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Stochastic optimization in a cumulative prospect
theory framework?

Cheng Jie], Prashanth L.A.†, Michael Fu$, Steve Marcus‡ and Csaba Szepesvári\

Abstract—Cumulative prospect theory (CPT) is a popular
approach for modeling human preferences. It is based on
probabilistic distortions and generalizes expected utility theory.
We bring CPT to a stochastic optimization framework and
propose algorithms for both estimation and optimization of CPT-
value objectives. We propose an empirical distribution function-
based scheme to estimate the CPT-value and then use this
scheme in the inner loop of a CPT-value optimization procedure.
We propose both gradient-based as well as gradient-free CPT-
value optimization algorithms that are based on two well-
known simulation optimization ideas: simultaneous perturbation
stochastic approximation (SPSA) and model-based parameter
search (MPS), respectively. We provide theoretical convergence
guarantees for all the proposed algorithms and also illustrate
the potential of CPT-based criteria in a traffic signal control
application.

Index Terms—Cumulative prospect theory, stochastic opti-
mization, simultaneous perturbation stochastic approximation,
reinforcement learning.

I. INTRODUCTION

In this paper we consider stochastic optimization problems
where a designer optimizes the system to produce outcomes
that are maximally aligned with the preferences of one or
possibly multiple humans. As a running example, consider
traffic optimization where the goal is to maximize travelers’
satisfaction, a challenging problem in big cities. In this ex-
ample, the outcomes (“return”) are travel times, or delays.
To capture human preferences, the outcomes are mapped to
a single numerical quantity. While preferences of rational
agents facing decisions with stochastic outcomes can be
modeled using expected utilities, i.e., the expectation of a
nonlinear transformation, such as the exponential function, of
the rewards or costs [1], [2], humans are subject to various
emotional and cognitive biases. As the psychology literature
points out, human preferences are inconsistent with expected
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utilities regardless of what nonlinearities are used [3], [4],
[5]. An approach that gained strong support amongst psy-
chologists, behavioral scientists and economists (cf. [6], [7])
is based on Kahneman and Tversky’s [5] celebrated prospect
theory (PT), the theory that we will also base our models
of human preferences on in this work. More precisely, we
will use cumulative prospect theory (CPT), a later, refined
variant of prospect theory due to Tversky and Kahneman [8],
which superseded prospect theory. CPT generalizes expected
utility theory in that in addition to having a utility function
transforming the outcomes, another function is introduced
which distorts the probabilities in the cumulative distribution
function. As compared to prospect theory, CPT is monotone
with respect to stochastic dominance, a property that is thought
to be useful and more consistent with human preferences.

Our contributions1

To the best of our knowledge, we are the first to incor-
porate CPT into an online stochastic optimization framework.
Although on the surface the combination may seem straightfor-
ward, in fact there are many challenges that arise from trying
to optimize a CPT objective in the stochastic optimization
framework, as we will soon see. We outline these challenges
as well as our approach to addressing them below.

The first challenge stems from the fact that the CPT-value
assigned to a random variable is defined through a nonlinear
transformation of the cumulative distribution function associ-
ated with the underlying random variable (see Section II for
the definitions). Hence, even the problem of estimating the
CPT-value given a random sample is challenging. In this paper,
we consider a natural quantile-based estimator and analyze
its behavior. Under certain technical assumptions, we prove
consistency and give sample complexity bounds, the latter
based on the Dvoretzky-Kiefer-Wolfowitz (DKW) theorem
[10, Chapter 2]. As an example, we show that the sample
complexity to estimate the CPT-value for Lipschitz probability
distortion weight functions is O

(
1
ε2

)
, for a given accuracy ε.

This sample complexity coincides with the canonical rate for
Monte Carlo-type schemes and is thus unimprovable. Since
weight functions that fit well to human preferences are only
Hölder continuous (see (A1) in Section III), we also consider
this case and find that (unsurprisingly) the sample complexity
degrades to O

(
1

ε2/α

)
where α ∈ (0, 1] is the weight function’s

Hölder exponent.

1A preliminary version of this paper was published in ICML 2016 [9].
In comparison to the conference version, this paper includes additional
theoretical results, formal proofs of convergence of both estimation and
optimization algorithms, additional experiments and a revised presentation.
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Our results on estimating CPT-values form the basis of the
algorithms that we propose to maximize CPT-values based on
interacting either with a real environment or with a simulator.
We consider a smooth parameterization of the CPT-value and
propose two algorithms for updating the CPT-value parameter.
The first algorithm is a stochastic gradient scheme that uses
two-point randomized gradient estimators, borrowed from
simultaneous perturbation stochastic approximation (SPSA)
[11]2. The second algorithm is a gradient-free method that is
adapted from [12]. The idea is to use a reference model that
eventually concentrates on the global minimum and then em-
pirically approximate this reference distribution well-enough.
The latter is achieved via natural exponential families in
conjunction with Kullback-Leibler (KL) divergence to measure
the “distance” from the reference distribution. Guaranteeing
convergence of the aforementioned CPT-value optimization
algorithms is challenging because only biased estimates of
the CPT-value are available. We propose a particular way
of controlling the arising bias-variance tradeoff and establish
convergence for all proposed algorithms.

Related work. Various risk measures have been proposed in
the literature, e.g., mean-variance tradeoff [13], exponential
utility [14], value at risk (VaR) and conditional value at
risk (CVaR) [15]. A large body of literature involves risk-
sensitive optimization in the context of Markov decision
processes (MDPs). The stochastic optimization context of this
paper translates to a risk-sensitive reinforcement learning (RL)
problem, and it has been observed in earlier works that risk-
sensitive RL is generally hard to solve. For instance, in [16],
[17] and [18], the authors provide NP-hardness results for
finding a globally variance-optimal policy in discounted and
average reward MDPs. Solving CVaR constrained MDPs is
equally complicated (cf. [19], [20]). In contrast, incorporating
CPT-based criteria incurs extra sample complexity in estima-
tion as compared to that of the classic sample mean estimator
for expected value, while the optimization schemes based
either on SPSA or model-based parameter search [12] that
we propose converge at the same rate as that of their expected
value counterparts. In the context of an abstract MDP setting,
a CPT-based risk measure has been proposed in [21]. Unlike
[21], (i) we do not assume a nested structure for the CPT-
value, and this implies the lack of a Bellman equation for our
CPT measure; (ii) we do not assume model information, i.e.,
we operate in a more general stochastic optimization setting;
(iii) we develop both estimation and optimization algorithms
with convergence guarantees for the CPT-value function. More
recently, the authors in [22] incorporate CPT-based criteria into
a multi-armed bandit setting, while employing the estimation
scheme that we proposed in the shorter version of this paper
[9].

The rest of the paper is organized as follows: In Sec-
tion II, we define the notion of CPT-value for a general
random variable. In Section III, we describe the empirical
distribution-based scheme for estimating the CPT-value of any
random variable. In Section IV, we present gradient-based

2A second-order CPT-value optimization scheme based on SPSA is de-
scribed in [9].
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Fig. 1. An example of a utility function. A reference point on the x axis
serves as the point of separating gains and losses. For losses, the disutility
−u− is typically convex and for gains, the utility u+ is typically concave;
both functions are non-decreasing and take the value of zero at the reference
point.

algorithms for optimizing the CPT-value. We provide proofs
of convergence for all the proposed algorithms in Section V.
In Sections VI and VII, we present simulation experiments
for synthetic and traffic signal control problems, respectively.
Finally, in Section VIII we provide our concluding remarks.

II. CPT-VALUE

For a real-valued random variable X , we introduce a “CPT-
functional” that replaces the traditional expectation operator.
The functional, denoted by C, depends on function pairs
u = (u+, u−) and w = (w+, w−). As illustrated in Figure
1, u+, u− : R → R+ are continuous, with u+(x) = 0 when
x ≤ 0 and non-decreasing otherwise, and with u−(x) = 0
when x ≥ 0 and non-increasing otherwise. The functions
w+, w− : [0, 1] → [0, 1], as shown in Figure 2, are contin-
uous, non-decreasing and satisfy w+(0) = w−(0) = 0 and
w+(1) = w−(1) = 1. The CPT-functional is defined as

C(X) =

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz

−
∫ ∞

0

w−
(
P
(
u−(X) > z

))
dz . (1)

Consider the case when w+, w− are identity functions,
u+(x) = x for x ≥ 0 and 0 otherwise, and u−(x) = −x
for x ≤ 0 and 0 otherwise. Then, letting (a)+ = max(a, 0),
(a)− = max(−a, 0), we have C(X) =

∫∞
0

P (X > z) dz −∫∞
0

P (−X > z) dz = E [(X)+] − E [(X)−], showing the
connection to expectations.

In the definition, u+, u− are utility functions corresponding
to gains (X ≥ 0) and losses (X ≤ 0), respectively, where zero
is chosen as an arbitrary “reference point” to separate gains
and losses. Handling losses and gains separately is a salient
feature of CPT, and this addresses the tendency of humans to
play safe with gains and take risks with losses. To illustrate this
tendency, consider a scenario where one can either earn $500
with probability (w.p.) 1 or earn $1000 w.p. 0.5 and nothing
otherwise. The human tendency is to choose the former option
of a certain gain. If we flip the situation, i.e., a certain loss
of $500 or a loss of $1000 w.p. 0.5, then humans choose the
latter option. This distinction of playing safe with gains and
taking risks with losses is captured by a concave gain-utility
u+ and a convex disutility −u−, as illustrated in Fig. 1.

The functions w+, w−, called the weight functions, capture
the idea that humans deflate high-probabilities and inflate low-
probabilities. For example, humans usually choose a stock that
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Fig. 2. An example of a weight function. A typical CPT weight function
inflates small, and deflates large probabilities, capturing the tendency of
humans doing the same when faced with decisions of uncertain outcomes.

gives a large reward, e.g., one million dollars w.p. 1/106, over
one that gives $1 w.p. 1 and the reverse when signs are flipped.
Thus the value seen by a human subject is nonlinear in the
underlying probabilities – an observation backed by strong
empirical evidence [8], [23]. In [8], the authors recommend
w(p) = pη

(pη+(1−p)η)1/η , while in [24], the author recommends
w(p) = exp(−(− ln p)η), with 0 < η < 1. In both cases, the
weight function has an inverted-s shape.

Remark 1. (RL application) For any RL problem setting,
one can define the return for a given policy and then apply
a CPT-functional on the return. For instance, with a fixed
policy, the random variable (r.v.) X could be the total reward
in a stochastic shortest path problem or the infinite horizon
cumulative reward in a discounted MDP.

Remark 2. (Generalization) As noted earlier, the CPT-value
is a generalization of mathematical expectation. It is also
possible to obtain (1) to coincide with other risk measures,
e.g. value at risk (VaR) and conditional value at risk (CVaR),
by appropriate choice of weight functions.

III. CPT-VALUE ESTIMATION

We devise a scheme for estimating the CPT-value C(X)
given only samples from the distribution of X . Before div-
ing into the details of CPT-value estimation, let us dis-
cuss the conditions necessary for the CPT-value to be
well-defined. Observe that the first integral in (1), i.e.,∫ +∞

0
w+ (P (u+(X) > z)) dz may diverge even if the first

moment of random variable u+(X) is finite. For example,
suppose U has the tail distribution function P (U > z) =
1
z2 , z ∈ [1,+∞), and w+(z) takes the form w(z) = z

1
3 . Then,

the first integral in (1), i.e.,
∫ +∞

1
z−

2
3 dz does not even exist.

A similar argument applies to the second integral in (1).
To overcome the integrability issues, we assume that the

weight functions w+, w− satisfy one of the following assump-
tions for continuous valued r.v.s:
Assumption (A1). The weight functions w± are Hölder
continuous with common order α and constant H , i.e.,
supx 6=y

|w±(x)−w±(y)|
|x−y|α ≤ H , ∀x, y ∈ [0, 1]. Further, there

exists γ ≤ α such that (s.t.)
∫ +∞

0
Pγ(u+(X) > z)dz < +∞

and
∫ +∞

0
Pγ(u−(X) > z)dz < +∞, where Pγ(·) = (P(·))γ .

Assumption (A1’). The weight functions w+, w− are Lips-
chitz with common constant L, and u+(X) and u−(X) both
have bounded first moments.

Proposition 1. Under (A1) or (A1’), the CPT-value C(X) as
defined by (1) is finite.

Proof. See Section V-A1.

(A1’), even though it implies (A1), is a useful special case
because it does away with additional assumptions required to
establish asymptotic consistency under (A1). For the theoret-
ical results, we also require the following assumption on the
utility functions:
Assumption (A2). The utility functions u+ and −u− are
continuous and non-decreasing on their support R+ and R−,
respectively.

Finally, we also analyze the setting where X is a discrete
valued r.v. Such a setting is common in practice and carries the
additional advantage that, under a local Lipschitz assumption
on the distribution of X , one gets better sample complexity
as compared to those under (A1) and (A1’).

A. CPT-value estimation using quantiles

Let ξ+
k and ξ−k denote the kth quantiles of the r.v.s u+(X)

and u−(X), respectively. Then, it can be seen that (see
Proposition 2 in Section V-A1)

lim
n→∞

n∑
i=1

ξ+
i
n

(
w+

(
n+ 1− i

n

)
− w+

(
n− i
n

))
=

∫ +∞

0

w+
(
P
(
u+(X) > z

))
dz. (2)

A similar claim holds with u−(X), ξ−k , w
− in place of u+(X),

ξ+
α , w

+, respectively.
However, we do not know the distribution of u+(X) or

u−(X) and hence, we next present a procedure that uses
order statistics for estimating quantiles and this in turn assists
estimation of the CPT-value along the lines of (2). The
estimation scheme is presented in Algorithm 1.

Algorithm 1 CPT-value estimation
1: Input: samples X1, . . . , Xn from the distribution of X .
2: Arrange the samples in ascending order and label them as

follows: X[1], X[2], . . . , X[n].
3: Let

C+

n :=

n∑
i=1

u+(X[i])

(
w+

(
n+ 1− i

n

)
−w+

(
n− i
n

))
,

C−n :=

n∑
i=1

u−(X[i])

(
w−

(
i

n

)
− w−

(
i− 1

n

))
.

4: Return Cn = C+

n − C−n .

Consider the special case when w+(p) = w−(p) = p
and u+ (−u−), when restricted to the positive (respectively,
negative) half line, are the identity functions. In this case,
the CPT-value estimator Cn coincides with the sample mean
estimator for regular expectation.
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Notice that the CPT estimator Cn in Algorithm 1 can be
written equivalently as follows:

Cn =

∫ ∞
0

w+
(

1− F̂+
n (x)

)
dx−

∫ ∞
0

w−
(

1− F̂−n (x)
)
dx.

(3)

The above relation holds because
n∑
i=1

u+
(
X[i]

)(
w+

(
n+ 1− i

n

)
− w+

(
n− i
n

))

=

n−1∑
i=1

w+

(
n− i
n

)(
u+
(
X[i+1]

)
− u+

(
X[i]

))
+ u+(X[1])

=

∫ ∞
0

w+
(

1− F̂+
n (x)

)
dx, and

n∑
i=1

u−
(
X[i]

)(
w−

(
i

n

)
− w−

(
i− 1

n

))
=

∫ ∞
0

w−
(

1− F̂−n (x)
)
dx,

where F̂+
n (x) and F̂−n (x) are the empirical distributions of

u+ (X) and u− (X), respectively.

B. Results for Hölder and Lipschitz continuous weights

Proposition 2. (Asymptotic consistency) Assume (A1), (A2),
F+(·) and F−(·), the respective distribution functions of
u+(X) and u−(X), are Lipschitz continuous on the respective
intervals (0,+∞), and (−∞, 0), and the utility functions
u+, u− satisfy

lim
n→∞

u+(X[n])

nα
→ 0 and lim

n→∞

u−(X[n])

nα
→ 0 a.s.,

where α is the Hölder exponent for w±.
Then, we have

Cn → C(X) a.s. as n→∞ (4)

where Cn is as defined in Algorithm 1 and C(X) as in (1).

The conditions on utility functions above are satisfied by
popular distribution choices such as Gaussian and exponential,
but not by heavy-tailed distributions, e.g. Cauchy.

Proof. See Section V-A1.

Under an additional assumption on the utility functions,
our next result shows that O

(
1

ε2/α

)
number of samples are

sufficient to get a high-probability estimate of the CPT-value
that is ε-accurate.

Proposition 3. (Sample complexity.) Assume (A1), (A2) and
also that the utilities u+(X) and u−(X) are bounded by a
constant M . Then, ∀ε > 0, we have

P
(∣∣Cn − C(X)

∣∣ ≥ ε) ≤ 2e−2n( ε
HM )

2
α (5)

Instead, if the utilities functions are sub-Gaussian3, then ∀ε >
0 and n ≥

(
ln 2−ln ε

2α

)α+2
, we have

P
(∣∣Cn − C(X)

∣∣ ≥ ε) ≤ 2ne−n
1

2+α
+ 2e−n

1
2+α ( ε

2H )
2
α (6)

3A r.v. X with mean µ is sub-Gaussian if ∃σ > 0 such that
E
[
eλ(X−µ)

]
≤ eσ2λ2/2,∀λ ∈ R.

Corollary 1. Assume (A1), (A2). If utilities u+(X) and
u−(X) are bounded by M , then

E
∣∣Cn − C(X)

∣∣ ≤ (8HM) Γ (α/2)

nα/2
.

Instead, if the utilities are sub-Gaussian, then

E
∣∣Cn − C(X)

∣∣ ≤ Γ( 1
2 ) · α · 21−α

n
α
α+2

+
Γ( 1

2 ) ·
√

2(2H)
2
α

n
2−α
2+α

Proof. See Section V-A1.

Setting α = 1, one can obtain the asymptotic consistency
claim in Proposition 2 for Lipschitz weight functions. How-
ever, this result is under a restrictive Lipschitz assumption
on the distribution functions of u+(X) and u−(X). Using
a different proof technique and (A1’) in place of (A1), we can
obtain a result similar to Proposition 2 without a Lipschitz
assumption on the distribution functions. The following claim
makes this precise.

Proposition 4. (Asymptotic consistency) Assume (A1’) and
(A2). Then, we have

Cn → C(X) a.s. as n→∞.

Proof. See Section V-A2.

Setting α = 1 in Proposition 3, we observe that one
can achieve the canonical Monte Carlo rate for Lipschitz
continuous weights. Choosing the weights to be the identity
function, we observe that the sample complexity cannot be
improved. On the other hand, for Hölder continuous weights,
we incur a sample complexity of order O

(
1

ε2/α

)
for accuracy

ε > 0 and this is generally worse than the canonical Monte
Carlo rate of O

(
1
ε2

)
, for α < 1. An interesting question here

is if the sample complexity from Proposition 3 be improved
upon, say to O(1/ε2) for achieving ε accuracy? The next
result shows that the best achievable sample complexity, in
the minimax sense, is Ω

(
1

ε2/α

)
over the class of Hölder-

continuous weight functions.
Before presenting the lower bound, we define the notion of

minimax error. Let P be a nonempty set of distributions. Let
C(P ) denote the CPT-value of a r.v. with distribution P ∈ P
and Cn : Rn → R denote an estimator. The minimax error
Rn(P) is defined by

Rn(P) := inf
Cn

sup
P∈P

EX1:n∼P⊗n
∣∣Cn(X1:n)− C(P )

∣∣ (7)

Proposition 5. (Lower bound) For a set of distributions P
supported within the interval [0, 1], the minimax error satisfies

Rn(P) ≥ 1

4(6n)
α
2
, for all n ≥ 1.

Proof. See Section V-A3.

C. Locally Lipschitz weights and discrete-valued X

Here we assume that X is a discrete valued r.v. with
finite support. Let pi, i = 1, . . . ,K, denote the probability
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of incurring a gain/loss xi, i = 1, . . . ,K, where x1 ≤ . . . ≤
xl ≤ 0 ≤ xl+1 ≤ . . . ≤ xK and let

Fk =

k∑
i=1

pi if k ≤ l and
K∑
i=k

pi if k > l. (8)

In this setting, the first integral, say C+(X), in the definition
of CPT-value (1) can be simplified as follows:

C+(X) =

∫ u+(xl+1)

0

w+
(
P
(
u+(X) > z

))
dz

+

K−1∑
k=l+1

∫ u+(xk+1)

u+(xk)

w+
(
P
(
u+(X) > z

))
dz

+

∫ ∞
u+(xK)

w+
(
P
(
u+(X) > z

))
dz

= w+(Fl+1)u+(xl+1) +

K∑
i=l+2

w+(Fi)(u
+(xi)− u+(xi−1))

=

K−1∑
i=l+1

u+(xi)
(
w+(Fi)− w+(Fi+1)

)
+ u+(xK)w+(pK).

The second integral in (1) can be simplified in a similar
fashion, and we obtain the following form for the overall CPT-
value of a discrete-valued X:

C(X) =
( K−1∑
i=l+1

u+(xi)
(
w+(Fi)− w+(Fi+1)

)
+ u+(xK)w+(pK)

)
−
(
(u−(x1))w

−(p1)+

l∑
i=2

u−(xi)
(
w−(Fi)− w−(Fi−1)

))
.

Estimation scheme: Let X1, . . . , Xn be n samples from the
distribution of X . Define p̂k := 1

n

∑n
i=1 I{Xi=xk} and

F̂k =

k∑
i=1

p̂k if k ≤ l and
K∑
i=k

p̂k if k > l. (9)

Then, we estimate C(X) as follows:

Cn=
( K−1∑
i=l+1

u+(xi)
(
w+(F̂i)− w+(F̂i+1)

)
+ u+(xK)w+(p̂K)

)
−
(
u−(x1)w

−(p̂1)+

l∑
i=2

u−(xi)
(
w−(F̂i)− w−(F̂i−1)

))
.

Assumption (A1”). The weight functions w+ and w− are
locally Lipschitz continuous, i.e., for any k = 1, . . . ,K, there
exist Lk <∞ and ρk > 0, such that, for k = 1, . . . , l,

|w−(Fk)− w−(p)| ≤ Lk|Fk − p|, ∀p ∈ (Fk − ρk, Fk + ρk),

and for k = 1 + 1, . . . ,K,

|w+(Fk)− w+(p)| ≤ Lk|Fk − p|, ∀p ∈ (Fk − ρk, Fk + ρk).

Proposition 6. Assume (A1”). Let L = maxk=1,...,K Lk and
ρ = min{ρk}, where Lk and ρk are as defined in (A1”).
Let M = max{u−(xk), k = 1, . . . , l}

⋃
{u+(xk), k = l +

1, . . . ,K}. Then, ∀ε > 0, δ > 0, we have

P
(∣∣Cn − C(X)

∣∣ ≤ ε)>1−δ, ∀n ≥ 1

κ
ln

(
1

δ

)
ln

(
4K

M

)
,

where κ = min(ρ2, ε2/(KLM)2).

In comparison to Propositions 3 and 4, observe that the
sample complexity for discrete X scales with the local Lip-
schitz constant L, and this can be much smaller than the
global Lipschitz constant of the weight functions, or the weight
functions may not be Lipschitz globally.

Proof. See Section V-A4.

A variant of Corollary 1 can be obtained by integrating the
high-probability bound in Proposition 6; we omit the details
here.

IV. CPT-VALUE OPTIMIZATION

A. Optimization objective

Suppose the r.v. X in (1) is a function of a d-dimensional
parameter θ. In this section we consider the problem

Find θ∗ = arg max
θ∈Θ

C(Xθ), (10)

where Θ is a compact and convex subset of Rd. The above
problem encompasses policy optimization in an MDP that can
be discounted or average or stochastic shortest path and/or
partially observed. The difference here is that we apply the
CPT-functional to the return of a policy, instead of using the
expected return.

B. Gradient algorithm using SPSA (CPT-SPSA)

Gradient estimation: Given that we operate in a learning
setting and only have asymptotically unbiased estimates of the
CPT-value from Algorithm 1, we require a simulation scheme
to estimate ∇C(Xθ). Simultaneous perturbation methods are
a general class of stochastic gradient schemes that optimize
a function given only noisy sample values - see [25] for a
textbook introduction. SPSA is a well-known scheme that es-
timates the gradient using two sample values. In our context, at
any iteration n of CPT-SPSA, with parameter θn, the gradient
∇C(Xθn) is estimated as follows: For any i = 1, . . . , d,

∇̂iC(Xθ) =
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

, (11)

where δn is a positive scalar that satisfies (A3) below, ∆n =(
∆1
n, . . . ,∆

d
n

)T
, where {∆i

n, i = 1, . . . , d}, n = 1, 2, . . . are
i.i.d. symmetric, ±1-valued Bernoulli r.v.s, independent of
θ0, . . . , θn and Cθn+δn∆n

n (resp. Cθn−δn∆n

n ) denotes the CPT-
value estimate that uses mn samples of the r.v. Xθn+δn∆n

(resp. X
θn−δn∆n ). The (asymptotic) unbiasedness of the gra-

dient estimate is proven in Lemma 4.
Update rule: We incrementally update the parameter θ in

the ascent direction as follows:

θn+1 = Π
(
θn + γn∇̂C(Xθn)

)
, (12)

where γn is a step-size chosen to satisfy (A3) below and Π =
(Π1, . . . ,Πd) is an operator that ensures that the update (12)
stays bounded within the compact and convex set Θ.
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On the number of samples mn per iteration: Recall that the
CPT-value estimation scheme is asymptotically unbiased, i.e.,
providing samples with parameter θn at instant n, we obtain
its CPT-value estimate as C(Xθn) + ψθn, with ψθn denoting
the error in estimation. The estimation error can be controlled
by increasing the number of samples mn in each iteration
of CPT-SPSA. This is unlike many simulation optimization
settings where one only sees function evaluations with zero
mean noise and there is no question of deciding on mn to
control the estimation error as we have in our setting.

To motivate the choice for mn, we first rewrite the update
rule (12) as follows:

θin+1 =Πi

(
θin + γn

(C(Xθn+δn∆n)−C(Xθn−δn∆n)

2δn∆i
n

)
+κn

)
,

where κn =
(ψθn+δn∆n
n −ψθn−δn∆n

n )
2δn∆i

n
. Let ζn =

∑n
l=0 γlκl.

Then, a critical requirement that allows us to ignore the
estimation error term ζn is the following condition (see Lemma
1 in Chapter 2 of [26]):

sup
l≥0

(ζn+l − ζn)→ 0 as n→∞.

While Theorems 2–3 show that the estimation error ψθ is
bounded above, to establish convergence of the CPT-SPSA, we
increase the number of samples mn so that the bias vanishes
asymptotically. The assumption below provides a condition on
the increase rate of mn.
Assumption (A3). The step-sizes γn and the perturbation
constants δn are positive ∀n and satisfy

γn, δn → 0,
1

m
α/2
n δn

→ 0,
∑
n

γn =∞ and
∑
n

γ2
n

δ2
n

<∞.

While the conditions on γn and δn are standard for SPSA-
based algorithms, the condition on mn is motivated by the
earlier discussion. A simple choice that satisfies the above
conditions is γn = a0/n, mn = m0n

ν and δn = δ0/n
γ , for

some ν, γ > 0 with γ > να/2.
Assumption (A4). The CPT-value C(Xθ) is a continuously
differentiable function of θ, with bounded third derivative.

In a typical RL setting involving finite state action spaces, a
sufficient condition for ensuring (A4) holds is to assume that
the policy is continuously differentiable in θ.

Convergence result for CPT-SPSA

We use the ordinary differential equation (ODE) method for
establishing asymptotic convergence of CPT-SPSA. Consider
the ODE:

θ̇it = Π̌i

(
−∇C(Xθit)

)
, for i = 1, . . . , d, (13)

where Π̌i(f(θ)) := lim
ϑ↓0

Πi(θ+ϑf(θ))−θ
ϑ , for any continuous

f(·). Let K ⊂ {θ∗ | Π̌i

(
∇iC(Xθ∗)

)
= 0,∀i = 1, . . . , d}

denote the set of asymptotically stable equilibrium points of
the ODE (13). That K 6= φ can be inferred by using the fact
that C(Xθ) itself serves as a Lyapunov function for (13) (see
Section V-B1 for details).

Theorem 1. Assume (A1)-(A4). Then, K 6= φ and for θn
governed by (12), we have

θn → K a.s. as n→∞.

Proof. See Section V-B1.

Let K′ = {θ∗ | ∇iC(Xθ∗) = 0,∀i = 1, . . . , d} denote the
set of critical points of the CPT-value. If K′ lies within the
set Θ onto which the iterate θn (updated according to (12))
is projected, then the above theorem ensures that CPT-SPSA
converges to K′. When it not possible to ensure that K′ ⊂ Θ,
the iterate θn might get stuck on the boundary of Θ.

Remark 3. The convergence result presented for CPT-SPSA is
applicable to more general settings where an algorithm is pro-
vided samples of a performance objective, with an estimation
error that vanishes asymptotically. Examples of such settings
are average reward optimization via policy gradient methods
in an RL context [27] or in the context of an optimal stopping
problem [28].

C. Model-based parameter search algorithm (CPT-MPS)

In this section, we provide a gradient-free algorithm (CPT-
MPS) for maximizing the CPT-value, that is based on the
MRAS2 algorithm proposed by Chang e al. [12]. While CPT-
SPSA is a local optimization scheme, CPT-MPS converges to
the global optimum, say θ∗, for the problem (10), assuming
one exists.

To illustrate the main idea in the algorithm, assume we know
the form of C(Xθ). Then, the idea is to generate a sequence of
reference distributions gk(θ) on the parameter space Θ, such
that it eventually concentrates on the global optimum θ∗. One
simple way, suggested in Chapter 4 of [12] is

gk(θ) =
H(C(Xθ))gk−1(θ)∫

Θ
H(C(Xθ′))gk−1(θ′)ν(dθ′)

, ∀ θ ∈ Θ, (14)

where ν is the Lebesgue/counting measure on Θ and H is a
strictly decreasing function. The above construction for gk’s
assigns more weight to parameters having higher CPT-values.

Next, consider a setting where one can obtain the CPT-
value C(Xθ) (without any noise) for any parameter θ. In
this case, we consider a family of parameterized distributions,
say {f(·, η), η ∈ C} and incrementally update the distribu-
tion parameter η such that it minimizes the following KL
divergence: D(gk, f(·, η)) :=

∫
Θ

ln gk(θ)
f(θ,η)gk(θ)ν(dθ), where

θ̂ is a random vector taking values in the parameter space Θ.
As recommended in [12], we employ the natural exponential
family (NEF) for the family of distributions f(·, θ), since it
ensures that the KL distance above can be computed analyt-
ically. An algorithm to optimize CPT-value in this noiseless
setting would perform the following update:

ηn+1∈arg max
η∈C

Eηn

[
[H(C(X θ̂)]n

f(θ̂, ηn)
ln f(θ̂, η)

]
, (15)

where Eηn [C(X θ̂)] =
∫

Θ
C(Xθ)f(θ, ηn)ν(dθ).

Algorithm 2 presents the pseudocode for the CPT-value
optimization setting where we obtain only asymptotically
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Algorithm 2 Structure of CPT-MPS algorithm.
Input: family of distributions {f(·, η)}, initial parameter
vector η0 s.t. f(θ, η0) > 0 ∀ θ ∈ Θ, trajectory lengths {mn},
ρ0 ∈ (0, 1], N0 > 1, ε > 0, ς > 1, λ ∈ (0, 1), strictly
increasing function Hand χ−1 = −∞.
for n = 0, 1, 2, . . . do

Generate Nn parameters Λn = {θ1
n, . . . , θ

Nn
n } using the

mixture distribution f̃(·, ηn) = (1− λ)f(·, η̃n) + λf(·, η0).
for i = 1, 2, . . . , Nn do

Obtain CPT-value estimate Cθ
i
n

n using mn samples.
end for
Elite Sampling:
Order the CPT-value estimates as {Cθ

(1)
n

n , . . . ,Cθ
(Nn)
n

n }.
Compute the (1−ρn)-quantile χ̃n(ρn, Nn)=Cθ

d(1−ρn)Nne
n

n .
Thresholding:
find largest ρ̄ ∈ (0, ρn) such that χ̃n(ρ̄, Nn) ≥ χ̄n−1 + ε;
if ρ̄ exists then
Set χ̄n= χ̃n(ρ̄, Nn), ρn+1 = ρ̄, Nn+1 =Nn, θ∗n=θ1−ρ̄.

else
Set χ̄n=Cθ

∗
n−1

n , ρn+1 =ρn, Nn+1 =dςNne, θ∗n=θ∗n−1.
end if
Sampling distribution update:

ηn+1 ∈ arg max
η∈C

Nn∑
i=1

[H(Cθ
i
n)]n)

f̃(θ, ηn)
Ĩ
(
Cθ

i
n , χ̄n

)
ln f(θ, η),

where Ĩ(z, χ) := 0 if z ≤ χ− ε, (z − χ+ ε)/ε if χ− ε <
z < χ and 1 if z ≥ χ.
end for
Return θn

unbiased estimates of the CPT-value C(Xθ) for any parameter
θ. As in [12], we use only an elite portion of the candidate
parameters that have been sampled, as this guides the param-
eter search procedure towards better regions more efficiently
in comparison to an alternative that uses all the candidate
parameters for updating η.

The main convergence result is stated below.

Theorem 2. Assume (A1), (A2) and that mn →∞ as n→∞.
Suppose that multivariate normal densities are used for the
sampling distribution, i.e., ηn = (µn,Σn), where µn and Σn
denote the mean and covariance of the normal densities. Then,

lim
n→∞

µn = θ∗ and lim
n→∞

Σn = 0d×d a.s. (16)

Proof. See Section V-B2.

V. CONVERGENCE PROOFS

A. Proofs for CPT-value estimator
1) Hölder continuous weights: For proving Propositions 2

and 6, we require Hoeffding’s inequality, which is given below.

Lemma 1. Let Y1, ...Yn be independent random variables
satisfying P (a ≤ Yi ≤ b) = 1, ∀i, where a < b. Then, ∀ε > 0,

P

(∣∣∣∣∣
n∑
i=1

Yi −
n∑
i=1

E(Yi)

∣∣∣∣∣ ≥ nε
)
≤ 2 exp {−2nε2/(b− a)2}.

Proof. (Proposition 1)
Hölder continuity of w+ and w+(0) = 0 imply that∫ ∞

0

w+
(
P
(
u+(X) > z

))
dz ≤ H

∫ ∞
0

Pα
(
u+(X) > z

)
dz

≤ H
∫ ∞

0

Pγ
(
u+(X) > z

)
dz <∞.

The second inequality is valid since P (u+(X) > z) ≤ 1. The
claim follows for the first integral in (1), and the finiteness
of the second integral in (1) can be argued in an analogous
fashion.

We now state and prove a lemma that will be used in the
proof of Proposition 2.

Lemma 2. Assume (A1). Let ξ+
i
n

and ξ−i
n

denote the i
n th

quantile of u+(X) and u−(X), respectively. Then, we have

lim
n→∞

n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))
=

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz <∞, (17)

lim
n→∞

n−1∑
i=1

ξ−i
n

(
w−

(
i

n

)
− w−

(
i− 1

n

))
=

∫ ∞
0

w−
(
P
(
u−(X) > z

))
dz <∞. (18)

Proof. We will focus on proving equation (17). For all z ∈
(0,+∞), the following convergence claim holds w.p.1:

n−1∑
i=1

w+

(
i

n

)
I[
ξ+
n−i−1
n

,ξ+
n−i
n

](z)
n→∞−−−−→ w+

(
P
(
u+(X) > z

))
.

(19)

To infer the above claim, observe that since u+(X) ranges
in (0,+∞),∀z, there exists i such that z ∈ [ξ+

n−i−1
n

, ξ+
n−i
n

],
which implies that

w+
(
P
(
u+ (X) ≥ z

))
∈
[
w+

(
i

n

)
, w+

(
i+ 1

n

)]
.

Hence, we have∣∣∣∣∣∣
n−1∑
j=1

w+

(
j

n

)
I[
ξ+
n−j−1
n

,ξ+
n−j
n

](z)− w+
(
P
(
u+(X) > z

))∣∣∣∣∣∣
≤
∣∣∣∣w+

(
i

n

)
− w+

(
i+ 1

n

)∣∣∣∣
Since w+ is Hölder continuous, we have∣∣∣∣w+

(
i

n

)
− w+

(
i+ 1

n

)∣∣∣∣ n→∞−−−−→ 0,

and the claim in (19) follows.
Further, for all z ∈ [0,∞),

n−1∑
j=1

w+

(
j

n

)
I[
ξ+
n−j−1
n

,ξ+
n−j
n

](z) < w+
(
P
(
u+(X) > z

))
.

(20)
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The integral of the LHS of (19) can be simplified as follows:∫ ∞
0

n∑
j=0

w+

(
j

n

)
I[
ξ+
n−j−1
n

,ξ+
n−j
n

](z)dz

=

n−1∑
j=0

w+

(
j

n

)(
ξ+
n−j
n

− ξ+
n−j−1
n

)
=

n−1∑
j=0

ξ+
j
n

(
w+

(
n− j
n

)
− w+

(
n− j − 1

n

))
. (21)

Now, the main claim in (17) can be inferred from (19),(20) and
(21) in conjunction with the dominated convergence theorem.

The second part of (17) follows in a similar fashion.

Proof. (Proposition 2)
Without loss of generality, assume that w+ and w− are both
(1, α) Hölder. We prove the claim for the first integral in the
CPT-value estimator Cn in Algorithm 1, i.e., we show that

lim
n→∞

n∑
i=1

u+
(
X[i]

)(
w+

(
n− i+ 1

n

)
− w+

(
n− i
n

))
=

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz, a.s. (22)

The main part of the proof is focused on finding an upper
bound for the probability

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε

)
.

Observe the fact that
n∑
i=1

u+
(
X[i]

)(
w+

(
n− i+ 1

n

)
− w+

(
n− i
n

))

−
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))
=

n∑
i=1

(
u+
(
X[i]

)
− u+

(
X[i−1]

))
w+

(
n+ 1− i

n

)
−

n∑
i=1

(
u+
(
X[i]

)
− u+

(
X[i−1]

))
w+

(
n− i
n

)
=

n∑
i=1

(
u+
(
X[i]

)
− u+

(
X[i−1]

))
×
(
w+

(
n+ 1− i

n

)
− w+

(
n− i
n

))
≤ u+

(
X[n]

)
× 1

nα

Under (A1), the term
u+(X[n])

nα converges to 0. Hence, for
the asymptotic convergence of estimator, thanks to Lemma 2,
it suffices to show that

lim
n→∞

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε

)
= 0.

For any given ε > 0, we have

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε

)

≤ P

(
n−1⋃
i=1

{∣∣∣∣u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))
−ξ+

i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣ > ε

n− 1

})
≤
n−1∑
i=1

P
(∣∣∣(u+

(
X[i]

)
− ξ+

i
n

)
×
(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣ > ε

n− 1

)
≤
n−1∑
i=1

P
(∣∣∣∣(u+

(
X[i]

)
− ξ+

i
n

)( 1

n

)α∣∣∣∣ > ε

n− 1

)
(23)

≤
n−1∑
i=1

P
(∣∣∣(u+

(
X[i]

)
− ξ+

i
n

)∣∣∣ > ε

n1−α

)
. (24)

In the above, (23) follows from the fact that w+ is Hölder
with constant 1.

Now we find an upper bound for the probability of a single
term in the sum above, i.e.,

P
(∣∣∣u+

(
X[i]

)
−ξ+

i
n

∣∣∣> ε

n(1−α)

)
=P

(
u+
(
X[i]

)
−ξ+

i
n

>
ε

n(1−α)

)
+ P

(
u+
(
X[i]

)
− ξ+

i
n

< − ε

n(1−α)

)
.

We focus on the first term above.

Let Wj = I(
u+(Xj)>ξ

+
i
n

+ ε

n(1−α)

), j = 1, . . . , n.

Using the fact that a probability distribution function is non-
decreasing, we obtain

P
(
u+(X[i])− ξ+

i
n

>
ε

n(1−α)

)
= P

 n∑
j=1

Wj > n− i


= P

 n∑
j=1

Wj > n

(
1− i

n

)
= P

 n∑
j=1

Wj − n
[
1− F+

(
ξ+
i
n

+
ε

n(1−α)

)]
> n

[
F+

(
ξ+
i
n

+
ε

n(1−α)

)
− i

n

])
.

Using the fact that EWj = 1 − F+
(
ξ+
i
n

+ ε
n(1−α)

)
in

conjunction with Hoeffding’s inequality, we obtain

P

(
n∑
i=1

Wj − n
[
1− F+

(
ξ+
i
n

+
ε

n(1−α)

)]
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> n

[
F+

(
ξ+
i
n

+
ε

n(1−α)

)
− i

n

])
≤ e−2nδ

′
i ,

where δ
′

i = F+
(
ξ+
i
n

+ ε
n(1−α)

)
− i

n . Since F+ is Lipschitz,

we have that δ
′

i ≤ L+
(

ε
n(1−α)

)
. Hence, we obtain

P
(
u+(X[i])− ξ+

i
n

>
ε

n(1−α)

)
≤ e−2nL+ ε

n(1−α)

= e−2nαL+ε . (25)

In a similar fashion, one can show that

P
(
u+(X[i])− ξ+

i
n

< − ε

n(1−α)

)
≤ e−2nαL+ε. (26)

Combining (25) and (26), we obtain

P
(∣∣∣u+(X[i])− ξ+

i
n

∣∣∣ < − ε

n(1−α)

)
≤ 2e−2nαL+ε.

Plugging the above in (24), we obtain

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε

)
≤ 2(n− 1)e−2nαL+ε ≤ 2ne−2nαL+ε . (27)

Notice that
∑∞
n=1 2ne−2nαL+ε < ∞ since the sequence

2ne−2nαL+

will decrease faster than the sequence 1
nk

provided
k > 1.

By applying the Borel-Cantelli lemma, ∀ε > 0, we have

P

(∣∣∣∣∣
n−1∑
i=1

u+
(
X[i]

)(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))

−
n−1∑
i=1

ξ+
i
n

(
w+

(
n− i
n

)
− w+

(
n− i− 1

n

))∣∣∣∣∣ > ε, i.o.

)
= 0,

which implies (22).
The proof of C−n → C−(X) follows in a similar manner as

above by replacing u+(X[i]) by u−(X[n−i]), after observing
that u− is decreasing, which in turn implies that u−(X[n−i])
is an estimate of the quantile ξ−i

n

.

For proving Proposition 3, we require the DKW inequality,
which we recall below.

Lemma 3. (DKW inequality)
Let F denote the cdf of r.v. U and F̂n(u) = 1

n

∑n
i=1 I[Ui≤u]

denote the empirical distribution of U , with U1, . . . , Un sam-
pled from F . Then, for any ε > 0, we have

P
(

sup
x∈R
|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε2 .

Proof. (Proposition 3)
To prove (6), we only need to address the w+ part, and the w−

part follows in a similar fashion. Observe that for all c > 0,
we have

P (|Cn − C(X)| > ε) ≤ P
(
u+
(
X[i]

)
≥ nc

)
+ P

(
{|Cn − C(X)| > ε}

⋂{
u+
(
X[i]

)
< nc

})
.

On the event {u+
(
X[i]

)
< nc}, we have∣∣∣∣∫ ∞

0

w+
(
P
(
u+(X) > t

))
dt−

∫ ∞
0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

w+
(
P
(
u+(X) > t

))
dt−

∫ nc

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣∣ .
Notice that∫ ∞

nc
w (P (X > s)) ds ≤ 1

nc

∫ ∞
nc

s

nc
e−2αs2ds

=nc
4

α
e−2α(nc)2

≤ ε

2
for n ≥

(
ln 2− ln ε

2α

) 1
c

.

Thus, we obtain

P
(
{|Cn − C(X)| > ε}

⋂{
u+
(
X[n]

)
< nc

})
≤

P

∣∣∣∣∣∣
nc∫
0

w+
(
P
(
u+(X) > t

))
dt−

nc∫
0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣∣∣ > ε

2

.
Now, plugging in the DKW inequality, we have

P
(∣∣∣∣∫ ∞

0

w+
(
P
(
u+(X) > t

))
dt−
∫ ∞

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣ > ε

2

)
≤ P

(
Hnc sup

t∈R

∣∣∣P (u+ (X) < t
)
− F̂+

n (t)
∣∣∣α > ε

2

)
≤ 2e−2n( ε

2Hnc )
2
α

= 2e−2n1− 2c
α ( ε

2H )
2
α
. (28)

Meanwhile, by sub-Gaussianity, we infer that

P
(
u+
(
X[n]

)
> nc

)
= 1− P

(
u+
(
X[n]

)
≤ nc

)
= 1− (P (Xi ≤ nc))n ≤ 1−

(
1− e−2nc

)n
≤1−

(
1− ne−2nc

)
= ne−2nc ,

where the last inequality is obtained by Taylor approximation.
As a result,

P (|Cn − C(X)| > ε) ≤ ne−2nc + 2e−2n1− 2c
α ( ε

2H )
2
α
.

The right side of the above inequality will be optimized with
c = 1− 2c

α , i.e., for c = 1
2+α . The claim in (6) follows.

To prove (5) under the condition that utilities functions are
bounded by M , notice that∣∣∣∣∫ ∞

0

w+
(
P
(
u+(X) > t

))
dt−

∫ ∞
0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣
=

∣∣∣∣∣
∫ M

0

w+
(
P
(
u+(X) > t

))
dt−

∫ M

0

w+
(

1− F̂+
n (t)

)
dt

∣∣∣∣∣
≤ HM sup

x∈R

∣∣∣P (u+(X) < t
)
− F̂+

n (t)
∣∣∣α .

The bound in (5) can be inferred by replacing nc by M and
ε
2 by ε in inequality (28).

Proof. (Corollary 1)
When the utilities are bounded by M , integrating the high-
probability bound (5) in Proposition 3, we obtain

E
∣∣Cn − C(X)

∣∣ ≤ ∫ ∞
0

P
(∣∣Cn − C(X)

∣∣ ≥ ε) dε
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≤ 4

∫ ∞
0

exp
(
−2n (ε/HM)

2/α
)
dε ≤ 8HMΓ (α/2)

nα/2
.

(29)

For the sub-Gaussian case, notice that if we truncate
u+
(
X[i]

)
by nc

√
ε instead of nc and repeat the steps used

in the proof of Proposition 3, we obtain

P
(∣∣Cn − C(X)

∣∣ ≥ ε) ≤ ne−2n2cε
1
2 + 2e

−2n1− 2c
α

(
ε

1
2

2H

) 2
α

.

Setting c = 1
2+α , we obtain the following:

E
∣∣Cn − C(X)

∣∣ ≤ Γ
(

1
2

)
· α · 21−α

n
α
α+2

+
Γ
(

1
2

)√
2 (2H)

2
α

n
2−α
2+α

.

2) Lipschitz continuous weights: Setting α = γ = 1 in the
proof of Proposition 4, it is easy to see that the CPT-value (1)
is finite. We provide a proof of the asymptotic convergence
claim in Proposition 4 below.

Proof. (Proposition 4)
We first prove the asymptotic convergence claim for the first
integral (3) in the CPT-value estimator in Algorithm 1, i.e.,
we show∫ ∞

0

w+
(

1− F̂+
n (x)

)
dx→

∫ ∞
0

w+
(
P
(
u+ (X) > x

))
dx.

(30)

Since w+ is Lipschitz continuous with, say, constant L, we
have almost surely that w+

(
1− F̂n (x)

)
≤ L

(
1− F̂n (x)

)
,

for all n and w+ (P (u+ (X) > x)) ≤ L (P (u+ (X) > x)),
since w+ (0) = 0.

We have∫ ∞
0

(
P
(
u+ (X) > x

))
dx = E

[
u+ (X)

]
, and∫ ∞

0

(
1− F̂+

n (x)
)
dx =

∫ ∞
0

∫ ∞
x

dF̂n (t) dx. (31)

Since F̂+
n (x) has bounded support on R ∀n, the integral in

(31) is finite. Applying Fubini’s theorem to the RHS of (31),
we obtain∫ ∞

0

∫ ∞
x

dF̂n (t) dx =

∫ ∞
0

tdF̂n (t) =
1

n

n∑
i=1

u+
(
X[i]

)
,

where u+
(
X[i]

)
, i = 1, . . . , n are the order statistics, i.e.,

u+
(
X[1]

)
≤ . . . ≤ u+

(
X[n]

)
.

Notice that

1

n

n∑
i=1

u+
(
X[i]

)
=

1

n

n∑
i=1

u+ (Xi)
a.s−→ E

[
u+ (X)

]
.

From the foregoing,

lim
n→∞

∫ ∞
0

L
(

1−F̂n (x)
)
dx

a.s−→
∫ ∞

0

L
(
P
(
u+ (X)>x

))
dx.

The claim in (30) now follows by invoking the generalized
dominated convergence theorem by setting fn = w+(1 −
F̂+
n (x)) and gn = L(1 − F̂n(x)), and noticing that L(1 −
F̂n(x))

a.s.−−→ L(P (u+(X) > x)) uniformly over x. The latter

fact is implied by the Glivenko-Cantelli theorem (cf. Chapter
2 of [10]).

Following similar arguments, it is easy to show that∫ ∞
0

w−
(

1− F̂−n (x)
)
dx→

∫ ∞
0

w−
(
P
(
u−(X) > x

))
dx.

The final claim regarding the almost sure convergence of
Cn to C(X) now follows.

3) Lower bound for estimation error:

Proof. (Proposition 5)
We use Le Cam’s method to establish the lower bound. Let
Xv , v ∈ {−1,+1} denote a Bernoulli r.v. with underlying
distribution Pv , v ∈ {+1,−1} defined by

Pv(X = 1) =
1 + vδ

1
α

2
and Pv(X = 0) =

1− vδ 1
α

2
,

where δ ∈ [0, 2−α] is left to be chosen later. Setting u+(x) =
x, x ≥ 0, w+ = w− = w, where w is Hölder continuous with
exponent α ∈ (0, 1), we have

C(Pv) = w(1 + vδ
1
α ), v ∈ {+1,−1}.

Suppose that w also satisfies the following condition: |w(p)−
w(p̃)| ≥ |p − p̃|α for p, p̃ ∈ (0, 1). An example of such a w
for α = 1/2, H = 1, as suggested in the proof of Theorem
6 in [22], is: w(p) = 1

2 −
1√
2

√
1
2 − p for p ∈ [0, 1/2], and

w(p) = 1
2 + 1√

2

√
p− 1

2 for p ∈ (1/2, 1].

Setting p = 1 + δ
1
α and p̃ = 1− δ 1

α , we have

|C(P+1)− C(P−1)| = |w(p)− w(p̃)| ≥ |p− p̃|α = δ .

By Le Cam’s method [29], the minimax error then satisfies

Rn(P) ≥ δ

2

(
1−

∥∥Pn+1 − Pn−1

∥∥
TV

)
≥ δ

2

(
1−

(
1
2 Dkl

(
Pn+1||Pn−1

)) 1
2

)
, (32)

where Pnv := ⊗nPv is the joint distribution of n samples from
Pv , ‖‖TV is the total variation distance and (32) follows from
Pinsker’s inequality. We bound the KL-divergences as follows:

Dkl

(
Pn−||Pn+

)
= nDkl (P+||P−)

=
n

2

(
(1− δ 1

α ) log
1− δ 1

α

1 + δ
1
α

+ (1 + δ
1
α ) log

1 + δ
1
α

1− δ 1
α

)

= nδ
1
α log

1 + δ
1
α

1− δ 1
α

≤ 3nδ
2
α ,

where the first equality uses chain rule of KL-divergences, the
second follows by the definition of KL-divergences between
Bernoullis, and the final inequality follows by using the fact
that for x ∈ [0, 1/2], x log 1+x

1−x ≤ 3x2.
Plugging the bound on KL-divergences into (32), we obtain

Rn(P) ≥ δ

2

(
1−

√
3n

2
δ

1
α

)
=

1

4(6n)
α
2
, (33)

for δ = 1

(6n)
α
2

. Noting that δ ∈ [0, 2−α] for any n ≥ 1 finishes
the proof.



11

4) Proofs for discrete valued X: Without loss of generality,
assume w+ = w− = w.

Proposition 7. Let Fk and F̂k be as defined in (8), (9), Then,
for every ε > 0,

P (|F̂k − Fk| > ε) ≤ 2e−2nε2 .

Proof. We focus on the case when k > l, while the case of
k ≤ l is proved in a similar fashion.

P
(∣∣∣F̂k − Fk∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

I{Xi≥xk} −
1

n

n∑
i=1

E(I{Xi≥xk})

∣∣∣∣∣ > ε

)

= P

(∣∣∣∣∣
n∑
i=1

I{Xi≥xk} −
n∑
i=1

E(I{Xi≥xk})

∣∣∣∣∣ > nε

)
(34)

≤ 2e−2nε2 , (35)

where the last inequality above follows by an application of
Hoeffding inequality after observing that Xi are independent
of each other and for each i, the corresponding r.v. in (34) is
an indicator that is trivially bounded above by 1.

Proposition 8. Under the conditions of Proposition 6, we have

P

(∣∣∣∣∣
K∑
i=1

ukw(F̂k)−
K∑
i=1

ukw(Fk)

∣∣∣∣∣ > ε

)
≤ K

(
e−2nρ2

+ e−2nε2/(KLM)2
)
, where

uk = u−(xk) if k ≤ l and u+(xk) if k > l. (36)

Proof. Observe that

P

(∣∣∣∣∣
K∑
k=1

ukw(F̂k)−
K∑
k=1

ukw(Fk)

∣∣∣∣∣ > ε

)

≤ P

(
K⋃
k=1

∣∣∣ukw(F̂k)− ukw(Fk)
∣∣∣ > ε

K

)

≤
K∑
k=1

P
(∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

)
. (37)

For each k = 1, ....K, the function w is locally Lipschitz on
[pk−ρ, pk +ρ) with common constant L. Therefore, for each
k, we can decompose the corresponding probability in (37) as
follows:

P
(∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

)
= P

({∣∣∣Fk − F̂k∣∣∣ > ρ
}⋂{∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

})
+ P

({∣∣∣Fk − F̂k∣∣∣ ≤ ρ}⋂{∣∣∣ukw(F̂k)− ukw(Fk)
∣∣∣ > ε

K

})
≤ P

(∣∣∣Fk − F̂k∣∣∣ > ρ
)

+ P
({∣∣∣Fk − F̂k∣∣∣ ≤ ρ}⋂{∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

})
.

(38)

Using the fact that w is L-Lipschitz together with Proposition
7, we obtain

P
({∣∣∣Fk − F̂k∣∣∣ ≤ ρ}⋂{∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

})

≤ P
(
ukL

∣∣∣Fk − F̂k∣∣∣ > ε

K

)
≤ e−2nε/(KLuk)2

≤ e−2nε/(KLM)2

,∀k. (39)

Using Proposition 7, we obtain

P
(∣∣∣Fk − F̂k∣∣∣ > ρ

)
≤ e−2nρ2

,∀k. (40)

Using (39) and (40) in (38), we obtain

P

(∣∣∣∣∣
K∑
k=1

ukw(F̂k)−
K∑
k=1

ukw(Fk)

∣∣∣∣∣ > ε

)

≤
K∑
k=1

P
(∣∣∣ukw(F̂k)− ukw(Fk)

∣∣∣ > ε

K

)
≤ K

(
e−2nρ2

+ e−2nε2/(KLM)2
)
.

The claim follows.

Proof. (Proposition 6)
With uk as defined in (36), we need to prove that, ∀n ≥
1
κ ln

(
1
δ

)
ln
(

4K
M

)
, the following high-probability bound holds

P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k

)
− w

(
F̂k+1

))
−

K∑
i=1

uk (w (Fk)− w (Fk+1))

∣∣∣∣∣ ≤ ε
)
> 1− δ. (41)

Recall that w is locally Lipschitz continuous with constants
L1, ....LK at the points F1, ....FK . From a parallel argument
to that in the proof of Proposition 8, it is easy to infer that

P

(∣∣∣∣∣
K∑
i=1

ukw(F̂k+1)−
K∑
i=1

ukw(Fk+1)

∣∣∣∣∣ > ε

)
≤ K

(
e−2nρ2

+ e−2nε2/(KLM)2
)
.

Hence,

P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k

)
− w

(
F̂k+1

))
−

K∑
i=1

uk (w (Fk)− w (Fk+1))

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k

))
−

K∑
i=1

uk (w (Fk))

∣∣∣∣∣ > ε/2

)

+ P

(∣∣∣∣∣
K∑
i=1

uk

(
w
(
F̂k+1

))
−

K∑
i=1

uk (w (Fk+1))

∣∣∣∣∣ > ε/2

)
≤ 2K(e−2nρ2

+ e−2nε2/(KLM)2

) .

The claim in (41) now follows.

B. Proofs for CPT-value optimization

1) Proofs for CPT-SPSA:

Lemma 4. Let Fn = σ(θm,m ≤ n), n ≥ 1. Then, for any
i = 1, . . . , d, we have almost surely,∣∣∣∣∣E

[
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

∣∣∣∣∣Fn
]
−∇iC(Xθn)

∣∣∣∣∣ n→∞−−−−→ 0.
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Proof. Notice that

E

[
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

| Fn

]
(42)

= E
[
C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

| Fn
]

+ E [κn | Fn] ,

(43)

where κn =

(
ψθn+δn∆ − ψθn−δn∆

2δn∆i
n

)
is the estimation

error arising out of the empirical distribution based CPT-
value estimation scheme. From Corollary 1 and the fact that

1

m
α/2
n δn

→ 0 by assumption (A3), we have that

Eκn → 0 a.s. as n→∞.

Thus,

E

[
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

| Fn

]
n→∞−−−−→ E

[
C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

| Fn
]
. (44)

As in the case of regular SPSA, we simplify the RHS of
(44) using suitable Taylor’s expansions as follows:

E
[
C(Xθn+δn∆n)− C(Xθn−δn∆n)

2δn∆i
n

| Fn
]

= ∇iC(Xθn) + E

 N∑
j=1,j 6=i

∆j
n

∆i
n

∇jC(Xθn) +O(δ2
n)

= ∇iC(Xθn) +O(δ2
n). (45)

The first equality above follows from the fact that ∆n is
distributed according to a d-dimensional vector of symmetric,
±1-valued Bernoulli r.v.s and is independent of Fn. The
second inequality follows by observing that ∆i

n is independent
of ∆j

n, for any i, j = 1, . . . , d, j 6= i.
The claim follows by using the fact that δn → 0 as n →

∞.

Proof. (Theorem 1)
We first rewrite the update rule (12) as follows: For i =
1, . . . , d,

θin+1 = Πi

(
θin + γn(∇iC(Xθn) + βn + ξn)

)
, (46)

where

βn =E

(
(Cθn+δn∆n

n − Cθn−δn∆n

n )

2δn∆i
n

| Fn

)
−∇iC(Xθn),

ξn =

(
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

)

− E

(
(Cθn+δn∆n

n − Cθn−δn∆n

n )

2δn∆i
n

| Fn

)
.

In the above, βn is the bias in the gradient estimate due to
SPSA and {ξn} is a martingale difference sequence.

To prove the main claim, we list and verify assumptions
(B1)-(B5), which are necessary to invoke Theorem 5.3.1 on
pp. 191-196 of [30].

(B1): ∇C(·) is a continuous Rd-valued function: holds by
assumption in our setting.
(B2): The sequence {βn, n ≥ 0} is a bounded random
sequence with βn → 0 almost surely as n → ∞: follows
from Lemma 4.
(B3): The step-sizes γn, n ≥ 0 satisfy γn → 0 as n →
∞ and

∑
n γn =∞: holds by assumption (A3).

(B4): {ξn, n ≥ 0} is a sequence such that for any ε > 0,

lim
n→∞

P

(
sup
m≥n

∥∥∥∥∥
m∑
k=n

γkξk

∥∥∥∥∥ ≥ ε
)

= 0. (47)

We verify this assumption using arguments similar to those
used in [11] for SPSA. Notice that

E ‖ξn‖2 ≤ E

(
Cθn+δn∆n

n − Cθn−δn∆n

n

2δn∆i
n

)2

(48)

≤


E(Cθn+δn∆n

n

2δn∆i
n

)2
 1

2

+

E(Cθn−δn∆n

n

2δn∆i
n

)2
 1

2


2

(49)

≤

[
E
[
Cθn+δn∆n

n

]2+2α2
] 1

1+α2
+
[
E
[
Cθn−δn∆n

n

]2+2α2
] 1

1+α2

4δ2
n

(50)

≤ C
δ2
n

, for some C <∞. (51)

The inequality in (48) uses the fact that, for any ran-
dom variable X , E ‖X − E[X | Fn]‖2 ≤ EX2. The in-
equality in (49) follows by the fact that E(X + Y )2 ≤(
(EX2)1/2 + (EY 2)1/2

)2
. The inequality in (50) uses

Hölder’s inequality, with α1, α2 > 0 satisfying 1
1+α1

+ 1
1+α2

=

1 and the fact that E
(

1
(∆i

n)2+2α1

)
= 1 as ∆i

n is a symmetric,
±1-valued Bernoulli r.v. The inequality in (51) follows by
using the fact that C(Xθ) is bounded a.s. for any parameter
θ and the estimation error is bounded by Corollary 1. Thus,
E ‖ξn‖2 ≤ C

δ2
n

for some C <∞.
Applying Doob’s martingale inequality to the martingale

difference Wl :=
∑l−1
n=0 γnξn, l ≥ 1, we obtain

P

(
sup
l≥k

∥∥∥∥∥
l∑

n=k

γnξn

∥∥∥∥∥ ≥ ε
)
≤ 1

ε2

∞∑
n=k

γ2
nE ‖ξn‖

2 ≤ dC

ε2

∞∑
n=k

γ2
n

δ2
n

,

and (47) follows by taking limits above and using (A3).
(B5): There exists a compact subset K which is the set of
asymptotically stable equilibrium points for the ODE (13): To
verify this assumption, observe that C(Xθ) serves as a strict
Lyapunov function for the ODE (13), since

dC(Xθ)

dt
= ∇C(Xθ)θ̇ = ∇C(Xθ)Π̌

(
−∇C(Xθ

)
≤ 0,

with strict inequality outside the set K′ = {θ |
Π̌i

(
−∇C(Xθ)

)
= 0,∀i = 1, . . . , d}. Hence, the set K′ serves

as the asymptotically stable attractor for the ODE (13).
The claim follows from the Kushner-Clark lemma.
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2) Proofs for CPT-MPS:

Lemma 5. The sequence of random variables {θ∗n, n =
0, 1, . . .} in Algorithm 2 converges w.p.1 as n→∞.

Proof. Let An be the event that the first if statement is
true within the thresholding step of Algorithm 2. Let Bn :=
{C(Xθ∗n) − C(Xθ∗n−1) ≤ ε

2}. Whenever An holds, we have

Cθ
∗
n

n − Cθ
∗
n−1

n ≥ ε and hence, we obtain

P(An ∩ Bn)

≤ P
({

Cθ
∗
n

n − Cθ
∗
n−1

n−1 ≥ ε
}
∩
{
C(Xθ∗n)− C(Xθ∗n−1) ≤ ε

2

})
≤ |Λn||Λn−1| sup

θ,θ′∈Θ
P
({

Cθn − Cθ
′

n−1 ≥ ε
}

∩
{
C(Xθ)− C(Xθ′) ≤ ε

2

})
≤ |Λn||Λn−1| sup

θ,θ′∈Θ

(
P
(
Cθn − C(Xθ) ≥ ε

4

)
+P
(
Cθ
′

n−1 − C(Xθ′) ≥ ε

4

))
≤ 4|Λn||Λk−1|e−

mnε
2

8L2M2 .

From the foregoing, we have
∑∞
n=1 P (An ∩ Bn) < ∞ since

mn →∞ as n→∞. Applying the Borel-Cantelli lemma, we
obtain P (An ∩ Bn i.o.) = 0. Hence, if An happens infinitely
often, then Bcn will also happen infinitely often and we have
∞∑
n=1

[
C(Xθ∗n)− C(Xθ∗n−1)

]
=

∑
n: Anoccurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
+

∑
n: Acnoccurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
=
∑
n:

An∩Bn
occurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
+
∑
n:

An∩Bcnoccurs

[
C(Xθ∗n)− C(Xθ∗n−1)

]
=∞ w.p.1, since ε > 0.

In the above, the first equality follows from the fact that if
the else clause in thresholding step in Algorithm 2 is hit, then
θ∗n = θ∗n−1. From the last equality above, we conclude that it
is a contradiction because, C(Xθ) < C(Xθ∗) for any θ (since
θ∗ is the global maximum). The main claim now follows, since
An can happen only a finite number of times.

Proof. (Theorem 2)
Once we have established Lemma 5, the rest of the proof
follows in an identical fashion as the proof of Corollary 4.18
of [12].

VI. NUMERICAL EXPERIMENTS

In this section as well as the next section, we show that
the optimal CPT-value reacts differently to the change of
parameters of the underlying distribution as compared to the
optimal expected value. In other words, there are families of
random variables {Xθ, θ ∈ Θ} where arg maxθ E (Xθ) is
radically different from arg maxθ C (Xθ). This finding would
make a case for specialized algorithms that optimize CPT-
based criteria, since expected value optimizing algorithms
cannot be used as surrogates.

Fig. 3. CPT-value of normal distributed r.v.s with mean µ and variance σ
parameters1.

Fig. 4. Expected and CPT values of skewed normal distributed r.v.s with
fixed shape α = 0.5 and varying location ξ and scale ω parameters1.

The CPT-value in this section is aligned with the form
proposed in (1) and uses the following choices for utility and
weight functions:

u+(x) = |x|σ, u−(x) = λ|x|σ,

w+(p) =
pη1

(pη1 + (1− p)η1)
1
η1

, w−(p) =
pη2

(pη2 + (1− p)η2)
1
η2

,

where λ = 0.25, σ = 0.88, η1 = 0.61 and η2 = 0.69. The
choices for σ and w+(·), w−(·) are based on the recommen-
dations given by [8].

Since it is usually hard to obtain an analytical expression
for the CPT-value, we use numerical integration via the trape-
zoidal rule. We consider two settings where the feasible region
is triangle shaped over two distribution parameters. In each
setting, the expected value optima is calculated analytically,
while for the CPT-value, we perform a grid search, where the
distance between points in the grid is 0.05.

Example 1. We consider normal distributed r.v.s with mean
µ and variance σ. As shown in Figure 3, the feasible region
for (µ, σ) is the triangle with vertices (0.5, 2), (0.5, 6) and
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Fig. 5. Difference between CPT-estimate Cni using Algorithm 1 and
numerically integrated approximation C̃(X) to CPT-value C(X) of a skew
normal distributed r.v. X with shape 2, location 2 and scale 1. The shaded
bands denote the standard error calculated from ten independent simulations.

(2.5, 2). The expected value takes its maximum analytically
at (2.5, 2), while a numerical optimization of the CPT-value
returned a maximum at (0.5, 6), with corresponding CPT-
value 2.65. The CPT value of the r.v. N(2.5, 2) was 2.37.

Example 2. We consider skew normal distributed r.v.s
sn(ξ, ω, α) with location ξ, scale ω and shape α. The mean
of X(ξ,ω,α) ∼ sn(ξ, ω, α) is ξ + ωδ

√
2
π , while the variance

is ω2(1 − 2δ2

π ), with δ = α
1+α2 . With α = 0.5, we set up

the feasible region for (ξ, ω) to be the triangle with vertices
(−1, 1), (1, 1) and (−1, 5) as shown in Figure 4. It turns
out that the point (−1, 5) returns the largest CPT-value, with
C(X−1,5,0.5,0.5) = 2.30, while E(X−1,5,0.5) = 0.78. On the
other hand, the point (1, 1) has the largest expected value with
E(X1,1,0.5) = 1.36, but the CPT value of the same r.v. is 1.25.

We illustrate the rapid convergence of the estimator in
Algorithm 1 for a skew normal distributed r.v. with location,
scale and shape parameters set to 2, 1 and 2, respectively. We
conducted the experiment in 100 simulation phases indexed
from 1 to 100. In each phase i, we generate i.i.d. estimators
Cjni (X) with ni samples of skew normal distributed r.v. X ,
where j = 1, . . . , 10 corresponds to an independent simula-
tion. The number of samples ni in each phase i ranges from
100 to 106. For each phase i, we calculate the estimation error,
which is the absolute difference between Cni = 1

10

∑10
j=1 Cjni

and the numerically integrated CPT-value. Figure 5 presents
the estimation error with standard error bars for each ni.

VII. TRAFFIC CONTROL APPLICATION

We consider a traffic signal control application where the
aim is to improve the road user experience by an adaptive
traffic light control (TLC) algorithm. We optimize the CPT-
value of the delay experienced by road users, since CPT
realistically captures the attitude of the road users towards
delays. It is assumed that the CPT functional’s parameters
(u,w) are given (usually, these are obtained by observing
human behavior). The experiments are performed using the
GLD traffic simulator [31], and the implementation is available
at https://bitbucket.org/prashla/rl-gld.

1The red dot is the expected value optima that is calculated analytically,
while the green dot is the CPT-value optima.

We consider a road network with N signalled lanes that
are spread across junctions and M paths, where each path
connects (uniquely) two edge nodes, from which the traffic
is generated (see Figure 6). At any instant n, let qin and
tin denote the queue length and elapsed time since the lane
turned red, for any lane i = 1, . . . ,N . Let di,jn denote the
delay experienced by jth road user on ith path, for any
i = 1, . . . ,M and j = 1, . . . , ni, where ni denotes the
number of road users on path i. We specify the various
components of the traffic control MDP below. The state
sn = (q1

n, . . . , q
N
n , t

1
n, . . . , t

N
n , d

1,1
n , . . . , dM,nM

n )T is a vector
of lane-wise queue lengths, elapsed times and pathwise delays.
Any combination of traffic lights that can simultaneously be
switched to green constitutes an action in the MDP.

We consider Boltzmann policies that have the form

πθ(s, a) =
eθ
>φs,a∑

a′∈A(s) e
θ>φs,a′

, ∀s ∈ S, ∀a ∈ A(s),

with features φs,a as described in Section V-B of [32]. For any
policy θ, let Xθ

i be the delay r.v. and µθi the proportion of road
users along path i, for i = 1, . . . ,M. Any road user along path
i will evaluate the delay (s)he experiences in a manner that is
captured well by CPT. An important component of CPT is to
employ a reference point to calculate gains and losses. In our
setting, we use pathwise delays, say Bi for path i, obtained
from a pre-timed TLC (cf. the Fixed TLCs in [33]) as the
reference point. If the delay of any TLC algorithm is less
than that of pre-timed TLC, then the (positive) difference in
delays is perceived as a gain and in the complementary case,
the delay difference is perceived as a loss. Thus, the CPT-
value C(Bi −Xi) for any path i in (52) is to be understood
as a differential delay gain w.r.t. Bi. Now, the objective is to
maximize the weighted sum of CPT-values across paths, i.e.,

max
θ∈Θ

CPT(Xθ
1 , . . . , X

θ
M) =

M∑
i=1

µθiC(Bi −Xθ
i ), (52)

where Θ is the d-dimensional hypercube formed by intervals
[0.1, 1.0] in each dimension. The rationale behind the objective
above is that CPT-value C(Bi −Xθ

i ) would capture the road
user experience/satisfaction for each path i and the goal is to
maximize the average satisfaction over all paths.

For the sake of comparison, we consider the traditional
objective of minimizing the overall average delay, i.e.,

min
θ∈Θ

AVG(Xθ
1 , . . . , X

θ
M) =

M∑
i=1

µθiE(Xθ
i ). (53)

In comparison to CPT objective, the above does not incorpo-
rate baseline delays, makes no distinction between gains and
losses via utility functions and does not distort probabilities.

We implement the following TLC algorithms:
CPT-SPSA: This is a first-order algorithm that solves (52)
using SPSA-based gradient estimates and Algorithm 1 for
estimating CPT-value C(Bi−Xi) for each path i = 1, . . . ,M,
with di,jn , j = 1, . . . , ni as the samples.
AVG-SPSA: This is SPSA-based first-order algorithm that
solves (53), while using sample averages of the delays to es-
timate the expected delay E(Xi) for each path i = 1, . . . ,M.

https://bitbucket.org/prashla/rl-gld
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Fig. 6. Snapshot of the road network
from GLD simulator. The figure shows
four edge nodes that generate traffic, one
traffic light and two-laned roads carrying
automobiles.
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Fig. 7. Histogram of the sample delays for the path from node 0 to 1 (see Figure 6) for AVG-SPSA
that minimizes overall expected delay and CPT-SPSA that maximizes CPT-value of differential delay.
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(a) Expected delay (path-wise). The × marks indicate baseline delays.
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Fig. 8. AVG and CPT values for two algorithms on each of the 12 paths in Figure 6: AVG-SPSA minimizes overall expected delay (see (53)), while CPT-SPSA
maximizes CPT-value of differential delay (see (52)).

TABLE I
AVG AND CPT-VALUE ESTIMATES FOR AVG-SPSA AND CPT-SPSA.

AVG-value CPT-value

AVG-SPSA 111.67 53.31

CPT-SPSA 116.21 59.91

Recent works in [34], [35] consider the problem of traffic
light control with parameterized policies based on underlying
queue lengths and elapsed times. However, they do not con-
sider a CPT-based objective and apply a perturbation analysis
approach that imposes structural restrictions on the underlying
objective.

The underlying CPT-value C(Xi),∀i follows the exact form
as in section VI, except here we set λ = 2.25. The choices for
λ, σ, η1 and η2 are based on median estimates given by [8]
and have been used earlier in a traffic application (see [36]).
For all the algorithms, motivated by standard guidelines (see
[37]), we set δn = 1.9/n0.101 and an = 1/(n + 50). The
initial point θ0 is the d-dimensional vector of ones and ∀i, the
operator Γi keeps the iterate θi within [0.1, 1.0].

The experiments involve two phases: first, a training phase
where we run each algorithm for 500 iterations, with each
iteration involving two perturbed simulations. Each simulation

involves running the traffic simulator with a fixed policy pa-
rameter for 5000 steps and this corresponds to approximately
4000 delay samples. The training phase is followed by a test
phase where we fix the policy obtained at the end of training
and then run the traffic simulator with the aforementioned
parameter for 5000 steps. The results presented are averages
over ten independent simulations.

Table I presents the overall AVG and CPT-values for AVG-
SPSA and CPT-SPSA, while Figures 8(a)–8(b) present the
expected delay and CPT of differential delay for each of the
12 paths in Figure 6. We observe that AVG-SPSA exhibits
a lower AVG-value, while CPT-SPSA shows a higher CPT-
value. Further, from Figure 7 that presents the histograms of
the delays for the path from 0 to 1, we observe that CPT-
SPSA results in a strategy that avoids high delays at the
cost of a slightly higher average delay, whereas AVG-SPSA
occasionally incurs delays significantly larger than the average
delay.

VIII. CONCLUSIONS

CPT has been a very popular paradigm for quantifying
human preferences among psychologists/economists, and this
work is the first step in incorporating CPT-based criteria into
a stochastic optimization framework. Estimation and opti-
mization of the CPT-based value is challenging. For estimat-
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ing the CPT-value, we proposed a quantile-based estimation
scheme and for maximizing the CPT-value, we adapted the
SPSA [11] and MPS [12] algorithms. We provided theoretical
convergence guarantees for all the proposed algorithms and
illustrated the usefulness of our algorithms for optimizing
CPT-based criteria in a traffic signal control application.
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