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Traffic signal control using RL

On a good day, the traffic is . . .

Prashanth L.A. (INRIA) Reinforcement Learning for Traffic Signal Control October 2014 2 / 14



Traffic signal control using RL

And on a bad day, it can be . . .
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Traffic signal control using RL

Traffic Light Control (TLC)

Aim: Maximize traffic flow
(long-term performance criterion)

Input:
Coarse congestion estimates

Output:
Policy for switching traffic lights

Low Medium High

L1 L2
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Traffic signal control using RL

Desirable attributes of TLC algorithm

Dynamic:
Adapts to traffic conditions

Model free:
Do not assume a system model

Scalable:
Easily implementable on large

road networks

Solution:
Reinforcement Learning
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Traffic signal control using RL

Traffic Signal Control MDP

State. sn = (q1, · · · , qN , t1, · · · , tN)

Actions. an = {feasible sign configurations in state sn}

Cost.

k(sn, an) = r1 ∗
(∑

i∈Ip

qi(n) + ti(n)

)
+ s1 ∗

(∑
i/∈Ip

qi(n) + ti(n)

)

more weightage to main road traffic
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Traffic signal control using RL

Qlearning based TLC algorithm

Q-learning

Q(sn+1, an+1) = Q(sn, an) + α(n)
(

k(sn, an) + γ min
a

Q(sn+1, a)− Q(sn, an)
)
.

Why function approximation?

need look-up table to store Q-value for every (s, a)
Computationally expensive

two-junction corridor: 10 signalled lanes, 20 vehicles on
each lane
|S× A(S)| ∼ 1014

Situation aggravated when we consider larger road networks
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Traffic signal control using RL

Q-learning with Function Approximation

Approximation.

Q(s, a) ≈ θ
T
σs,a

Parameter θ ∈ Rd Feature σs,a ∈ Rd

Note: d << |S× A(S)|

Feature-based analog of Q-learning.

θn+1 = θn + α(n)σsn,an(k(sn, an) + γ min
v∈A(sn+1)

θT
nσsn+1,v − θT

nσsn,an)
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Traffic signal control using RL

Feature Selection

State (sn) Action (an) Feature (σsn,an )

qi(n) < L1 and ti(n) < T1
RED 0

GREEN 1

qi(n) < L1 and ti(n) ≥ T1
RED 0.2

GREEN 0.8

L1 ≤ qi(n) < L2 and ti(n) < T1
RED 0.4

GREEN 0.6

L1 ≤ qi(n) < L2 and ti(n) ≥ T1
RED 0.6

GREEN 0.4

qi(n) ≥ L2 and ti(n) < T1
RED 0.8

GREEN 0.2

qi(n) ≥ L2 and ti(n) ≥ T1
RED 1

GREEN 0
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Traffic signal control using RL

Threshold tuning using SPSA

Problem: hard to obtain exact queue lengths in practice

Solution: Use broad congestion estimates based on thresholds

Low Medium High

L1 L2

How to optimize Li’s? Use Simultaneous Perturbation Stochastic Approximation

Combine the optimization procedure with TLC algorithms:

Full state Q-learning algorithm with state aggregation
Function approximation Q-learning TLC
Priority based (naive?) scheme
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Traffic signal control using RL

Feature Adaptation

Recall the approximation.

Q(s, a) ≈ θ
T
σs,a

Parameter θ ∈ Rd Feature σs,a ∈ Rd

Is to possible to adapt features online to make them optimal?
We propose an online feature adaptation algorithm

to find the “optimal” features
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For Further Reading

The road ahead
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