevancy score

Problem: Find the best news feed for Crime stories
Sample scores:

Five dead in Finnish mall shooting Score: 1.93
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More on relevancy score

Problem: Find the best news feed for Crime stories
Sample scores:

Five dead in Finnish mall shooting Score: 1.93

Holidays provide more opportunities to drink  Score: —0.48

Russia raises price of vodka Score: 2.67
Why Obama Care Must Be Defeated Score: 0.43
University closure due to weather Score: —1.06
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A linear bandit algorithm

——()——{ Choose x,

Observe y,,

Estimate UCBs
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A linear bandit algorithm

X, := argmax UCB(x)

xeD

4>O_.

Choose x,,

Observe y,,

Estimate UCBs
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A linear bandit algorithm

Xn := arg max UCB(x) Rewards y,
x€D s.t. E[yn | xn) = x,0*

——()>—{ Choose x, Observe y,

Estimate UCBs
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A linear bandit algorithm

Xn := arg max UCB(x) Rewards y,
x€D s.t. E[yn | xn) = x,0*

——()>—{ Choose x, Observe y,

Estimate UCBs

Regression used to compute UCB(x) := x"0, + ar\/ XAy 'x
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N
UCB values

@ Mean-reward estimate

UCB(x) =

=
)
_I._
Q

Q>
®
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N
UCB values

@ Mean-reward estimate

UCB(x) = ja(x) +a«

Q>
=
SN—

@ Confidence width
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N
UCB values

@ Mean-reward estimate

UCB(x) = p(x) +ao a(x)

@ Confidence width /

At each round ¢, select a tap. Optimize the quality of n selected beers
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UCB values

Linearity = No need to estimate mean-reward of all arms,
estimating 0™ is enough

@ Regression én =A, lbn

UCB(x) = px) +a a(x)
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UCB values

@ Regression 6, = j
+a o(x)

UCB(x) = jux)

@ Mahalanobis distance of’x from

Ay \/xTA,I]x
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UCB values

@ Regression 6, = j
+a o(x)

UCB(x) = ji(x)

@ Mahalanobis distance of’x from

Api o/ xTA,Tlx

Optimize the beer you drink, before you get drunk
Fast gradient descent, with application to bandits November 26, 2014 6/31



Performance measure

Best arm: x* = arg min{x"0*}.
X
T

Regret: Ry = Z(x* —x;)'0*
i=1
Goal: ensure Ry grows sub-linearly with T
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Performance measure

Best arm: x* = arg min{x"0*}.
X
T

Regret: Ry = Z(x* —x;)'0*
i=1
Goal: ensure Ry grows sub-linearly with T

Linear bandit algorithms ensure sub-linear regret!
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Complexity of Least Squares Regression

——()—+| Choosex, —— Observey,

Estimate é,,

Figure : Typical ML algorithm using Regression
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Complexity of Least Squares Regression

4,0_,

Figure : Typical ML algorithm using Regression

Regression Complexity

Choose x,

—

Observe y,

Estimate é,,

@ 0(d’) using the Sherman-Morrison lemma or

@ 0(4**") using the Strassen algorithm or 0(4**”) the
Coppersmith-Winograd algorithm

Problem: Complacs News feed platform has high-dimensional features
(d ~ 10°) = solving OLS is computationally costly
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Fast GD for Regression
Pick i,, uniformly Update 6,
Bn en—l—l
in{1,...,n} using (x;,,Yi,)
Random Sampling GD Update

Solution: Use fast (online) gradient descent (GD)
o Efficient with complexity of only O(d) (Well-known)

@ High probability bounds with explicit constants can be derived (not fully
known)
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Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs
regression in each iteration

Fast GD: provides good approximation to regression (with low

computational cost)
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Bandits+GD for News Recommendation

LinUCB: a well-known contextual bandit algorithm that employs
regression in each iteration

Fast GD: provides good approximation to regression (with low

computational cost)

Strongly-Convex Bandits: no loss in regret except log-factors Proved!

Non Strongly-Convex Bandits: Encouraging empirical results for linUCB-+fast
GD] on two news feed platforms
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onvex bandits

Outline

ﬂ Strongly convex bandits
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onvex bandits

fast GD

Pick i, uniformly Update 6,
0, . i Ont1
in{1,...,n} using (x;,,i,)
Random Sampling GD Update
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gly convex bandits

fast GD

Pick i, uniformly Update 6,
0, . i Ont1
in{1,...,n} using (x;,,i,)
Random Sampling GD Update

@ Step-sizes

9}1 = 9}1—1 + 7n (yln _ el—l‘xln) xin
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fast GD

Pick i, uniformly

in{1,...,n}

Random Sampling

o Step-sizes

Op =bn1+ T ()’in -

e Sample gradient

Update 6,

using (x;,,i,)

Ont1

GD Update

T
0}1— 1 ‘xin ) xin
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onvex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean
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ly convex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean

Bounded features

(A]) sup H‘xllHZ S L.
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ly convex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean
- Bounded features
(A1) sup i, < 1.

n

Bounded noise
A2) LI <L,y —m — —
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Strongly convex bandits

Assumptions

Setting: y, = x,0* + &,, where &, is i.i.d. zero-mean

Bounded features

/
(A1) sup [|x,]|, < 1.
n

Bounded noise
A2) &<ty ——  —

n—I1

1 . Strongly convex co-variance
(A3) Amin " inxi Zfe——— . matrix (for each n)!

i=1

Prashanth L A Fast gradient descent, with application to bandits November 26, 2014

13/31



Why deriving error bounds is difficult?

9,, - én :en - énfl + énfl - én
=0,_1 — én—l + én—l - én + ’Yn(yin - el—l'xin)xin

=T1,(00 — 0%) + > WL 'AM = > TLI ! (6 — Oc-1),

Initial Error =1 =1

Sampling Error Drift Error

_ 1 n _ _
Note: A, = — Z x,-)c;r, II, := H (I - 'ykAk), and AMj, is a martingale difference.
n i
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Strongly convex bandits

Why deriving error bounds is difficult?

9,, - én :en - énfl + énfl - én
=0,_1 — én—l + én—l - én + ’Yn(yin - el—l'xin)xin

=T1,(00 — 0%) + > WL 'AM = > TLI ! (6 — Oc-1),

Initial Error =1 =1

Sampling Error Drift Error

Present in earlier SGD works
and can be handled easily

_ 1 n _ _
Note: A, = — Z x,-)c;r, II, := H (I - 'ykAk), and AM;, is a martingale difference.
n i
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Strongly convex bandits

Why deriving error bounds is difficult?

9,, - én :en - énfl + énfl - én
=0,_1 — én—l + én—l - én + ’Yn(yin - el—l'xin)xin

=T1,(00 — 0%) + > WL 'AM = > TLI ! (6 — Oc-1),

Initial Error =1 =1

Sampling Error Drift Error

Present in earlier SGD works Consequence of changing target
and can be handled easily Hard to control!

_ 1 & n _ _
Note: A, = — Z x,-)c;r, I, := H (I - 'ykAk), and AM;, is a martingale difference.
n i
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ly convex bandits

Handling Drift Error

1 ¢ R
Note F,(0) := 3 Z(yi —0"x;)?and A, = . inx,T. Also, E[y, | x,] = x,0".
i=1 i=1
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ly convex bandits

Handling Drift Error

1 ¢ R
Note F,(0) := 3 Z(yi —0"x;)?and A, = . inx,T. Also, E[y, | x,] = x,0".
i=1 i=1

To control the drift error, we observe that
(VF (,) = 0 = VE,_(0,_ ))

= (Anl =&AL X, — (x;(é,,—e*))A;_llxn),

lDani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) Stochastic Linear Optimization under Bandit Feedback.” In: COLT
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Handling Drift Error

1 n

_ 1 <
Note F,(0) := = . —0'x;))? and A, = — . Also, Ely, | x,] = x'6".
ote F,(0) 2Z(y x;)” an, anx, s0, E[y, | x,] = x,

i=1 i=1

To control the drift error, we observe that

(VFA6) = 0= VF, 1(6,0))

— (9,,_1 by = EA xy — (66, — 0%))A

n

Thus, drift is controlled by the convergence of 6, to 0
Key: confidence ball result!

lDani, Varsha, Thomas P. Hayes, and Sham M. Kakade, (2008) Stochastic Linear Optimization under Bandit Feedback.” In: COLT
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Strongly convex bandits

Error bound

With 7, = ¢/(4(c + n)) and pc/4 € (2/3,1) we have:
High prob. bound For any § > 0,

~ K, . 1 hl(n)
Pl fon=bn|, < /21085 >1-4
n n , = 0og 5 + \/ﬁ
Optimal rate O (n’l/ 2)
Bound in expectation

[fo=b, | how
—b. < 2 =<3
B HG" 0"Hz - nHe + Vn
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gly convex bandits

Error bound

With 7, = ¢/(4(c + n)) and pc/4 € (2/3,1) we have:
High prob. bound For any § > 0,

KI‘ c 1 hl(n

=

—9,, >1-0.

Optimal rate 0 - l/ 2

Bound in expectation

hy (n)
S

o -al, <

@ Initial error

1
K¢ is a constant depending on 4 and ¢ and /2y (1), hy (n) hide log factors.

By iterate-averaging, the dependency of ¢ on p can be removed.
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Error bound

With 7, = ¢/(4(c + n)) and pc/4 € (2/3,1) we have:

High prob. bound For any § > 0,
K 1 h
< / BC g ~ + 1(n) >1-34.
2 n 1) Vn

On — On

g\

Optimal rate O (n’l/ 2)

Bound in expectation

X o0 — 6 hy(n)
E H _ < 2 20
en 0” 2 nke + \/;l

o Initial error \/

@ Sampling error

1
K¢ is a constant depending on 4 and ¢ and /2y (1), hy (n) hide log factors.

By iterate-averaging, the dependency of ¢ on p can be removed.
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onvex bandits

PEGE Algorithm!

Input A basis {by,...,bs} € D for RY.
For each cyclem = 1,2,...do

Exploration Phase
@ Pull each of the d basis Fori—=1tod
arms once

- Choose arm b;
- Observe y;(m).

1l om d

R 1 [&
bna = — | Dbkl | 30D b0
i=

i=1j=1
Exploitation Phase

Find x = arg min{6 ,x}
xX€ED

Choose arm x m times consecutively.

lP. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
Pr
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onvex bandits

PEGE Algorithm!

Input A basis {by,...,bs} € D for RY.

For each cyclem = 1,2,...do

Exploration Phase
Fori=1tod

- Choose arm b;
- Observe y;(m).

@ Pull each of the d basis
arms once

@ Using losses, compute
—i
m d

OLS N 1 &
\—> Oma = -~ _Zbib,T SO biyi(0)-

i=1j=1
Exploitation Phase

Find x = arg min{6 ,x}
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onvex bandits

PEGE Algorithm!

Input A basis {by,...,bs} € D for RY.
For each cyclem = 1,2,...do

Exploration Phase
@ Pull each of the d basis Fori— 1tod
arms once

- Choose arm b;
- Observe y;(m).

@ Using losses, compute
m d

oLs e N\
\—> Oma = - (Z bibiT> SO biyi(0)-

i=1 j=1
@ Use OLS estimate to
compute a greedy Exploitation Phase

decision ———— Findx=amg min{0,,,x}
xeD

Choose arm x m times consecutively.

lP. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
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onvex bandits

PEGE Algorithm!

Input A basis {by,...,bs} € D for RY.
For each cyclem = 1,2,...do

Exploration Phase
@ Pull each of the d basis Fori— 1tod
arms once

- Choose arm b;
- Observe y;(m).

@ Using losses, compute
m d

oLs e N\
\—> Oma = - (Z bibiT> SO biyi(0)-

i=1j=1
@ Use OLS estimate to
compute a greedy Exploitation Phase

decision— __ Find x= agmin{0x}
XED

@ Pull the greedy arm m

times Choose arm x m times consecutively.

lP. Rusmevichientong and J,N. Tsitsiklis, (2010) Linearly Parameterized Bandits. In: Math. Oper. Res.
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PEGE Algorithm with fast GD

Input A basis {b1, . .., bg} € D for R?.
For each cyclem = 1,2,...do

@ Pull each of the d basis Exploration Phase

arms once \ Fori=1tod

- Choose arm b;
- Observe y;(m).

Update fast GD iterate 0,4

Exploitation Phase

Find x = argmin{6] ,x}
x€ED

Choose arm x m times consecutively.
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PEGE Algorithm with fast GD

Input A basis {b1, . .., bg} € D for R?.

For each cyclem = 1,2,...do
@ Pull each of the d basis Exploration Phase

arms once \ Fori=1tod

- Choose arm b;

) X - Observe y;(m).
@ Using losses, update fast

GD iterate -
\—) Update fast GD iterate 6,4

Exploitation Phase

Find x = argmin{6] ,x}
x€ED

Choose arm x m times consecutively.
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PEGE Algorithm with fast GD

Input A basis {b1, . .., bg} € D for R?.
For each cyclem = 1,2,...do

@ Pull each of the d basis Exploration Phase
arms once \ Fori=1tod
- Choose arm b;

) - Observe y;(m).
@ Using losses, update fast

GD iterate -
\—) Update fast GD iterate 6,4

@ Use fast GD iterate to
compute a greedy
decision

Exploitation Phase
Find x = argmin{6] ,x}
xeD

Choose arm x m times consecutively.
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PEGE Algorithm with fast GD

Input A basis {b1, . .., bg} € D for R?.
For each cyclem = 1,2,...do

@ Pull each of the d basis Exploration Phase
arms once \ Fori=1tod
- Choose arm b;

) - Observe y;(m).
@ Using losses, update fast

GD iterate -
\—) Update fast GD iterate 6,4

@ Use fast GD iterate to
compute a greedy
decision

Exploitation Phase

Find x = argmin{6] ,x}
x€ED

@ Pull the greedy arm m Choose arm x mm times consecutively.

times \/
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Strongly convex bandits

Regret bound for PEGE+fast GD

(Strongly Convex Arms):

(A3) The function G : § — argmin{6"x} is J-Lipschitz.
x€D

Theorem

Under (Al)-(A3), regret Ry := ZxTG — minx"0* satisfies
x€D

Ry < CK(n)%d~"(||0%]l, + l6*[l; VT \

The bound is worse than that for PEGE by only a factor of O(log*(n))
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onvex bandits

Outline

© Non-strongly convex bandits
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Fast inUCB

——()>—{ Choose x, Observe y,

Use 0,, to estimate é,,
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Non-strongly convex bandits

Fast inUCB

Xn := arg max UCB(x) Rewards y,
x€D s.t. E[yn | xn) = x,0*

——()>—{ Choose x, Observe y,

Use 0,, to estimate é,,
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Non-strongly convex bandits

Fast inUCB

Xn := arg max UCB(x) Rewards y,
x€D s.t. E[yn | xn) = x,0*

——()>—{ Choose x, Observe y,

Use 0,, to estimate é,,

Fast GD used to compute UCB(x) := x'0, + a\/ qub,(f)
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ly convex bandits

Adaptive regularization

—1
1
Problem: In many settings, A\pin | — E xix] | > p may not hold.
n
i=1
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Non-strongly convex bandits

Adaptive regularization

1 n—1
Problem: In many settings, Amin ( Z x,~x}> > 1 may not hold.
n
i=1

Solution: Adaptively regularize with )Tn

0, := arg ming 217 S i =) + N, ||6’||2
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Non-strongly convex bandits

Adaptive regularization

Problem: In many settings, Amin

n—1
1 E T
- x,‘xi
n

i=1

Solution: Adaptively regularize with A,

6, := argming 3 331, (vi — 67)> + A, [16]°

> 1 may not hold.

Pick i, uniformly

in{l,...,n}

Update 6,

using (x;,, i)

Ont1

Random Sampling

GD update:

en = an—l +'7n<(yi,,

GD Update

_QT

1xtn) Xi, — Anf —1)
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

9,, — Un Zﬂn(% - 9*) - ﬁnﬁj:l(ék - ékfl) + Z’Ykﬁnﬂl:lAMka (l)

————
. k=1 k=1
Initial Error
Drift Error Sampling Error
~ n ~ -
Note: I, := H (I — v (A + M) and 6,y — 6, = Q(nil),wheneveroz € (0,1)
k=1
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

n

9,, — Un Zﬂn(% - 9*) - ﬁnﬁj:l(ék - ékfl) + Z’Ykﬁnﬂl:lAMka

—_———
k

Initial Error =

k=1

/ Drift Error
n

Need Z YAk — o0 to bound the initial error
k=1

n

Note: IT,, := H (I = vk (Ax + X\iI)) and Op_1 — 0y = Q(nil),wheneveroz € (0,1)

k=1
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

n

9,, — Un Zﬂn(% - 9*) - ﬁnﬁj:l(ék - ékfl) + Z’Ykﬁnﬂl:lAMka

— —
Initial Error =1

k=1

/ Drift Error
n

Need Z YAk — o0 to bound the initial error
k=1

Set v, = O(n~?) (forcing \, = Q(n—(pa)))

n

Note: IT,, := H (I = v (Ax + \iI)) and Op_1 — 0y = Q(nil),wheneveroz € (0,1)

k=1
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Non-strongly convex bandits

Why deriving error bounds is “really” difficult here?

n

9,, — Un Zﬂn(% - 9*) - ﬁnﬁj:l(ék - ékfl) + Z’Ykﬁnﬂl:lAMkv

— —
Initial Error =1

k=1

/ Drift Error
n

Need Z YAk — o0 to bound the initial error
k=1

Set v, = O(n~?) (forcing \, = Q(n—(pa)))

Bad news:

Sampling Error

This choice when plugged into (1) results in only a constant error bound!

n

Note: IT,, := H (I = v (Ax + \iI)) and Op_1 — 0y = Q(nil), whenever o € (0, 1)
k=1
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News recommendation

Outline

© News recommendation application
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News recommendation application

Dilbert’s boss on news recommendation (and ML)

BASED ON YOUR
INTERNET HISTORY.
YOU MIGHT BE DUMB

ENOUGH TO ENJOY
EXTREME SPORTS.

Dilbert com  DilbertCanoonistiigmail com

CLICK HERE TO BUY A

TICKET TO BASE JUMP

FROM THE INTERNA-
TIONAL SPACE STATION.

13 22013 SC0M AN, INC. Tut by Unvenl Ucks

I THINK WE
THE INTER—  ep L TIT
MET IS “MACHINE

TRYING TO -
KILL ME. LEC.RNING.
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News recommendation application

Preliminary Results on Complacs News Feed Platform
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News recommendatio ation

Experiments on Yahoo! Dataset !

Featured | Entartainment | Sports | Lifie

McNair's final hours
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e
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| Hirsanuall e

o More: Featured | Buz

MENalr murder cise

Figure : The Featured tab in Yahoo! Today module

1Yahm) User-Click Log Dataset given under the Webscope program (2011)
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News recommendation

Tracking Error

Tracking error: SGD Tracking error: SVRG!' Tracking error: SAG?
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Johnson, R., and Zhang, T. (2013) “Accelerating stochastic gradient descent using predictive variance reduction”. In: NIPS
2Roux, N. L., Schmidt, M. and Bach, F. (2012) “A stochastic gradient method with an exponential convergence rate for finite training
sets.”” arXiv preprint arXiv:1202.6258.
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News recommendation application

Runtime Performance on two days of the Yahoo! dataset
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For Further Reading
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For Further Reading

Dilbert’s boss (again) on big data!

E

g

WE HAVE A GIGANTIC |z
DATABASE FULL OF H
CUSTOMER BEHAVIOR |§
INFORMATION. §
) €

i

5

H

E

EXCELLENT. WE CAN
USE NON-LINEAR
MATH AND DATA
MINING TECHNOLOGY
TO OPTIMIZE OUR
RETAIL CHANNELS!
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IF THAT'S THE
SAME THING AS
SPAM, WE'RE
HAVING A GOOD
MEETING HERE.
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