
Two timescale convergent Q-learning for sleep-scheduling
in wireless sensor networks

L. A. Prashanth • Abhranil Chatterjee •

Shalabh Bhatnagar

� Springer Science+Business Media New York 2014

Abstract In this paper, we consider an intrusion detec-

tion application for Wireless Sensor Networks. We study

the problem of scheduling the sleep times of the individual

sensors, where the objective is to maximize the network

lifetime while keeping the tracking error to a minimum.

We formulate this problem as a partially-observable Mar-

kov decision process (POMDP) with continuous state-

action spaces, in a manner similar to Fuemmeler and

Veeravalli (IEEE Trans Signal Process 56(5), 2091–2101,

2008). However, unlike their formulation, we consider

infinite horizon discounted and average cost objectives as

performance criteria. For each criterion, we propose a

convergent on-policy Q-learning algorithm that operates on

two timescales, while employing function approximation.

Feature-based representations and function approximation

is necessary to handle the curse of dimensionality associ-

ated with the underlying POMDP. Our proposed algorithm

incorporates a policy gradient update using a one-simula-

tion simultaneous perturbation stochastic approximation

estimate on the faster timescale, while the Q-value

parameter (arising from a linear function approximation

architecture for the Q-values) is updated in an on-policy

temporal difference algorithm-like fashion on the slower

timescale. The feature selection scheme employed in each

of our algorithms manages the energy and tracking com-

ponents in a manner that assists the search for the optimal

sleep-scheduling policy. For the sake of comparison, in

both discounted and average settings, we also develop a

function approximation analogue of the Q-learning algo-

rithm. This algorithm, unlike the two-timescale variant,

does not possess theoretical convergence guarantees.

Finally, we also adapt our algorithms to include a sto-

chastic iterative estimation scheme for the intruder’s

mobility model and this is useful in settings where the latter

is not known. Our simulation results on a synthetic

2-dimensional network setting suggest that our algorithms

result in better tracking accuracy at the cost of only a few

additional sensors, in comparison to a recent prior work.

Keywords Sensor Networks � Sleep-Wake scheduling �
Reinforcement learning � Q-learning � Function

approximation � Simultaneous perturbation � SPSA

1 Introduction

Considering the potential range of applications and the low

deployment and maintenance cost, a lot of research atten-

tion has gone into the design of Wireless Sensor Networks

(WSNs). In this paper, we investigate the use of WSNs for

an intrusion detection application. In particular, we study

the problem of scheduling the sleep times of the individual

sensors, where the objective is to maximize the network

lifetime while keeping the tracking error to a minimum.

Electronic supplementary material The online version of this
article (doi:10.1007/s11276-014-0762-6) contains supplementary
material, which is available to authorized users.

L. A. Prashanth (&)

INRIA Lille, Nord Europe, Team SequeL, Villeneuve d’Ascq,

France

e-mail: prashanth.la@inria.fr

A. Chatterjee

System Sciences and Automation, Indian Institute of Science,

Bangalore, India

e-mail: abhranilc@ee.iisc.ernet.in

S. Bhatnagar

Department of Computer Science and Automation, Indian

Institute of Science, Bangalore, India

e-mail: shalabh@csa.iisc.ernet.in

123

Wireless Netw

DOI 10.1007/s11276-014-0762-6

http://dx.doi.org/10.1007/s11276-014-0762-6

As illustrated in Fig. 1, we consider a centralized control

setting for a sensor network involving N sensors and assume

for simplicity that the sensors fully cover the area of interest.

Each sensor can be either awake (i.e., active) or asleep. The

control center collects sensing information periodically and

then decides on the sleeping policy for the sensors. The

location of the intruder at any instant can be any one of the N

cells corresponding to the N sensors. The intruder movement

is described by a Markov chain with a probability transition

matrix P of size N � N. Each entry Pij 2 ½0; 1� of the matrix

P specifies the probability of the intruder moving from

location i to j. The state of this Markov chain is the current

location of the intruder to within the accuracy of a sensing

region. The challenge is to balance the conflicting objectives

of minimizing the number of sensors awake to reduce the

energy cost, while at the same time having enough number

of sensors awake to ensure a good tracking accuracy.

We formulate this problem as a partially-observable

Markov decision process (POMDP), in a manner similar to

[14]. However, unlike their formulation, we consider infi-

nite horizon discounted and average cost objectives as

performance criteria. The rationale behind the average cost

objective is to understand the steady-state system behavior,

whereas the discounted cost objective is more suitable for

studying the transient behavior of the system.

MDPs [4] (and POMDPs) are useful frameworks for

modeling real-time control problems such as the sleep

scheduling that we consider in this paper. However, in

practice, the transition dynamics of the MDP is unavailable

and reinforcement learning (RL) approaches provide an

efficient alternative. RL comprises of simulation-based

sample-path techniques that converge to a good-enough

policy in the long run. The reader is referred to [5, 31] for a

comprehensive (text book) introduction to RL.

We base our solution approach on reinforcement

learning (RL) formalisms, with specific emphasis on

developing Q-learning [33] type algorithms for learning the

optimal sleeping policy for the sensors. At the same time,

to be computationally efficient, we employ linear approx-

imation architectures. Linear function approximation

allows us to handle the curse of dimensionality associated

with high-dimensional state spaces (as is the case with the

sleep-wake scheduling problem considered in this paper).

To the best of our knowledge, RL with function approxi-

mation for sleep scheduling in WSNs has not been con-

sidered previously in the literature.

However, for problems involving high-dimensional state

spaces, the Q-learning algorithm with function approxima-

tion may diverge or may show large oscillations, [2]. This is

primarily due to the inherent nonlinearity in the Q-learning

update rule resulting from the explicit maximization/mini-

mization in the update procedure. To alleviate this problem,

we propose a two-timescale Q-learning algorithm, bor-

rowing the principle of using a simultaneous perturbation

method for policy gradient estimation from a closely related

algorithm for the discounted setting proposed in [6].

Our algorithm, proposed for continuous state-action

spaces and the long-run average cost criterion, operates on

two timescales and works on the simultaneous perturbation

principle [9, 30]. In particular, after parameterizing the

policy in a continuous space, the algorithm updates the

policy parameter along the negative gradient direction using

a well-known simultaneous perturbation method called

simultaneous perturbation stochastic approximation (SPSA)

[9, Chapter 5]. In particular, we employ a one-simulation

SPSA estimate on the faster timescale for obtaining the

policy gradients. On the other hand, along the slower time-

scale an on-policy TD-like update is performed for the

Q-value parameters. This timescale separation together with

the policy gradient estimation using SPSA gets rid of the off-

policy problem present in vanilla Q-learning with function

approximation. The resulting algorithm turns out to be a

stochastic approximation scheme on the faster timescale, but

a stochastic recursive inclusion [10, Chapter 5] scheme on

the slower timescale. We provide a sketch of the conver-

gence of this algorithm, with the detailed proof being

available in an appendix to this paper. To the best of our

knowledge, a convergent Q-learning type algorithm with

function approximation to optimize a long-run average cost

criterion in a POMDP with continuous state-action spaces (as

is the case with the sleep-scheduling POMDP considered),

has not been proposed earlier in the literature.

Sensor Intruder

Fig. 1 Field of sensors and the movement of intruder considered

Wireless Netw

123

We summarize our contributions as follows:1

(i) In the average cost setting, we propose a novel two-

timescale algorithm that performs on-policy Q-learning

while employing function approximation. This

algorithm is efficient owing to linear function

approximators and possesses theoretical convergence

guarantees. For the sake of comparison, we also develop

a function approximation analogue of the Q-learning

algorithm. This algorithm, unlike the two-timescale

variant, does not possess theoretical convergence

guarantees. The feature selection scheme employed in

each of our algorithms manages the energy and tracking

components in a manner that assists the search for the

optimal sleep-scheduling policy.

(ii) In the discounted setting, we adapt the recently

proposed two-timescale (convergent) variant of the

Q-learning algorithm [6], with function approximation.

Further, for the sake of comparison, we also develop a

sleep-scheduling algorithm based on Q-learning with

linear function approximation. These algorithms can be

seen to be the discounted-cost counterparts of the

algorithms described above for the average cost setting.

(iii) We also adapt our algorithms to a setting where the

mobility model of the intruder is not available. We

develop a stochastic iterative scheme that estimates the

mobility model and combine this estimation procedure

with the average cost algorithms mentioned above

using multi-timescale stochastic approximation.

(iv) We validate our algorithms on a two-dimensional

network setting, while also comparing their

performance with the QMDP and FCR algorithms

from [14]. Our algorithms are seen to be easily

implementable, converge rapidly with a short (initial)

transient period and provide more consistent results

than the QMDP and FCR algorithms. Further, we

observe that the procedure for estimating the mobility

model of the intruder converges empirically to the true

model.

2 Related work

Sleep scheduling is broadly related to the problem of

resource allocation in wireless networks. A comprehensive

survey of solution approaches, including RL-like schemes,

is available in [11]. Further, considering this problem from

a strategic, i.e., game-theoretic, perspective, the authors in

[13] propose an auction based best-response algorithm. A

two-timescale stochastic approximation algorithm for

downlink scheduling in a cellular wireless system is pro-

posed in [12].

In [27], the authors formulate an MDP model for

intrusion detection and present algorithms to control the

number of sensors in the wake state. In [18, 22, 23], the

authors propose RL based medium access control (MAC)

protocols for WSNs. The algorithms proposed there

attempt to maximize the throughput while being energy

efficient. In [22, 23], the authors propose Q-learning based

algorithms, whereas, in [18], the authors propose an algo-

rithm based on SARSA. In [16], the authors present two

sleep scheduling algorithms for single object tracking. In

[17], a sleep scheduling algorithm based on the target’s

moving direction has been proposed. In [19], the authors

present a heuristic algorithm that uses dynamic clustering

of sensors to balance energy cost and tracking error. In [3],

the problem of finding an efficient sleep-wake policy for

the sensors while maintaining good tracking accuracy by

solving an MDP has been studied. In [20], the authors

propose a Q-learning based algorithm for sleep scheduling.

In [14, 15], the authors propose a POMDP model for sleep-

scheduling in an object tracking application and propose

several algorithms based on traditional dynamic program-

ming approaches to solve this problem.

In comparison to previous works, we would like to point

out the following:

(i) Some of the previously proposed algorithms, for

instance [27], require the knowledge of a system model and

this may not be available in practice. On the other hand,

our algorithms use simulation-based values and optimize

along the sample path, without necessitating a system

model. (ii) Some algorithms, for instance [16], work under

the waking channel assumption, i.e., a setting where the

central controller can communicate with a sensor that is in

the sleep state. Our algorithm do not operate under such an

assumption. (iii) In comparison to the RL based approaches

[18, 22, 23] for transmission scheduling at the MAC layer,

we would like to point out that the algorithms proposed

there (a) employ full state representations; (b) consider

discrete state-action spaces (except [23] which adapts Q-

learning for continuous actions, albeit with a discrete state

space); (c) consider an MDP with perfect information, i.e.,

a setting where the states are fully observable; (d) consider

only a discounted setting, which is not amenable for

studying steady state system behaviour; (e) are primarily

concerned with managing transmission in an energy-effi-

cient manner and not with tracking an intruder with high-

accuracy. In other words, the algorithms of [18, 22, 23] are

not applicable in our setting as we consider a partially

observable MDP with continuous state-action spaces, and

1 A short version of this paper containing only the average cost

setting and algorithms and with no proofs is available in [24]. The

current paper includes in addition: (i) algorithms for the discounted

cost setting; (ii) a detailed proof of convergence of the average cost

algorithm using theory of stochastic recursive inclusions; and (iii)

detailed numerical experiments.

Wireless Netw

123

with the aim of minimizing a certain long-term average

cost criterion that involves the conflicting objectives of

reducing energy consumption and maintaining a high

tracking accuracy. (iv) Many RL based approaches pro-

posed earlier for sleep scheduling (see [18, 22, 23, 29])

employ full state representations and hence, they are not

scalable to larger networks owing to the curse of dimen-

sionality. We employ efficient linear approximators to

alleviate this. (v) While the individual agents in [13]

employ a RL-based bidding scheme, their algorithm is

shown to work well only empirically and no theoretical

guarantees are provided. This is also the case with many of

the earlier works on sleep scheduling/power management

in WSNs using RL and this is unlike our two-timescale on-

policy Q-learning based scheme that possesses theoretical

guarantees. (vi) In [12], the authors derive an equivalent

Bellman Equation (BE) after reducing the state space and

establish convergence of their algorithm to the fixed point

of the equivalent BE. However, there is no straightforward

reduction of state space in our sleep scheduling problem

and we employ efficient linear function approximators to

alleviate the curse of dimensionality associated with large

state spaces. (vii) In comparison to [14], which is the

closest related work, we would like to remark that the

algorithms proposed there, for instance, QMDP , attempt to

solve a balance equation for the total cost in an approxi-

mate fashion at each time instant and no information about

the solution thus obtained is carried forward to the future

instants. Moreover, unlike [14], we consider long-run

performance objectives that enable us to study both the

transient as well as steady state system behavior.

In general, we would like to remark that unlike previous

works on sleep-scheduling, we propose RL-based algo-

rithms that observe the samples of a cost function from

simulation and through incremental updates find a ‘good

enough’ policy that minimizes the long-run (average or

discounted) sum of this cost. The term ‘good enough’ here

refers to the solution of a balance equation for the long

term costs, where function approximation is employed to

handle the curse of dimensionality. Our algorithms are

simple, efficient and in the case of the two-timescale on-

policy Q-learning based schemes, also provably

convergent.

3 POMDP formulation

The state sk at instant k for our problem is sk ¼ ðlk; rkÞ,
where rk ¼ ðrkð1Þ; . . .; rkðNÞÞ, is the vector of residual (or

remaining) sleep times, with rkðiÞ denoting the residual

sleep time of sensor i at time instant k. Further, lk refers to

the location of the object at instant k and can take values

1; . . .;N. The residual sleep time vector rk evolves as fol-

lows: 8i ¼ 1; . . .;N,

rkþ1ðiÞ ¼ ðrkðiÞ � 1ÞIfrkðiÞ[0g þ akðiÞIfrkðiÞ¼0g: ð1Þ

In the above IfCg denotes the indicator function, having the

value 1 when the condition C is true and 0 otherwise. The

first term in (1) indicates that the residual sleep time is

decremented by 1 if sensor i is in sleep state, while the

second term expresses that if sensor i is in wake state, it is

assigned a sleep time of akðiÞ. Here ak ¼
ðakð1Þ; . . .; akðNÞÞ denotes the chosen sleep configuration

of the N sensors at instant k.

The single-stage cost function has two components - an

energy cost for sensors in the wake state and a tracking

cost. We use an energy cost c 2 ð0; 1Þ for each sensor that

is awake and a tracking cost of 1 if the intruder location is

unknown. Let Sk denote the set of indices of sensors that

are in sleep state. Then the single-stage cost gðsk; akÞ at

instant k has the form,

gðsk; akÞ ¼
X

fi:rkðiÞ¼0g
cþ IfrkðlkÞ[0g: ð2Þ

Since the number of sensors is finite, the single-stage cost

is uniformly bounded. The algorithms that we design

subsequently find the optimal strategy for minimizing the

single-stage cost (2) in the long-run average cost sense.

Note that, unlike the formulation in [14], we do not con-

sider a special termination state which indicates that the

intruder has left the system.2

The states, actions and single-stage cost function toge-

ther constitute an MDP. However, since it is not possible to

track the intruder at each time instant (i.e., lk is not known

for all k) as the sensors at the location from where the

intruder passes at a given time instant may be in the sleep

state, the problem falls under the realm of MDPs with

imperfect state information, or alternatively partially

observed MDP (POMDP). Following the notation from

[14], the observation zk available to the control center is

given by zk ¼ ðsk; okÞ, where sk is as before and ok ¼ lk if

the intruder location is known, or a special value f other-

wise. Thus, the total information available to the control

center at instant k is given by Ik ¼ ðz0; . . .; zk; a0; . . .; ak�1Þ,
where I0 denotes the initial state of the system. The action

ak specifies the chosen sleep configuration of the n sensors

and is a function of Ik. As pointed out in [14], in the above

POMDP setting, a sufficient statistic is ŝk ¼ ðpk; rkÞ, where

pk ¼ PðlkjIkÞ and rk is the remaining sleep time mentioned

above. Note that pk ¼ ðpkð1Þ; � � � ; pkðNÞÞ is the distribution

2 Since we study long-run average sum of (2) (see (4) below), we can

consider the problem of tracking an intruder in an infinite horizon,

whereas a termination state in [14] was made necessary as they

considered a total cost objective.

Wireless Netw

123

at time step k of the object being in one of the locations

1; 2; � � � ;N and evolves according to

pkþ1 ¼ elkþ1
Ifrkþ1ðlkþ1Þ¼0g þ pkPIfrkþ1ðlkþ1Þ[0g; ð3Þ

where ei denotes an N-dimensional unit vector with 1 in the

ith position and 0 elsewhere. The idea behind the evolution

of pk is as follows:

(i) The first term refers to the case when the location

of the intruder is known, i.e., the sensor at lkþ1 is

in the wake state;

(ii) the second term refers to the case when intruder’s

location is not known and hence, the intruder

transitions to the next distribution pkþ1 from the

current pk via the transition probability matrix P.

Note that the evolution of pk in our setting differs from

[14], as we do not have the termination state. With an abuse

of terminology, henceforth we shall refer to the sufficient

statistic ŝk as the state vector in the algorithms we propose

next. Further, we would like to emphasize here that our

algorithms do not require full observation of the state

vector. Instead, by an intelligent choice of features that rely

only on pk, the algorithms obtain a sleeping policy that

works well.

4 Average cost setting

The long-run average cost JðpÞ for a given policy p is

defined as follows:

JðpÞ ¼ lim
N!1

1

N

XN�1

n¼0

gðsn; anÞ; ð4Þ

starting from any given state i (i.e., with s0 ¼ i). In the

above, the policy p ¼ fp0, p1, p2; . . .g with pn governing

the choice of action an at each instant n.

The aim here is to find a policy p� ¼ argminp2PJðpÞ,
where P is the set of all admissible policies. A policy p is

admissible if it suggests a feasible action at each time

instant n.

Let hðxÞ be the differential cost function corresponding

to state x, under policy p. Then,

hðxÞ ¼
X1

n¼1

E gðsn; anÞ � JðpÞjs0 ¼ x; p½ �; ð5Þ

is the expected sum of the differences between the single-

stage cost and the average cost under policy p when x 2 S
is the initial state. Let J� ¼ minp2P JðpÞ¼M Jðp�Þ denote the

optimal average cost and let h� denote the optimal differ-

ential cost function corresponding to the policy p�. Then,

ðJ�; h�ðxÞÞ; x 2 S satisfy the following Bellman equation

(see [28]):

J� þ h�ðxÞ ¼ min
a
ðgðx; aÞ þ

Z
pðx; a; dyÞh�ðyÞÞ; 8x 2 S;

ð6Þ

where pðx; a; dyÞ denotes the transition probability kernel

of the underlying MDP. Now, define the optimal Q-factors

Q�ðx; aÞ; x 2 S; a 2 AðxÞ as

Q�ðx; aÞ ¼ gðx; aÞ þ
Z

pðx; a; dyÞh�ðyÞ: ð7Þ

From (6) and (7), we have

J� þ h�ðxÞ ¼ min
a

Q�ðx; aÞ; 8x 2 S: ð8Þ

Now from (7) and (8), we have

Q�ðx; aÞ ¼ gðx; aÞ þ
Z

pðx; a; dyÞðmin
b

Q�ðy; bÞ � J�Þ or

J� þ Q�ðx; aÞ ¼ gðx; aÞ þ
Z

pðx; a; dyÞmin
b

Q�ðy; bÞ;

ð9Þ

for all x 2 S; a 2 AðxÞ. An advantage with (9) is that it is

amenable to stochastic approximation because the mini-

mization is now (unlike (6)) inside the conditional expec-

tation. However, in order to solve (9), one requires

knowledge of the transition kernel pðx; a; dyÞ that consti-

tutes the system model. Moreover, one requires the state

and action spaces to be manageable in size. The algorithms

presented subsequently work under lack of knowledge

about the system model and further, are able to effectively

handle large state and action spaces by incorporating fea-

ture based representations and function approximation.

For the two-timescale on-policy Q-learning scheme

(TQSA-A), we consider a parameterized set of policies that

satisfy the following assumption:

Assumption 1 For any state-action pair ðx; aÞ, pwðx; aÞ is

continuously differentiable in the parameter w.

The above is a standard assumption in policy gradient

RL algorithms (cf. [8]). A commonly used class of distri-

butions that satisfy this assumption for the policy p is the

parameterized Boltzmann family, where the distributions

have the form

pwðx; aÞ ¼
ew>rx;a

P
a02AðxÞ e

w>rx;a0
; 8x 2 S ; 8a 2 AðxÞ: ð10Þ

In the above, the parameter w ¼ ðw1; . . .;wNÞT is assumed

to take values in a compact and convex set C � R
N .

Before we proceed further, it is important to note there

that in our setting, we have a continuous state-action space.

Hence, to implement our Q-learning algorithms, we dis-

cretize the space to a finite grid (as is commonly done in

practice). In what follows, we shall consider ðx; aÞ; ðy; bÞ to

Wireless Netw

123

take values on the aforementioned finite grid of points and

pðx; a; yÞ to denote the transition probabilities of the

resulting Markov chain.

5 Average cost algorithms

For the ease of exposition, we first describe the Q-learning

algorithm that uses full-state representations. Next, we

discuss the difficulty in using this algorithm on a high-

dimensional state space (as is the case with the sleep-wake

control MDP) and subsequently present our average cost

algorithms that employ feature based representations and

function approximation to handle the curse of

dimensionality.

5.1 Q-learning with full state representation

This algorithm, proposed in [1], is based on the relative Q-

value iteration (RQVI) procedure. Let snþ1 denote the state

of the system at instant ðnþ 1Þ when the state at instant n is

x and action chosen is a. Let Qnðx; aÞ denote the Q-value

estimate at instant n associated with the tuple ðx; aÞ. The

RQVI scheme (assuming a finite number of state-action

tuples)

Qnþ1ðx; aÞ ¼ gðx; aÞ þ
X

y

pðx; a; yÞ min
b2AðyÞ

Qnðy; bÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ðIÞ

� min
r2AðsÞ

Qnðs; rÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ðIIÞ

;
ð11Þ

where s 2 S is a prescribed (arbitrarily chosen) state.3 Note,

unlike the value iteration scheme for discounted MDPs, the

recursion (11) includes an additional term (see (II) in (11)).

This term arises due to the nature of the Bellman equation

for average cost MDPs (see (9)) that also contains the

optimal average cost J�. Here the state s can be arbitrarily

chosen because one is interested in estimating not just the

average cost, but also the differential cost function. This

results in solving a system of ðnþ 1Þ unknowns using n

equations. In order to make this system feasible, one fixes

the differential cost for one of the (arbitrarily chosen) state

to be a fixed value and then solves for the remaining n

values using the system of n equations. It has been shown

in [1] that term (II) in (11) converges to J� and term (I) in

(11) converges to the optimal differential cost function

h�ð�Þ.

The Q-learning algorithm for the average cost setting

estimates the ‘Q-factors’ Qðx; aÞ of all feasible state-action

tuples ðx; aÞ, i.e., those with x 2 S and a 2 AðxÞ using the

stochastic approximation version of (11). The update rule

for this algorithm is given by

Qnþ1ðx; aÞ ¼ Qnðx; aÞ þ aðnÞðgðx; aÞ þ min
b2AðyÞ

Qnðy; bÞ

� min
r2AðsÞ

Qnðs; rÞÞ;

ð12Þ

for all x 2 S and a 2 AðxÞ. In the above, y is the simulated

next state after x when action a is chosen in state x and

aðnÞ; n� 0 are the step-sizes that satisfy the standard sto-

chastic approximation conditions, i.e.,
P

n aðnÞ ¼ 1 and
P

n aðnÞ2\1. The last term minr2AðsÞ Qnðs; rÞ in (12)

asymptotically converges to the optimal average cost per

stage. Further, the iterates in (12) converge to the optimal

Q-values Q�ði; aÞ that satisfy the corresponding Bellman

equation (9) and mina2AðiÞ Qnði; aÞ gives the optimal dif-

ferential cost h�ðiÞ. The optimal action in state i corre-

sponds to argmina2AðiÞQ
�ði; aÞ.

5.2 Need for function approximation

While Q-learning does not require knowledge of the sys-

tem model, it does suffer from the computational problems

associated with large state and action spaces as it stores the

Qðs; aÞ values in a look-up table and requires updates of all

Qðs; aÞ values at each step for convergence. In our setting,

this algorithm becomes intractable as the state-action space

becomes very large. Even when we quantize probabilities

as multiples of 0:01, and with 7 sensors, the cardinality of

the state-action space jS� AðSÞj is approximately 1008 �
47 � 47 if we use an upper bound of 3 for the sleep time

alloted to any sensor. The situation gets aggravated when

we consider larger sensing regions (with corresponding

higher number of sensors). To deal with this problem of the

curse of dimensionality, we develop a feature based

Q-learning algorithm as in [26]. While the full state

Q-learning algorithm in (12) cannot be used on even

moderately sized sensing regions, its function approxima-

tion based variant can be used over larger network settings.

5.3 Algorithm structure

Both our algorithms parameterize the Q-function using a

linear approximation architecture as follows:

Qðs; aÞ 	 hTrs;a; 8s 2 S; a 2 AðsÞ: ð13Þ

In the above, rs;a is a given d-dimensional feature vector

associated with the state-action tuple ðs; aÞ, where

3 A simple rule to choose a state s such that there is a positive

probability of the underlying MDP visiting s. Such a criterion ensures

that the term (II) of (11) converges to the optimal average cost J�.

Wireless Netw

123

d\\jS� AðSÞj and h is a tunable d-dimensional param-

eter. The Q-value parameter h ¼ ðh1; . . .; hdÞT is assumed

to take values in a compact and convex set D � R
d.

Our algorithms are online, incremental and obtain the

sleeping policy by sampling from a trajectory of the sys-

tem. After observing a simulated sample of the single-stage

cost, the parameter h is updated in the negative descent

direction in both our algorithms as follows:

hnþ1 ¼ Cðhn � aðnÞrsn;an
mnÞ; ð14Þ

where mn is an algorithm-specific magnitude term and C is

a projection operator that keeps the parameter h bounded (a

crucial requirement towards ensuring convergence of the

scheme). Further, aðnÞ are the step-sizes that satisfy stan-

dard stochastic approximation conditions. Note that

rhQðs; aÞ ¼ rs;a and hence (14) updates the parameter h in

the negative descent direction. The overall structure of our

algorithms is given in Algorithm 1.

5.4 Feature selection

The idea behind the feature selection scheme is to select an

energy-efficient sleep configuration, i.e., a configuration

that keeps as many sensors in the wake state as possible to

track the intruder while at the same time has minimal

energy cost. This is done by first pruning the actions so as

to select only those actions that ensure that the energy cost

is n-close to the tracking error and then, among the n-

optimal actions, selecting an action that minimizes the

approximate Q-value.

Formally, the choice of features is given by

rsn;an
¼ ðrsn;an

ð1Þ; � � � ; rsn;an
ðNÞÞT ; ð15Þ

where rsn;an
ðiÞ; i
N is the feature value corresponding to

sensor i. These values are defined as follows:

danðiÞ
n ¼ 1

ðanðiÞ þ 1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
energycost

�
PanðiÞ

j¼1 ½pP j�iP1
j¼1½pP j�i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

trackingerror

; ð16Þ

rsn;an
ðiÞ ¼ danðiÞ

n if 0
 jdanðiÞ
n j
 n;

> otherwise:

(
ð17Þ

In the above, > is a fixed large constant used to prune out

the actions that are not n-close. The above choice of fea-

tures involve pruning of actions, which is explained as

follows: Consider an action anðiÞ for the sensor i at time

instant n. The sum of probabilities that the intruder will be

at location i, over time instants 1; . . .; anðiÞ is a measure of

the tracking error. On the other hand, the energy saved by

having sensor i sleep for anðiÞ time units is proportional to
c

anðiÞþ1
. As illustrated in Fig. 2, the tracking error increases

with the sleep time (dictated by the choice of anðiÞ), while

the energy cost decreases. Thus, danðiÞ
n measures the dis-

tance between the energy cost and tracking errors. Next, as

illustrated with the two-dashed lines in Fig. 2, we now

consider all those actions anðiÞ such that the above two

components are within n distance of each other (i.e.,

jdanðiÞ
n j
 n) and set the feature value rsn;an

to the above

difference. On the other hand, for those actions that are

outside the n-boundary, we set rsn;an
to a large constant,

which ensures they are not selected.

In the following section, we present the QSA-A algo-

rithm for sleep-wake scheduling and subsequently present

the second algorithm (TQSA-A). The latter algorithm

(TQSA-A) is a convergent algorithm, unlike QSA-A.

Algorithm 1 Structure of our algorithms

1: Initialization: policy parameter θ = θ0; initial state s0
2: for n = 0, 1, 2, . . . do
3: Take action an based on a (algorithm-specific) policy depending on θn.
4: Observe the single-stage cost g(sn, an) and the next state sn+1.
5: Update θn+1 in a algorithm-specific manner.
6: end for
7: return Q-value parameter θ, policy parameter w.

ξ
↓
↑

Sleep time (seconds)

C
os

t∈
(0

, 1
)

Energy cost
Tracking error

Fig. 2 Idea behind the feature selection scheme

Wireless Netw

123

5.5 Q-learning based sleep–wake algorithm (QSA-A)

This is the function approximation analogue of the

Q- learning with average cost algorithm [1]. Let sn; snþ1

denote the state at instants n; nþ 1, respectively, measured

online. Let hn be the estimate of the parameter h at instant

n. Let s be any fixed state in S. The algorithm QSA-A uses

the following update rule:

hnþ1 ¼ hn þ aðnÞrsn;an

�
gðsn; anÞ þ min

v2Aðsnþ1Þ
hT

n rsnþ1;v

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðIÞ

� min
r2AðsÞ

hT
n rs;r

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðIIÞ

�hT
n rsn;an

�
;

ð18Þ

where h0 is set arbitrarily. In (18), the action an is chosen in

state sn according to an �-greedy policy, i.e., with a prob-

ability of (1� �), a greedy action given by an ¼
argminv2AðsnÞh

T
n rsn;v is chosen and with probability �, an

action in AðsnÞ is randomly chosen. Using �-greedy policy

for the regular Q-learning algorithm has been well recog-

nized and recommended in the literature (cf. [5, 31]).

5.6 Two-timescale Q-learning based sleep–wake

algorithm (TQSA-A)

Although Q-learning with function approximation has been

shown to work well in several applications in practice,

establishing a proof of convergence of this algorithm is

theoretically difficult. A simple counterexample that illus-

trates the chattering phenomenon when Q-learning is

combined with function approximation is provided in [5,

Section 6.4]. Moreover, there have also been practical

instances where the iterates of QSA-A have been shown to

be unstable (cf. [25]).

The problem is complicated due to the off-policy nature

of QSA-A. The off-policy problem here arises because of

the presence of the min operation in the Q-learning algo-

rithm that introduces nonlinearity in the update rule (see

term (I) in (18)). There is also a minor problem of esti-

mating the average cost that involves a min operation as

well (see term (II) in (18)). The latter problem can be

solved by estimating the average cost in a separate recur-

sion (as we do in (21)) and using this estimate in place of

the term (II).

A nested two-loop procedure to overcome the off-policy

problem works as follows:

Inner

loop

Instead of the first min operation (term (I) in

(18)), employ a stochastic gradient technique to

find the best action that minimizes the

approximate Q-value function. A popular

scheme for estimating the gradient of a

function from simulation is SPSA and we

employ a one-simulation SPSA scheme with

deterministic perturbations for estimating

rwQðs; aÞ.
Outer

loop

instead of the min operation, actions are selected

according to a given policy, then the Q-learning

update would resemble a temporal difference

(TD) learning update for the joint (state-action)

Markov chain. It has been shown in [32] that TD

with linear function approximation converges.

For ensuring convergence of the above procedure, one

would have to run the two loops in a serial fashion for

sufficiently long duration. This may be time-consuming

and also result in slow convergence. To overcome this

problem, we employ multi-timescale stochastic approxi-

mation [10, Chapter 6] to mimic the two-loop behavior,

albeit with different step-sizes for the inner and outer

loops. In other words, both the loops are allowed to run

simultaneously, with a larger step-size for the inner loop

and a smaller one for the outer loop. This achieves the

effect of the nested loop procedure, while ensuring rapid

convergence.

Recall that we consider a class of parameterized policies

satisfying Assumption 1.4 As illustrated in Fig. 3, the idea

in the gradient estimate is to simulate the system with the

perturbed policy parameter wþ dD, where d[0 is a fixed

small constant and D ¼ ðD1; . . .;DNÞT are perturbations

constructed using certain Hadamard matrices (see Lemma

3.3 of [7] for details of the construction). Given the output

θn an ∼ πwn+δΔn

Policy perturbation

Update w

using (22)

Fast timescale

Update θn

using (20)

Slow timescale

θn+1
g(sn,an)

Fig. 3 Overall flow of the

TQSA-A algorithm

4 One may use an �-greedy policy for TQSA-A as well, however, that

will result in additional exploration. Since TQSA-A updates the

parameters of an underlying parameterized Boltzmann policy (which

by itself is randomized in nature), we do not need an extra exploration

step in our algorithm.

Wireless Netw

123

from the perturbed simulation, the gradient of the

approximate Q-value function Qðs; aÞ 	 hTrs;a is estimated

as:

rwQðs; aÞ 	 hTrs;a

d
D�1; ð19Þ

where D�1¼M ðD�1
1 ; . . .;D�1

N Þ
T
. It has been shown in [7] that

an incremental stochastic recursive algorithm that incor-

porates the RHS of (19) as its update direction essentially

performs a search in the gradient direction when d is small.

The overall update of the TQSA-A proceeds on two

different timescales as follows:

(i) On the faster timescale, the policy parameter is

updated along a gradient descent direction using an SPSA

estimate (19);

(ii) On the slower timescale, the average cost (4) is

estimated and

(iii) Also, on the slower timescale, the Q-value param-

eter is updated in an on-policy TD algorithm-like fashion.

The update rule for the TQSA-A algorithm is given as

follows: 8n� 0,

hnþ1 ¼ C1

�
hn þ bðnÞrsn;an

ðgðsn; anÞ � Ĵnþ1 þ hT
n rsnþ1;anþ1

� hT
n rsn;an

Þ
�
;

ð20Þ

Ĵnþ1 ¼ Ĵn þ cðnÞ gðsn; anÞ � Ĵn

� �
; ð21Þ

wnþ1 ¼ C2 wn � aðnÞ h
T
n rsn;an

d
D�1

n

� �
: ð22Þ

In the above, the choice of features rsn;an
is the same as in

the algorithm, QSA-A and is described in Sect. 5.4.

C1 : Rd ! D, C2 : RN ! C are certain projection opera-

tors that project the iterates hn and wn; n� 1 to certain

prescribed compact and convex subsets D and C of Rd and

R
N , respectively. The recursions (20) and (22) remain

stable because of these projection operators, a crucial

requirement for convergence of TQSA-A. The step-sizes

bðnÞ; cðnÞ; aðnÞ satisfy the following assumption:

Assumption 2
X

n

aðnÞ ¼
X

n

bðnÞ ¼ 1;
X

n

ða2ðnÞ þ b2ðnÞÞ\1;

lim
n!1

bðnÞ
aðnÞ ¼ 0:

Further, cðnÞ ¼ kaðnÞ for some k [0.

While the first two conditions above are standard in

stochastic approximation for step-sizes, the last condition,

i.e.,
bðnÞ
aðnÞ ! 0 ensures the necessary timescale separation

between policy and Q-value parameter updates. In partic-

ular, it guarantees that the policy parameter w is updated on

the faster timescale and average cost Ĵ and Q-value

parameter h are updated on the slower timescale.

It turns out that because of the timescale difference, the

recursion (22) converges almost surely to a set wðhÞ that is

a function of parameter h and is seen to be a compact

subset of RN . Further, the slower recursion (20) can be seen

to track a differential inclusion and converges almost

surely to a closed connected internally chain transitive

invariant set of this differential inclusion. This claim is

made precise by the convergence result in the following

section.

5.7 Convergence of TQSA-A

We outline the proof of convergence of the TQSA-A

algorithm, with the details being available in an appendix

to this paper. In addition to assumptions 1 and 2, we make

the following assumption for the analysis.

Assumption 3 The Markov chain induced by any policy

w is irreducible and aperiodic.

The above ensures that each state gets visited an infinite

number of times over an infinite time horizon and is

standard in policy gradient RL algorithms.

The ODE approach is adopted for analyzing the con-

vergence of h and w recursions (20). In essence, the two-

timescale stochastic approximation architecture employed

in the TQSA-A algorithm allows (i) the faster timescale

analysis of the w-recursion in (20) assuming that the slower

h-recursion is constant (quasi-static), and (ii) the slower

timescale analysis of the h-recursion in (20) assuming that

the faster w-recursion has converged. The convergence

analysis comprises of the following important steps:

– Theorem 1, in effect, states that the w-recursion

performs a gradient descent using one-simulation SPSA

and converges to a set of points in the neighborhood of

the local minimum of the approximate Q-value func-

tion Rðh;wÞ (defined below). Note that this analysis is

for the w-recursion on the faster timescale, assuming

the Q-value function parameter h to be a constant.

– Analyzing the h-recursion on the slower timescale,

Theorem 2 claims that the iterate h asymptotically

converges to a closed connected internally chain

transitive set associated with a corresponding differen-

tial inclusion (DI).

We present below the precise statements of these results.

Let CðCÞðCðDÞÞ denote the space of all continuous func-

tions from C to RN (D to Rd). We define the operator

Ĉ2 : CðCÞ ! CðRNÞ as follows:

Wireless Netw

123

Ĉ2ðvðwÞÞ ¼ lim
a#0

C2ðwþ avðwÞÞ � w

a

� �
:

Consider the ODE associated with the w-recursion on the

faster timescale, assuming hðtÞ � h (a constant indepen-

dent of t):

_wðtÞ ¼ Ĉ2 �rwRðh;wðtÞÞð Þ: ð23Þ

Theorem 1 establishes that the w-recursion tracks the

above ODE. In the above,

Rðh;wÞ¼M
X

i2S;a2AðiÞ
fwði; aÞhTri;a;

where fwði; aÞ are the stationary probabilities

fwði; aÞ ¼ dpwðiÞpwði; aÞ, i 2 S, a 2 AðiÞ for the joint pro-

cess fðXn; ZnÞg, obtained from the state-action tuples at

each instant. Here dpwðiÞ is the stationary probability for

the Markov chain fXng under policy pw being in state

i 2 S. Let Kh denote the set of asymptotically stable equi-

libria of (23), i.e., the local minima of the function Rðh; �Þ
within the constraint set C. Given �[0, let K�

h denote the

�-neighborhood of Kh, i.e.,

K�
h ¼ fw 2 C jk w� w0 k\�;w0 2 Khg:

Theorem 1 Let hn � h; 8n, for some h 2 D � Rd. Then,

given �[0, there exists d0 [0 such that for all d 2 ð0; d0�,
fwng governed by (20) converges the set K�

h a.s.

We now analyze the h-recursion, which is the slower

recursion in (20). Let

Tw : RjS�AðSÞj ! RjS�AðSÞj be the operator given by

TwðJÞði; aÞ ¼ gði; aÞ � JðpwÞeþ
X

j2S;b2AðjÞ
pwði; a; j; bÞJðj; bÞ;

ð24Þ

or in more compact notation

TwðJÞ ¼ G� JðpwÞeþ PwJ;

where G is the column vector with components

gði; aÞ; i 2 S; a 2 AðiÞ, JðpwÞ is the average cost corre-

sponding to the policy parameter w and Pw is the transition

probability matrix of the joint (state-action) Markov chain

under policy pw, with components pwði; a; j; bÞ. Here

pwði; a; j; bÞ denote the transition probabilities of the joint

process fðXn; ZnÞg. The differential inclusion associated

with the h-recursion of (20) corresponds to

_hðtÞ 2 Ĉh hðhÞð Þ; ð25Þ

where hðhÞ is the set-valued map, defined in compact

notation as follows:

hðhÞ¼MfUT
FwðhÞðTwðhÞðUhÞ � Uh j w 2 K�

hg:

In the above, Fw denotes the diagonal matrix with elements

along the diagonal being fwði; aÞ, i 2 S, a 2 AðiÞ. Also, U
denotes the matrix with rows rT

s;a; s 2 S; a 2 AðsÞ. The

number of rows of this matrix is thus jS� AðSÞj, while the

number of columns is N. Thus, U ¼ ðUðiÞ; i ¼ 1; . . .;NÞ
where UðiÞ is the column vector

UðiÞ ¼ ðrs;aðiÞ; s 2 S; a 2 AðsÞÞT ; i ¼ 1; . . .;N:

Further, the projection operator Ĉh is defined as

Ĉh¼
M \�[0ch [kb�hk\�

�

fc1ðb; yþ YÞ j y 2 hðbÞ; Y 2 RðbÞgÞ;where

• chðSÞ denotes the closed convex hull of the set S;

• c1ðh; yÞ denotes the directional derivative of C1 at h in

the direction y and is defined by

c1ðh; yÞ¼M lim
g#0

C1ðhn þ gyÞ � h
g

� �
;

• Yðnþ 1Þ is defined as follows:

Yðnþ 1Þ¼M ðgðXn; ZnÞ � Jðpwn
Þ

þ hT
n rXnþ1;Znþ1

� hT
n rXn;Zn

ÞrXn;Zn

� E gðXn; ZnÞ � Jðpwn
Þ þ hT

n rXnþ1;Znþ1

��

� hT
n rXn;Zn

ÞrXn;Zn
j GðnÞ�;

where GðnÞ ¼ rðhr;Xr; Zr; r
 nÞ; n� 0 is a sequence of

associated sigma fields; and

• RðbÞ denotes the compact support of the conditional

distribution of Yðnþ 1Þ given GðnÞ.
The main result is then given as follows:

Theorem 2 The iterate hn, n� 0 governed by (20), con-

verges a.s to a closed connected internally chain transitive

invariant set of (25).

The detailed proofs of Theorems 1 and 2 are provided in

the supplementary material.

5.8 Intruder’s mobility model estimation

The algorithms described in the previous sections assume

knowledge of the transition dynamics (the matrix P) of the

Markov chain governing the intruder movement. However,

in practice, this information is not available. In this section,

we present a procedure to estimate P and combine the same

with the sleep-wake scheduling algorithms described in the

previous section. We assume that P is stationary, i.e., it

does not change with time.

The estimation procedure for P is online and convergent. The

combination with the sleep-wake scheduling algorithms hap-

pens via multi-timescale stochastic approximation. In essence,

Wireless Netw

123

we run the estimation procedure for P on the faster timescale

while the updates for the parameters of the sleep-wake sched-

uling algorithms are conducted on the slower timescale. Thus,

the update recursions for the individual sleep-wake algorithms

see the estimate for P as equilibrated, i.e., converged.

Let P̂0 be the initial estimate of the transition probability

matrix P. Then, the estimate P̂n at time instant n is tuned as

follows:

P̂nþ1 ¼ P P̂n þ dðnÞp̂np̂T
nþ1

� �
: ð26Þ

In the above, p̂n ¼ pnðiÞ : i ¼ 1; 2; . . .;N þ 1½ �T is a column

vector signifying current location of the intruder. Further,

Pð�Þ is a projection operator that ensures that the iterates

P̂n satisfy the properties of a transition probability matrix.

Also,fdðnÞg is a step-size sequence chosen such that it is

on the faster timescale, while the h-recursion of the algo-

rithm described earlier is on the slower timescale.

The idea behind the above update rule can be explained as

follows: Suppose the locations of the intruder at instants n

and nþ 1 are known. Then, p̂n and p̂nþ1 would be vectors

with the value 1 in lkth position and 0 elsewhere. The quantity

p̂np̂T
nþ1 would thus result in a matrix with 1 at row index lk and

column index lkþ1 and 0 elsewhere. The recursion (26) then

results in a sample averaging behavior (due to stochastic

approximation) for estimating the transition dynamics P.

The same logic can be extended to the remaining cases, for

instance, known lk and unknown lkþ1 and so on.

Empirically we observe that the update (26) converges

to the true transition probability matrix P for each of the

proposed algorithms, in all the network settings considered.

6 Discounted cost setting

We now describe the discounted cost objective. As in the

case of the average cost setting (Sect. 4), we describe

below the Bellman equation for continuous state-action

spaces. However, for the sake of implementation (in later

sections), we again use the discrete version of the problem.

For a policy p, define the value function Vp : S! R as

follows:

VpðxÞ ¼ E
X1

m¼0

cmgðsm; amÞ j X0 ¼ x

" #
; ð27Þ

for all x 2 S. In the above, c 2 ð0; 1Þ is a given discount

factor. The aim then is to find an optimal value function

V� : S ! R, i.e.,

V�ðxÞ ¼ min
p2P

VpðxÞ¼M Vp� ðxÞ; ð28Þ

where p� is the optimal policy, i.e., the one for which V� is

the value function. It is well known, see [28], that the

optimal value function V�ð�Þ satisfies the following Bell-

man equation of optimality in the discounted cost case:

V�ðxÞ ¼ min
a2AðxÞ

gðx; aÞ þ c
Z

pðx; a; dyÞV�ðyÞ
� �

; ð29Þ

for all x 2 S. As for the average cost, our algorithms in the

discounted cost setting do not require knowledge of the

system model and incorporate function approximation.

7 Discounted cost algorithms

In this section, we present two algorithms for sleep-wake

scheduling with the goal of minimizing a discounted cost

objective described in Sect. 6. The overall structure of both the

algorithms follow the schema provided in Algorithm 1.

However, in comparison to the average cost algorithms

described earlier, the parameter h is updated in a different

fashion here to cater to the discounted cost objective.

7.1 Q-learning based sleep–wake scheduling algorithm

(QSA-D)

As in the case of the average cost setting, the Q-learning

algorithm cannot be used without employing function

approximation because of the size of the state-action space.

The function approximation variant of Q-learning in the

discounted cost setting parameterizes the Q-values in a

similar manner as the average cost setting, i.e., according to

(13). The algorithm works with a single online simulation

trajectory of states and actions, and updates h according to

hnþ1 ¼ hn þ aðnÞrsn;an
gðsn; anÞ þ c min

b2Aðsnþ1Þ
hT

n rsnþ1;b � hT
n rsn;an

� �
;

ð30Þ

where h0 is set arbitrarily. In the above, sn and snþ1 denote

the state at instants n and nþ 1, respectively, and hn

denotes the nth update of the parameter. In (30), the action

an is chosen in state sn according to an ��greedy policy, as

in the case of the QSA-A algorithm.

7.2 Two-timescale Q-learning based sleep–wake

scheduling algorithm (TQSA-D)

As with the average cost setting, the Q-learning algorithm

with function approximation in the discounted setting is not

guaranteed to converge because of the off-policy problem.

A variant of Q-learning [6] has been recently proposed and

has been shown to be convergent. This algorithm uses two-

timescale simultaneous perturbation stochastic approxi-

mation (SPSA) with Hadamard matrix based deterministic

perturbation sequences [7].

Wireless Netw

123

The TQSA-D algorithm is a two timescale stochastic

approximation algorithm that employs a linear approxima-

tion architecture and parameterizes the policy. As in the case

of TQSA-A, we assume here that the policy pðs; aÞ is con-

tinuously differentiable in the parameter h, for any state–

action pair ðs; aÞ. The function approximation parameter h is

tuned on the slower timescale in a TD-like fashion, while the

policy parameter w is tuned on the faster timescale in the

negative gradient descent direction using SPSA. Let

p0n¼
M

pðwnþdDnÞ ¼ ðpðwnþdDnÞði; aÞ; i 2 S; a 2 AðiÞÞT , where

d[0 is a given small constant, be the randomized policy

parameterized by ðwn þ dDnÞ during the nth instant. Here

Dn; n� 0 are perturbations obtained from the Hadamard

matrix based construction described before. The update rule

of the TQSA-D algorithm is given as follows: 8n� 0,

hnþ1 ¼ C1 hnþ bðnÞrsn;an
rðsn;anÞþ chT

n rsnþ1;anþ1
� hT

n rsn;an

� �� �
;

wnþ1 ¼ C2 wn� aðnÞh
T
n rsn;an

d
D�1

n

� �
:

ð31Þ

The projection operators C1;C2 and the step-sizes

aðnÞ; bðnÞ for all n� 0 are the same as in TQSA-A and the

features rsn;an
are as in the previous algorithms.

8 Simulation setup and results

8.1 Implementation

We implemented our sleep–wake scheduling algorithms

- QSA-A and TQSA-A for the average cost setting and

QSA-D and TQSA-D for the discounted cost setting,

respectively. For the sake of comparison, we also imple-

mented the FCR and QMDP algorithms proposed in [14].

Note that for each of these algorithms, the knowledge of

the mobility model of the intruder is assumed. We briefly

recall these algorithms below:

FCR. This algorithm approximates the state evolution

(3) by ptþ1 ¼ ptP, and then attempts to find the sleep time

for each sensor by solving the following balance equation:

V ðlÞðpÞ ¼ min
u

Xu

j¼1

½pP j�l þ
XN

i¼1

c½pPuþ1�i þ V ðlÞðpPuþ1Þ
 !

:

Thus, the sleeping policy here is obtained locally for each

sensor by solving the above Bellman equation for each

sensor, with a strong approximation on the state evolution.

Note that our algorithms make no such assumptions and

attempt to find the optimal sleeping policy in the global

sense (i.e., considering all the sensors) and not in the local

sense (i.e., treating the sensors individually).

QMDP. In this approach, the decomposition into the per

sensor problem is the same as in FCR. However here, the

underlying assumption is that the location of the object will

always be known in the future. Thus, instead of (3), the

state evolves here according to pkþ1 ¼ elkþ1
P. The objective

function for a sensor l, given the state component p, is

given by

V ðlÞðpÞ ¼min
u

Xu

j¼1

½pP j�l þ
XN

i¼1

c½pPuþ1�i þ
XN

i¼1

½pPuþ1�iV ðlÞðeiÞ
 !

:

The difference between the above and the corresponding

equation for FCR is in the third term on the right hand side

representing the future cost. In the case of QMDP, the future

cost is the conditional expectation of the cost incurred from

the object location after u time units given the current

distribution as its location. Thus, one can solve V ðlÞðpÞ for

any p once V ðlÞðeiÞ; 1
 i
N are known. The QMDP algo-

rithm then attempts to find a solution using the well-known

dynamic programming procedure—policy iteration for

MDPs. However, an important drawback with the dynamic

programming approaches is the curse of dimensionality

(i.e., the computational complexity with solving the asso-

ciated Markov decision process increases exponentially

with the dimension and cardinality of the state and action

spaces). RL algorithms that incorporate function approxi-

mation techniques alleviate this problem and make the

computational complexity manageable, while still ensuring

that these algorithms converge to a ‘good enough’ policy.

8.2 Simulation setup

We perform our experiments on a 2-D network setting (see

Fig. 1) of 121 sensors, i.e., a 11� 11 grid. The sensor

regions overlap here, with each sensor’s sensing region

overlapping with that of its neighboring nodes. In partic-

ular, the sensing regions of sensors in the interior of the

grid overlap with eight neighboring nodes.

The simulations were conducted for 6,000 cycles for all

algorithms. We set the single-stage cost component c to 0:1

and the discount factor c to 0:9. For QSA-A/D, we set the

exploration parameter � to 0:1. The projection operators

Ci; i ¼ 1; 2 are chosen such that each co-ordinate of h and

w is forced to evolve within ½1; 100�. The step-sizes are

chosen as follows: For QSA-A, we set aðnÞ ¼ 1

n
; n� 1 and

for TQSA-A, we set bðnÞ ¼ 1
n
; aðnÞ ¼ 1

n0:55 ; n� 1,

respectively. Further, for TQSA-A/TQSA-D, we set

d ¼ 0:001. For QSA-A, we choose the fixed state s (see

(18)) as hp0; ri where p0 is the initial distribution of pk and

r is a random sleep time vector. It is easy to see that this

Wireless Netw

123

choice ensures that there is a positive probability of the

underlying MDP visiting state s.5

8.3 Results

We use the number of sensors awake and the number of

detects per time step as the performance metrics for com-

paring the various sleep/wake algorithms. While the former

metric is the ratio of the total number of sensors in the

wake state to the number of time-steps, the latter is the ratio

of the number of successful detects of the intruder to the

number of time-steps. Fig. 4 presents the number of sensors

awake and the number of detects per time step, for each of

the algorithms studied in the average cost setting, while

Fig. 5 presents similar results for the algorithms in the

discounted cost setting.

Figure 6a presents the evolution of the Q-value param-

eter h for TQSA-A in the average cost setting. Fig. 7

presents the results obtained from the experiments with

TQSA-A combined with the mobility model estimation

procedure (26). Fig. 6b shows the evolution of the estimate

Pkði; jÞ of the intruder’s mobility model, where i corre-

sponding to the ð6; 6Þth cell and j corresponding to ð6; 5Þth
cell, converges. In contrast, the QMDP algorithm requires

full knowledge of the distribution of the intruder movement

and hence, cannot be applied in the setting of unknown P.

8.4 Discussion

We observe that in comparison to the QMDP algorithm, our

algorithms attain a slightly higher tracking accuracy at the

cost of a few additional sensors in the wake state. On the

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 d

et
ec

ts
 p

er
 ti

m
e

st
ep

time steps

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000N
um

be
r

of
 s

en
so

rs
 a

w
ak

e
pe

r
tim

e
st

ep

time steps

QSA-A
TQSA-A

QMDP
FCR

QSA-A
TQSA-A

QMDP
FCR

(a) (b)

Fig. 4 Tradeoff characteristics—known mobility model (P) case. a Number of detects per time step. b Number of sensors awake per time step

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 d

et
ec

ts
 p

er
 ti

m
e

st
ep

time steps

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000N
um

be
r

of
 s

en
so

rs
 a

w
ak

e
pe

r
tim

e
st

ep

time steps

(b)

QSA-D
TQSA-D

QMDP
FCR

QSA-D
TQSA-D

QMDP
FCR

Fig. 5 Tradeoff characteristics in the discounted setting. a Number of detects per time step. b Number of sensors awake per time step

5 This is because the intruder stays in the starting location for at least

one time step and the exploration of actions initially results in a

positive probability of a random action being chosen.

Wireless Netw

123

other hand, our algorithms exhibit better tradeoff between

energy cost and tracking accuracy in comparison to the

FCR algorithm. Amongst our algorithms, we observe that

the two timescale variant TQSA-A performs better than the

Q-learning based QSA-A, since TQSA-A results in a

tracking accuracy similar to QSA-A with lesser number of

sensors awake. A similar observation holds in the dis-

counted cost setting as well.

Further, as evident in the tradeoff plot in Fig. 4, the

QMDP algorithm exhibits fluctuating behaviour with a sig-

nificant number of outliers that show poor tradeoffs. This,

we suspect, is due to the underlying requirement of com-

plete future observations in QMDP. Further, QMDP (and even

FCR) is not a learning algorithm that stabilizes the number

of sensors awake and the tracking errors in the long-term.

This is because, at each instant, QMDP attempts to solve the

Bellman equation in an approximate fashion and no

information about the solution thus obtained is carried

forward to the future instants.

On the contrary, our algorithms learn a good enough

sleep/wake scheduling policy for the individual sensors

with contextual information being carried forward from

one time step to the next. This results in a stable regime for

the number of sensors awake and the tracking accuracy,

unlike QMDP . While the number of sensors awake for the

FCR algorithm is less than that for our algorithms, the

tracking accuracy is significantly lower in comparison. For

critical tracking systems, where failing to track has higher

penalty, our proposed algorithms (esp. TQSA-A) will be

able to achieve greater performance (tracking accuracy) at

the cost of only a few additional sensors in the wake state.

Further, it is evident from Fig. 6a that the Q-value parameter

h of TQSA-A converges. This is a significant feature of the

TQSA-A algorithm as it possesses theoretical convergence

-800

-600

-400

-200

 0

 200

 400

 600

 800

 0 2000 4000 6000 8000 10000

P
ar

am
et

er
 (

θ)
 v

al
ue

s

time steps

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1000 2000 3000 4000 5000 6000

P
[5

6]
[7

0]

time steps

(b)

θ(6)
θ(15)
θ(25)

TQSA-A-UP

(a)

Fig. 6 Convergence trends of h in TQSA-A with known P and the estimate Pk in TQSA-A with unknown P. a Convergence of h. b Convergence

of Pk

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 s

en
so

rs
 a

w
ak

e
pe

r
tim

e
st

ep

time steps

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 d

et
ec

ts
 p

er
 ti

m
e

st
ep

time steps

TQSA-A
TQSA-A-UP

TQSA-A
TQSA-A-UP

(b)(a)

Fig. 7 Tradeoff characteristics for TQSA-A algorithm with known and unknown P. a Number of sensors awake per time step. b Number of

detects per time step

Wireless Netw

123

guarantees, unlike QSA-A, which may not converge in some

settings. Moreover, it can also be seen that the transient period

when the policy parameter h has not converged, is short. It is

worth noting here that providing theoretical rate of conver-

gence results for TQSA-A is difficult. This is because rate

results for multi-timescale stochastic approximation algo-

rithms, except for those with linear recursions (see [21]), is not

known till date to the best of our knowledge.

We also observe that even for the case when the intru-

der’s mobility model is not known, TQSA-A shows per-

formance on par with the vanilla TQSA-A, which assumes

knowledge of P. We also observe that in the TQSA-A

algorithm, the estimate Pk of the transition probability

matrix P converges to the true P and this is illustrated by

the convergence plots in Fig. 6b.

9 Conclusions and future work

We studied the problem of optimizing sleep times in a

sensor network for intrusion detection. Following a

POMDP formulation similar to the one in [15], our aim in

this paper was to minimize certain long-run average and

discounted cost objectives. This in turn allowed us to study

both transient as well as steady state system behavior. For

both the settings considered, we proposed a novel two-

timescale Q-learning algorithm with theoretical conver-

gence guarantees. For the sake of comparison, we also

developed sleep-scheduling algorithms that are function

approximation analogues of the well-known Q-learning

algorithm. Next, we extended these algorithms to a setting

where the intruder’s mobility model is not known.

Empirically, we demonstrated the usefulness of our algo-

rithms on a simple two-dimensional network setting.

As future work, one could extend these algorithms to

settings where multiple intruders have to be detected. This

would involve the conflicting objectives of keeping less

number of sensors awake and at the same time, detecting as

many intruders as possible. Another interesting direction of

future research is to develop intruder detection algorithms

in a decentralized setting, i.e., a setting where the indi-

vidual sensors collaborate in the absence of a central

controller. Decentralized variants of our two-timescale Q-

learning algorithm TQSA-A can be developed in the fol-

lowing manner: Each sensor runs TQSA-A to decide on the

sleep times in a manner similar to the algorithms we pro-

pose. However, this would require the knowledge of pk

(distribution of the intruder’s location) at each sensor and

this can be obtained by means of a message passing scheme

between the individual sensors. Since exchanging mes-

sages between every pair of sensors may increase the load

on the network, a practical alternative is to form (possibly

dynamic) groups of sensors, within which the message

regarding the intruder’s location (or pk) is exchanged. The

individual sensors then decide on the sleep times using this

local information and an update rule similar to (20).

References

1. Abounadi, J., Bertsekas, D., & Borkar, V. (2002). Learning

algorithms for Markov decision processes with average cost.

SIAM Journal on Control and Optimization, 40(3), 681–698.

2. Baird, L. (1995). Residual algorithms: Reinforcement learning

with function approximation. In: ICML, pp 30–37.

3. Beccuti, M., Codetta-Raiteri, D., & Franceschinis, G. (2009).

Multiple abstraction levels in performance analysis of wsn

monitoring systems. In: International ICST conference on per-

formance evaluation methodologies and tools, p. 73.

4. Bertsekas, D. P. (2007). Dynamic programming and optimal

control (3rd ed., Vol. II). Belmont: Athena Scientific.

5. Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic pro-

gramming. Belmont: Athena Scientific.

6. Bhatnagar, S., & Lakshmanan, K. (2012). A new Q-learning

algorithm with linear function approximation. Technical report

SSL, IISc, URL http://stochastic.csa.iisc.ernet.in/www/research/

files/IISc-CSA-SSL-TR-2012-3.pdf.

7. Bhatnagar, S., Fu, M., Marcus, S., & Wang, I. (2003). Two-

timescale simultaneous perturbation stochastic approximation

using deterministic perturbation sequences. ACM Transactions on

Modeling and Computer Simulation (TOMACS), 13(2), 180–209.

8. Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., & Lee, M.

(2009). Natural actor-critic algorithms. Automatica, 45(11),

2471–2482.

9. Bhatnagar, S., Prasad, H., & Prashanth, L. (2013). Stochastic recur-

sive algorithms for optimization (Vol. 434). New York: Springer.

10. Borkar, V. (2008). Stochastic approximation: A dynamical sys-

tems viewpoint. Cambridge: Cambridge University Press.

11. Cui, Y., Lau, V. K., Wang, R., Huang, H., & Zhang, S. (2012a). A

survey on delay-aware resource control for wireless systems-

Large deviation theory, stochastic lyapunov drift, and distributed

stochastic learning. IEEE Transactions on Information Theory,

58(3), 1677–1701.

12. Cui, Y., Lau, V. K., & Wu, Y. (2012b). Delay-aware BS dis-

continuous transmission control and user scheduling for energy

harvesting downlink coordinated MIMO systems. IEEE Trans-

actions on Signal Processing, 60(7), 3786–3795.

13. Fu, F., & van der Schaar, M. (2009). Learning to compete for

resources in wireless stochastic games. IEEE Transactions on

Vehicular Technology, 58(4), 1904–1919.

14. Fuemmeler, J., & Veeravalli, V. (2008). Smart sleeping policies

for energy efficient tracking in sensor networks. IEEE Transac-

tions on Signal Processing, 56(5), 2091–2101.

15. Fuemmeler, J., Atia, G., & Veeravalli, V. (2011). Sleep control

for tracking in sensor networks. IEEE Transactions on Signal

Processing, 59(9), 4354–4366.

16. Gui, C., & Mohapatra, P. (2004). Power conservation and quality

of surveillance in target tracking sensor networks. In: Proceed-

ings of the international conference on mobile computing and

networking, pp. 129–143.

17. Jiang, B., Han, K., Ravindran, B., & Cho, H. (2008). Energy

efficient sleep scheduling based on moving directions in target

tracking sensor network. In: IEEE international symposium on

parallel and distributed processing, pp. 1–10.

18. Jianlin, M., Fenghong, X., & Hua, L. (2009). RL-based super-

frame order adaptation algorithm for IEEE 802.15.4 networks. In:

Chinese control and decision conference, IEEE, pp. 4708–4711.

Wireless Netw

123

http://stochastic.csa.iisc.ernet.in/www/research/files/IISc-CSA-SSL-TR-2012-3.pdf
http://stochastic.csa.iisc.ernet.in/www/research/files/IISc-CSA-SSL-TR-2012-3.pdf

19. Jin Gy, Lu, & Xy, Park M. S. (2006). Dynamic clustering for

object tracking in wireless sensor networks. Ubiquitous Com-

puting Systems, 4239, 200–209.

20. Khan, M. I., & Rinner, B. (2012). Resource coordination in

wireless sensor networks by cooperative reinforcement learning.

In: IEEE international conference on pervasive computing and

communications workshop, pp. 895–900.

21. Konda, V. R., & Tsitsiklis, J. N. (2004) Convergence rate of

linear two-time-scale stochastic approximation. Annals of applied

probability, pp. 796–819.

22. Liu, Z., & Elhanany, I. (2006). RL-MAC: A QoS-aware rein-

forcement learning based MAC protocol for wireless sensor

networks. IEEE International Conference on Networking (pp.

768–773). IEEE: Sensing and Control.

23. Niu, J. (2010) Self-learning scheduling approach for wireless

sensor network. In: International conference on future computer

and communication (ICFCC), IEEE, Vol. 3, pp. 253–257.

24. Prashanth, L., Chatterjee, A., & Bhatnagar, S. (2014). Adaptive

sleep-wake control using reinforcement learning in sensor net-

works. In: 6th international conference on communication sys-

tems and networks (COMSNETS), IEEE.

25. Prashanth, L. A., & Bhatnagar, S. (2011a). Reinforcement

learning with average cost for adaptive control of traffic lights at

intersections. In: 14th International IEEE conference on intelli-

gent transportation systems (ITSC), pp. 1640–1645.

26. Prashanth, L. A., & Bhatnagar, S. (2011b). Reinforcement learning

with function approximation for traffic signal control. IEEE Trans-

actions on Intelligent Transportation Systems, 12(2), 412–421.

27. Premkumar, K., & Kumar, A. (2008). Optimal sleep-wake

scheduling for quickest intrusion detection using sensor networks.

Arizona, USA: IEEE INFOCOM.

28. Puterman, M. (1994). Markov decision processes: Discrete sto-

chastic dynamic programming. New York: Wiley.

29. Rucco, L., Bonarini, A., Brandolese, C., & Fornaciari, W. (2013).

A bird’s eye view on reinforcement learning approaches for

power management in WSNs. In: Wireless and mobile network-

ing conference (WMNC), IEEE, pp. 1–8.

30. Spall, J. C. (1992). Multivariate stochastic approximation using a

simultaneous perturbation gradient approximation. IEEE Trans-

actions on Automatic Control, 37(3), 332–341.

31. Sutton, R., & Barto, A. (1998). Reinforcement learning: An

introduction. Cambridge: Cambridge University Press.

32. Tsitsiklis, J. N., & Van Roy, B. (1997). An Analysis of Temporal

Difference Learning with Function Approximation. IEEE

Transactions on Automatic Control, 42(5), 674–690.

33. Watkins, C., & Dayan, P. (1992). Machine learning. Q-learning,

8(3), 279–292.

L. A. Prashanth his Bachelors

in Computer Engineering from

National Institute of Technol-

ogy, Surathkal, India, in 2002.

He received his Masters and

Ph.D. degrees in Computer

Science and Automation from

Indian Institute of Science, in

2008 and 2013, respectively.

From 2002 to 2009, he was with

Texas Instruments (India) Pvt

Ltd, Bangalore, India, as a

Senior Software Systems Engi-

neer working on embedded

operating systems and wireless

software. Since 2012, he is a Postdoctoral Researcher at INRIA

Lille—Team SequeL, hosted by Remi Munos. He was a recipient of

the IBM Ph.D. fellowship in 2012. He is the coauthor of a book

entitled ‘Stochastic Recursive Algorithms for Optimization: Simul-

taneous Perturbation Methods’, published by Springer in 2013. His

research interests are in stochastic control and optimization, rein-

forcement learning and multi-armed bandits with applications in

networking and transportation domains.

Abhranil Chatterjee received

his Bachelors in Computer Sci-

ence and Engineering from

West Bengal University of

Technology, India, in 2010. He

received his Masters in Systems

Science and Automation from

Indian Institute of Science, in

2012. From 2012 till date, he

has been with Yahoo Software

Development (India) Pvt. Ltd.,

Bangalore, India, as a Senior

Software Engineer working on

ranking and relevance in multi-

media information retrieval

systems and intelligent multimedia recommender systems. His

research interests are in reinforcement learning with applications in

wireless networks and information retrieval systems.

Shalabh Bhatnagar received a

Bachelors in Physics (Hons)

from the University of Delhi in

1988. He received his Masters

and Ph.D degrees in Electrical

Engineering from the Indian

Institute of Science, Bangalore

in 1992 and 1997, respectively.

He was a Research Associate at

the Institute for Systems

Research, University of Mary-

land, College Park, during 1997

to 2000 and a Divisional Post-

doctoral Fellow at the Free

University, Amsterdam, during

2000 to 2001. He is currently working as a Professor at the Depart-

ment of Computer Science and Automation at the Indian Institute of

Science, Bangalore. He has also held visiting positions at the Indian

Institute of Technology, Delhi and the University of Alberta, Canada.

Dr. Bhatnagar’s interests are in simulation optimization, stochastic

control and reinforcement learning. He has authored or co-authored

more than 115 research articles in various journals and conferences.

He is also the coauthor of a book with title ‘Stochastic Recursive

Algorithms for Optimization: Simultaneous Perturbation Methods’,

published by Springer in 2013. He is a Senior Associate of the

International Center for Theoretical Physics (ICTP), Italy, a Fellow of

the Indian National Academy of Engineering and a Fellow of the

Institution of Electronics and Telecommunication Engineers.

Wireless Netw

123

	Two timescale convergent Q-learning for sleep-scheduling in wireless sensor networks
	Abstract
	Introduction
	Related work
	POMDP formulation
	Average cost setting
	Average cost algorithms
	Q-learning with full state representation
	Need for function approximation
	Algorithm structure
	Feature selection
	Q-learning based sleep--wake algorithm (QSA-A)
	Two-timescale Q-learning based sleep--wake algorithm (TQSA-A)
	Convergence of TQSA-A
	Intruder’s mobility model estimation

	Discounted cost setting
	Discounted cost algorithms
	Q-learning based sleep--wake scheduling algorithm (QSA-D)
	Two-timescale Q-learning based sleep--wake scheduling algorithm (TQSA-D)

	Simulation setup and results
	Implementation
	Simulation setup
	Results
	Discussion

	Conclusions and future work
	References

