Lecture $.15^{*}$
Infinite horizon discounted MDPS
(ref: DPOC Vol.II. Chapter 142)
Goal:
$J^{*}(i)=\min _{\pi \in \Pi} J_{\pi}(i), \forall i$, where 2

$$
\begin{aligned}
& \rightarrow \text { Sigle-stage cont }
\end{aligned}
$$

Let π^{*} denote the optimal policy ie, any min $\mathcal{T}_{\pi \in \Pi}(i)$
(A1) The single stage cost $\left|g\left(x, a, x^{\prime}\right)\right| \leq M<\infty \quad \forall x, x^{\prime} \in R, a c t$

$$
\left(A_{1}\right)+(0<\alpha<1) \Rightarrow\left|\sigma_{\pi}(i)\right| \leq M \sum_{k=0}^{\infty} \alpha^{k}=\frac{M}{1-\alpha}<\infty
$$

"Unlike SSPs, we do not require the existure ff a krminal state".
Bellman and another operator
For $\quad J=(J(1), \ldots J(n))$,
define Bellman operator T as follows:

$$
(T J)(i)=\min _{a \in A(i)} \sum_{\dot{j} 1}^{n} P_{i j}(a)(g(i, a, j)+\alpha J(j)),
$$

For a stationary policy π,

$$
\begin{aligned}
& \left(T_{\pi} J\right)(i)=\sum_{j=1}^{n} P_{i j}(\pi(i))(g(i, \pi(i), j)+\alpha J(j)), \\
& \forall i
\end{aligned}
$$

$$
\begin{aligned}
& g_{*}=\left(\begin{array}{c}
\sum_{j=1}^{n} p_{i j}(\pi(1)) g(1, \pi(1), j) \\
\vdots \\
\sum_{\delta=1}^{n} P_{i j}(\pi(n)) g(n, \pi(n), j)
\end{array}\right)
\end{aligned}
$$

with this notation,

$$
T_{\Pi} J=g_{\pi}+\alpha p_{\pi} \tau
$$

Remark: If singlesteye cot is a function of currant stat 4 action, ie.,

$$
g(i, a) \text {, then } g_{\pi}=\left(\begin{array}{c}
g(1, \pi(1))) \\
\vdots \\
g(n, \pi(n))
\end{array}\right)
$$

Even in the discounted case, T, T_{π} are monotone.
Lemma 1: Let $J, J^{\prime} \in \mathbb{R}^{n}$ \& satisfy

$$
J(i) \leqslant J^{\prime}(i), \forall i
$$

Then, for any $k=1,2, \ldots$

$$
\text { (i) }\left(T^{k} J\right)(i) \leq\left(T^{k} J^{\prime}\right)(i) \text {, and }
$$

(ii) For any stationary policy π,

$$
\left(T_{\pi}^{k} J\right)(i) \leq\left(T_{\pi}^{k} J^{\prime}\right)(i)
$$

Pf: H.W.
The constant shift lemma holds here as well.
Lemma 2:
Stationary $\pi, \delta \rightarrow$ positive scalar, $e \rightarrow$ vector of n ones. Then, $\forall i=1 \ldots n, \forall k=1,2, \ldots$, we have
(i) $\left(T^{k}(J+\delta e)\right)(i)=\left(T^{k} J\right)(i)+2^{k} \delta$
(ii) $\left(T_{\pi}^{k}(J+\delta c)\right)(i)=\left(T_{\pi}^{k} J\right)(i)+\alpha^{k} \delta$

Pf: H.W.
"Every discounted problem has an equivalent Ssp".

Given discounted MDP on states $\{1, \ldots n\}$, form an $S S P$ on states $\{1, \ldots n\} \cup\{T\}$

Idea! In the $s s p$, w.p. α pick a next state according to transition probabilities of discounted MOP \& w.p. $(1-\alpha)$ move to " T^{u} \& incurs no cont

Original discounted MDP

$$
\vec{g}(i, a, j)= \begin{cases}\frac{g(r, a, j)}{2} & \text { if } j \neq T \\ 0 & d s e\end{cases}
$$

"Equivalent SSP"
\rightarrow Thin scaling cin't necemary if cost in of he from $g(i, a)$, ice, ian de. of nentstare
(1) Note that in the $S S P$, all policies ore proper.
(2) In the discounted MDP, the expected th stage cont is $E\left(\alpha^{k} g(i, a, j)\right)=\alpha^{k} \sum_{j} P_{i j}(a) g(i, a, j)$
(3) In the SSP, the expected k th stage cort is

$$
\left[\sum_{j} p_{i j}(a) g(i, a, j)\right] x \alpha^{k}
$$

If the fermind stak is not hit upto kth stoge, then the underlyys probabilites will hove a 2^{k} nultiplier.
"Optimal value is the save for the disconfed MDP 4 the equivalat $S S P^{"}$

$$
\stackrel{\rightharpoonup}{S} \rightarrow \text { skek spare in } S S P=\{1 \ldots, n\} \cup\{T\}
$$

Let $\quad \tilde{J}^{*} \rightarrow$ optinal value in $S S P$, Let $\tilde{P}_{i j}(a)$ proob. here tre $J^{*} \rightarrow$ optinal valu in discanted MDP
Bellnam

$$
\begin{aligned}
& \begin{array}{r}
=\min _{a} \sum_{j \in \dot{S}} \vec{P}_{i j}(a) \vec{g}(i, a, j)+\sum_{j \in S} \xrightarrow{{\underset{P}{i j}}(a)}{ }^{\sim} \mathcal{J}^{*}(j) \\
S=\{i-n\}
\end{array} \\
& +\tilde{P}_{i T}(a) \tilde{J}^{*}(T) \\
& =\min _{a} \sum_{j \in \vec{S}} \vec{P}_{i j}(a) \hat{g}(i, a, j)+\sum_{j \in S} p_{i j j}(a) \mathcal{J}^{x}(j) \\
& +(1-\alpha) \vec{J}^{*}(\uparrow)^{0} \\
& \begin{aligned}
\tilde{\tau}^{*}(i)=\min _{a} & \sum_{j \in S} p_{i j}(a) \frac{g(i, a, j)}{2}+(1-\alpha) g(i, a, T) \\
& +\alpha \sum_{i \in S} P_{i j}(a) \tilde{J}^{*}(j)
\end{aligned}
\end{aligned}
$$

Bellman equation in lisscoated MDP

$$
J^{*}(i)=\min _{a} \sum_{j} P_{i j}(a)\left(g\left(i_{c} a, j\right)+\alpha J^{*}(j)\right)
$$

So, from $(*) \quad J^{*}(i)=J^{*}(i)$ (amid $J=T J$ hay a undue focal \Rightarrow optical values coincide. point \rightarrow will be stone next)

Lechure-16*
Prop 1: (VI converges)
Assume (AI).
For any finite J, the optimal cost satisfies

$$
J^{*}(i)=\lim _{N \rightarrow \infty}\left(T^{N} \sigma\right)(i), \forall i
$$

Corollary: For a stationary policy π, we hove

$$
\begin{array}{r}
J_{\pi}(i)=\lim _{N \rightarrow \infty}\left(T_{\pi}^{N} J\right)(i), \forall i \text { for any } \\
\text { finite } J .
\end{array}
$$

Pf 7 Given a policy $\pi=\left\{\mu_{0}, \mu_{1}, \ldots\right\}$ and a state $i \in \mathbb{X}$,

$$
\begin{aligned}
& J_{\pi}(i)=\lim _{N \rightarrow \infty} E\left(\sum_{l=0}^{N-1} \alpha^{l} g\left(x_{l}, \mu_{l}\left(x_{l}\right), x_{l+1}\right)\right) \\
& =E\left(\sum_{l=0}^{1-1} \alpha^{l} g\left(x_{l}, \mu_{l}\left(x_{l}\right), x_{l+1}\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
+\underbrace{\lim _{N \rightarrow \infty} E\left(\sum_{l=L}^{N-1} \alpha^{l} g\left(x_{l}, \mu_{l}\left(x_{l}\right), x_{l+1}\right)\right)}_{\operatorname{term} B} \tag{1}
\end{equation*}
$$

Since $|g(\cdot, \cdot, \cdot)| \leq M$ by assumption,

$$
\begin{align*}
& |\operatorname{term} B| \leqslant M \sum_{l=L}^{\infty} \alpha^{l}=\frac{M \alpha^{L}}{1-\alpha} \\
& E\left(\sum_{l=0}^{L-1} \alpha^{l} g\left(x_{l}, \mu_{l}\left(x_{l}\right), x_{l+1}\right)\right) \\
& -\frac{\mu_{\alpha} \alpha^{c}}{1-\alpha} \leq \operatorname{krmb} \leq \frac{\mu_{\alpha}{ }^{L}}{1-\alpha} \\
& =J_{\pi}(i)-\operatorname{term} B \\
& \begin{array}{l}
A=J_{\pi} \\
|C| \leq M
\end{array} \\
& \begin{array}{l}
J_{\pi}-\mu \leq A \leq J_{\pi}+\mu
\end{array} \\
& E\left(\alpha^{L} J\left(x_{L}\right)+\sum_{l=0}^{L-1} \alpha^{l} g\left(x_{l}, \mu_{l}\left(x_{l}\right), x_{l+1}\right)\right) \\
& \text { Aldathin to } \\
& =J_{\pi}(i)-\operatorname{tarm} B+E\left(\alpha^{L} \sigma\left(x_{L}\right)\right) \\
& \text { boh sits }
\end{align*}
$$

Usif (2),

$$
\begin{align*}
& \leq E\left(\alpha^{1-\alpha} J\left(x_{L}\right)+\sum_{l=0}^{L-1} \alpha^{l} g\left(x_{l}, \mu_{l}\left(x_{l}\right), x_{l+1}\right)\right) \tag{1}\\
& \leqslant \sigma_{\pi}(i)+\frac{M_{\alpha} L}{1-\alpha}+\alpha^{L} \max _{\delta \in K}|J(j)| \tag{3}
\end{align*}
$$

Taking minimum over π on all sides of (3), we obtain $\forall i \in X$ and any $L>0$ that

$$
\begin{align*}
& J^{*}(i)-\frac{M \alpha^{L}}{(-\alpha}-\alpha^{L} \max _{j \in X}(J(j)) \\
& \leq\left(T^{L} J\right)(i) \longrightarrow \text { bicase } \min _{\pi} T_{\pi}^{L}=T^{L} \\
& \leq J^{*}(i)+\frac{M \alpha^{L}}{1-\alpha}+\alpha^{L} \max _{j \in X}|J(j)| \text { - (4) }
\end{align*}
$$

Taking $L \rightarrow \infty$ on all sites of (4), we obtain (Note: $\alpha \in(0,1))$

$$
T^{*}(i) \leqslant \lim _{L \rightarrow \infty}\left(T^{l} J\right)(i) \leq J^{*}(i)
$$

\& the claim follows.

Corollary: The claim follows by considering an MDP where the only feasible action in a stat is $\pi(i), \forall i$, ad invoke Prop 1 . (Note $T=T_{\pi}$ for his MDP).

Prop 2: (Bellman equation)
The optimal discounted cost J^{*} satisfies

$$
\begin{gathered}
J^{*}=T T^{*}, \text { ie., } \\
T^{*}(i)=\min _{a} \sum_{j} P_{i j}(a)\left(g(i, a, j)+2 T^{*}(j)\right)
\end{gathered}
$$

Also, g^{*} is the unique fined point of T.
P\&) Eq (4) in the proof above is

$$
\begin{align*}
& J^{*}(i)-\frac{M \alpha^{L}}{(-\alpha}-\alpha^{L} \max _{j \in X}(J(j)) \\
& \leq\left(T^{L} J\right)(i) \\
& \leq J^{*}(i)+\frac{M \alpha^{L}}{1-\alpha}+\alpha^{L} \max _{j \in X}|J(j)| \tag{5}
\end{align*}
$$

Applyig operator T on all sides,

$$
\begin{align*}
& \left.\left.T J^{*}(i)-\frac{M \alpha^{L+1}}{1-\alpha}-\alpha^{L+1} \max _{j \in X} \right\rvert\, J(j)\right) \leq\left(T^{L+1} J\right)(i) \tag{i}\\
& \leq T J^{*}(i)+\frac{M \alpha^{L+1}}{1-\alpha}+\alpha^{L+1} \max _{j \in X}|J(j)| \text { con conc d shit } \\
& \text { limens. }
\end{align*}
$$

Taking $L \rightarrow \infty$ on all sites of the equation above,

$$
T J_{(i)}^{*}=J^{*}(i), \forall i \Rightarrow \begin{aligned}
& J^{*} \text { is a fixed } \\
& \text { point of } T
\end{aligned}
$$

Uniqueness: Let T^{\prime} be another fined point of T.

$$
J^{\prime}=T J^{\prime}=T^{2} J^{\prime}=\ldots . .=\lim _{u \rightarrow \infty} T^{N} J^{\prime}=J^{*}
$$

$\therefore T$ has a unique fined point
Corollary!: For a stationary policy π, the allocicted cost J_{π} satisfies

$$
\begin{gathered}
J_{\pi}=T_{\pi} J_{\pi}(0 r) \\
J_{\pi}(i)=\sum_{j} p_{i j}(\pi(i))\left(g(i, \pi(i), \dot{j})+\alpha J_{\pi}(j)\right),
\end{gathered}
$$

Also, J_{π} is the curque fined point of T_{T}.
Pf) Follows from Prop 2 .

Necessary \& sufficient condition for optimal policy:
Prop 3: A stationary poling π is optimal if and only if
$\pi(i)$ attains the minimum in the Bellman equation, $\forall i \in X$. Or, equivalently,

$$
\begin{equation*}
T J^{*}=T_{\pi} J^{*} \tag{1}
\end{equation*}
$$

Pf) Assume $T J^{*}=T_{\pi} J^{*}$
w. know $5^{*}=T J^{*}$

$$
\begin{equation*}
J^{*}=T_{\pi} J^{*} \tag{2}
\end{equation*}
$$

$\Rightarrow J^{*}=J_{\pi} \Rightarrow \pi$ is optimal
Converse: π is optimal

$$
\begin{equation*}
\Rightarrow T^{*}=J_{\pi} \Rightarrow T^{*}=T_{\pi} J^{*}-D^{\prime} \tag{2}
\end{equation*}
$$

From $B E, \quad J^{*}=T J^{*}$

$$
T^{\prime}+Q^{\prime} \Rightarrow T_{\pi} J^{*}=T T^{*}
$$

Contraction property of T ad T_{π} :
Max-norm: $\quad\|J\|_{\infty}=\max _{i=1 \ln }|J(i)|$
we will show that T, T_{π} are α-contractions. in $\|\cdot\|_{\infty}$.
$\Longrightarrow T$ is a contraction in $\|$. $\|_{\text {so }}$-norm with modulus α
Prop 4: For any two bounded J, J^{\prime}, and $\forall k \geqslant 1$

$$
\begin{equation*}
\left\|T^{k} J-T^{k} J^{\prime}\right\|_{\infty} \leqslant \alpha^{k}\left\|J-J^{\prime}\right\|_{\infty} \tag{*}
\end{equation*}
$$

\rightarrow modulus of contraction
Pf: Let $c=\max _{i=1-n}\left|J(i)-J^{\prime}(i)\right|$

$$
\begin{equation*}
J(i)-C \leq J^{\prime}(i) \leq J(i)+C \tag{1}
\end{equation*}
$$

Apply T " k "times or all sises of (1) to get

$$
\begin{aligned}
& \text { hold } \begin{aligned}
\neq i
\end{aligned} \quad\left(T^{k} J\right)(i)-\alpha^{k} c \leq\left(T^{k} J^{\prime}\right)(i) \leq\left(T^{k} \tau\right)(i)+\alpha^{k} c \\
& \Rightarrow\left|\left(T^{k} J\right)(I)-\left(T^{k} J^{\prime}\right)(i)\right| \leq \alpha^{k} c, \nLeftarrow i \\
& \max _{i=1 \ldots n}\left|\left(T^{k} J\right)(i)-\left(T^{k} J^{\prime}\right)(i)\right| \leq \alpha^{k} c \\
& \Rightarrow \quad\left\|T^{k} J-T^{k} J^{\prime}\right\|_{\infty} \leq \alpha^{k}\left\|\tau-J^{\prime}\right\|_{\infty}
\end{aligned}
$$

Corollary: For any stationary $\pi \&$ bounded J, J^{\prime}, and $\forall k \geqslant 1$

$$
\left\|T_{\pi}^{k} J-T_{\pi}^{k} J^{\prime}\right\|_{\infty} \leq \alpha^{k}\left\|J-J^{\prime}\right\|_{\infty}
$$

Value Infection: Stat with 5_{0} \& repeatedly apply T. Error-boud for VI:

$$
\left\|T^{k} J_{0}-J^{*}\right\|_{\infty} \leq \alpha^{k}\left\|J_{0}-J^{*}\right\|_{\infty}
$$

Who? Set $J^{\prime}=J^{*}$ in $(*)$ \& note $T^{k} J^{*}=J^{*}$.

Example: Machine replacement

Recall n-states 1..n
Operatic cost $g(i)$

$$
g(1) \leq g(2) \cdots \leqslant \ln (n)
$$

$P_{i j} \rightarrow$ transition probabilites (donothoy action)
actions: do nothing \& repair (Repair cost R)
Goal: minimize infinite horizon discounted coot ($\alpha<$ discount factor)

Bellman equation: $\quad J^{*}(i)=T J^{*}(i)=\min _{a} E(g(i, a, j)+$ $\left.\alpha{ }^{N}(j)\right)$

$$
\begin{aligned}
& J^{*}(i)= \min \left\{\frac{R+g(1)+2 J^{*}(1)}{r(p a i r},\right. \\
&\underbrace{g(i)+\alpha \sum_{\delta=1}^{n} p_{i j} J^{*}(i)}_{\text {do nothing }}\}
\end{aligned}
$$

Opting action: repair if

$$
R+g(1)+\alpha J^{*}(1)<g(i)+\alpha \sum_{j=1}^{n} p_{i j} g^{*}(j)
$$

\& "do nothing" otherwise

Assume. (31) $P_{i j}=0$ if $\hat{j}<i \leftarrow \begin{gathered}\text { mochese wor't get } \\ \text { veter if we doat }\end{gathered}$ ruair
(12) $P_{i j} \leqslant P_{(i+1) j}$ if $i<j \in \begin{aligned} & e \cdot g \cdot j=10 \\ & P_{5,0} \leqslant P_{8,10}\end{aligned}$

Suppose J is monotone non-decreony, i.e.,

$$
J(1) \leq J(2) \cdots \leqslant J(n)
$$

Then,

Since $g(i)$ is non-decreariy, we have
$(T J)(i)$ is non-decreating in i, it J is non-decreasing. Since $T J(i)=\min \left(R+g(i)+\alpha J^{*}(i)\right.$,

$$
\left.g(i)+\alpha \sum p_{i z} S(i)\right)
$$

$\Rightarrow\left(T^{k} J\right)(i)$ is non-decreasiy in $i, \forall k$
$\Rightarrow \quad \lim _{k \rightarrow \infty} T^{k} J(i)=J^{*}(i)$ is nor-decreatif in i
So, the function $g(i)+\alpha \sum_{j ; i=1} P_{i j} J^{*}(j)$ is non-decresirg in i

Set of slates $\left.S_{R}=\{i \mid R+g(1)+\alpha)^{*}(1) \leq 10 \sum_{j} P_{i j} \tau^{*}(j)\right\}$

$$
\sum_{j=1}^{n} P_{i j} J(j) \leqslant \sum_{j=1}^{n} P_{(i+1) j} J(j) \text {, }
$$

$n=3, \quad i=1, \quad i+1=2 \quad T(j \underline{E}$.

$$
\begin{aligned}
& P_{11}+P_{12}+P_{13}=1 \quad P_{i j}=0 \text { if } j<i \\
\leqslant & P_{21}+P_{22}+P_{23}
\end{aligned}=1
$$

$$
P_{11} J_{1}+P_{12} J_{2}+P_{13} J_{3}
$$

$$
J_{1} \leq J_{2} \subseteq J_{3}
$$

$$
P_{11}+P_{12}+P_{13}=1
$$

$$
\begin{aligned}
& \leq P_{22} J_{2}+P_{23} J_{3} \\
& \quad P_{11} J_{1}+P_{12} J_{2}+P_{13} J_{3} \\
& \leq P_{11} J_{2}+P_{12} J_{2}+P_{13} J_{3}
\end{aligned}
$$

$$
P_{22}+P_{23}=1
$$

$$
\begin{aligned}
P_{11} J_{1} & \subseteq\left(P_{22}-P_{12}\right) J_{2}+\left(P_{23}-P_{13}\right) J_{3} \\
\left(P_{22}-P_{12}\right) I_{1}+\left(P_{23}-P_{13}\right) J_{1} & \subseteq \frac{\left(P_{22}-P_{12}\right) J_{2}+\left(P_{23}-P_{13}\right) J_{3}}{R N S} \\
P_{11} J_{1} & \leqslant \frac{R}{l}
\end{aligned}
$$

$S_{R}=$ set of states where it is optimal to repair

$$
i^{*}=\left\{\begin{array}{cl}
\text { smallest state in } S_{R} & \text { if } S_{R} \neq \phi \\
n+1 & \text { else }
\end{array}\right.
$$

H.W. Think about poling iteration for this problem. In paticulor, if we stat with a threshold-besed policy \& do policy improvement, then does it las to another threshold poling?
If yes, then PI converges to optical policy in at most n ikralites.

Illustrative example for VI:
MD $\quad B=\{1,2\} \quad A=\{a, b\}$

$$
\begin{aligned}
& P(a)=\left[\begin{array}{ll}
P_{11}(a) & P_{12}(a) \\
P_{21}(a) & P_{22}(a)
\end{array}\right]=\left[\begin{array}{ll}
3 / 4 & 1 / 4 \\
3 / 4 & 1 / 4
\end{array}\right] \\
& P(b)=\left[\begin{array}{ll}
P_{11}(b) & P_{12}(b) \\
P_{21}(b) & P_{22}(b)
\end{array}\right]=\left[\begin{array}{ll}
1 / 4 & 3 / 4 \\
1 / 4 & 3 / 4
\end{array}\right]
\end{aligned}
$$

Costs: $\quad g(1, a)=2, \quad g(1, b)=0.5$

$$
g(z a)=1, \quad g(2, b)=3
$$

discount $\alpha=0.9$

$$
\begin{aligned}
& J_{0}=(0,0) \\
& (T J)(i)=\min \left\{g(i, a)+\alpha \sum_{j=1}^{2} p_{i j}(a) J(j),\right. \\
& \left.\quad g(i, b)+\alpha \sum_{j=1}^{2} p_{i j}(b) J(j)\right\} \\
& J_{1}=T J_{0}=(0.5,1) \\
& J_{2}=(1.28,1.56)
\end{aligned}
$$

s So on.

PI algorithm:
step 1: Start with policy π_{0}
Step 2: Evaluate π_{k}, ie., compute J_{π}
(Policy Evaluation) by solving ${ }^{k}$, ire., $=T_{\pi_{k}} J$

$$
\Leftrightarrow J(i)=\sum_{j} p_{i j}\left(\pi_{k}(i)\right)\left(g\left(i, \pi_{k}(i), j\right)+\alpha J(j)\right), \rightarrow \infty
$$

There $J(1) \ldots J(n)$ ore the menkowns f

$$
\text { solving }(*) \text { given } J_{\pi_{k}} \text { ? }
$$

Step 3: Policy imporemat
Find a new policy π_{k+1} by

$$
\begin{gathered}
T_{\pi_{k+1}} \tau_{\pi_{k}}=T \tau_{\pi_{k}} \\
\Leftrightarrow \pi_{k+1}(i)=\underset{a \in A(i)}{\arg \min _{a}} \sum_{j} P_{i j}(a)\left(g(i, a, j)+\alpha \sigma_{\pi_{k}}(j)\right)
\end{gathered}
$$

If $J_{\pi_{k+1}}(i)<J_{\pi_{k}}(i)$ for at least one state i, them go to stop $2 \&$ rect.

Remark: Policy improvemat claim holds even in the discounted sating.

Policy improvemat claim:
Let π, π^{\prime} be two
policies s.t.

$$
T_{\pi^{\prime}} \tau_{\pi}=T J_{\pi}
$$

Then, $\quad J_{\pi^{\prime}}(i) \leq J_{\pi}(i) \quad \forall i$
with strict inequality for at least one of the states if π is not optimal.

Pf: Follous by a paralld argument to the proof in SSP case.

Lecture - 17

PI example:

$$
\begin{aligned}
& S=\{1,2\}, A=\{a, b\} \\
& P(a)=\left[\begin{array}{ll}
P_{11}(a) & P_{12}(a) \\
P_{21}(a) & p_{22}(a)
\end{array}\right]=\left[\begin{array}{ll}
3 / 4 & 1 / 4 \\
3 / 4 & 1 / 4
\end{array}\right] \\
& P(b)=\left[\begin{array}{ll}
P_{11}(b) & P_{12}(b) \\
P_{21}(b) & p_{22}(b)
\end{array}\right]=\left[\begin{array}{ll}
1 / 4 & 3 / 4 \\
1 / 4 & 3 / 4
\end{array}\right]
\end{aligned}
$$

Costs: $\quad g(1, a)=2, \quad g(1, b)=0.5$

$$
g(z a)=1, \quad g(2, b)=3
$$

discount $\quad \alpha=0.9$

Initialization! $\quad \pi_{0}(1)=a, \quad \pi_{0}(2)=b$
Policy evaluation:
Finding $J_{\pi_{0}}$:
3 Two equations in too whawant $J_{\pi_{0}}(1) \& J_{\pi_{0}}(2)$

$$
\left\{\begin{array}{l}
J_{\pi_{0}}(1)=g(1, a)+\alpha P_{11}(a) J_{\pi_{0}}(1)+\alpha P_{, 2}(a) J_{\pi_{0}}(2) \\
J_{\pi_{0}}(2)=g(2, b)+\alpha P_{I_{1}}(b) J_{\pi_{0}}(1)+\alpha P_{22}(b) J_{\pi_{0}}(2) \\
\text { WHig MDP data, we have } J_{\pi_{0}}=T_{\pi_{0}} J_{\pi_{0}}
\end{array}\right.
$$

$$
\begin{aligned}
& J_{\pi_{0}}(1)=2+0.9 \times \frac{3}{4} \times J_{\pi_{0}}(1)+0.9 \times \frac{1}{4} \times J_{\pi_{0}}(2) \\
& J_{\pi_{0}}(2)=3+0.9 \times \frac{1}{4} \times J_{\pi_{0}}(1)+0.9 \times \frac{3}{4} \times J_{\pi_{0}}(2)
\end{aligned}
$$

Solving, $\quad J_{\pi_{0}}(1)=24.12, \quad J_{\pi_{0}}(2)=25.96$
Policy improvement:

$$
\begin{aligned}
& T_{\pi_{1}} J_{\pi_{0}}=T J_{\pi_{0}} \\
\left(T J_{\pi_{0}}\right)(1)= & \min \{\underbrace{2+0.9\left(\frac{3}{4} \times 24.12+\frac{1}{4} \times 25.96\right.}_{a c t i o n a}), \\
& \left.\left.\frac{0.5+0.9\left(\frac{1}{4} \times 24.12+\frac{3}{4} \times 25.96\right.}{0.0}\right)\right\} \\
& =\min \{24.12,23.45\}=23.45 \text { action } b
\end{aligned}
$$

$$
\begin{aligned}
& \left(T J_{\pi_{0}}\right)(2)=\underbrace{\min \left\{1+0.9\left(\frac{3}{4} \times 24.12+\frac{1}{4} \times 25.96\right.\right.}_{\text {action }}), \\
& \mathbb{N}_{1}^{0} \underbrace{3+0.9\left(\frac{1}{4} \times 24.12+\frac{3}{4} \times 25.96\right)}_{\text {action b }}\} \\
& =\min \{23.12,25.95\}=23.12 \text { Faction } a \\
& \pi_{1}(1)=b, \quad \pi_{1}(2)=a
\end{aligned}
$$

Policy evaluation: $\sum_{\pi_{1}}$?

$$
J_{\pi_{1}}(1)=7.33 \quad, \quad J_{\pi_{1}}(2)=7.67
$$

Policy improvement: $T_{\pi_{2}} J_{\pi_{1}}=T J_{\pi_{1}}$

$$
\pi_{2}(1)=b \quad, \quad \pi_{2}(2)=a
$$

So, stop \& output $\pi_{2} \longrightarrow$ optimal policy ${ }_{2}$

Linear programming
Want to solve $J^{\infty}=T J^{*}$

Idea: is to form a linear optimization problem whose solution is J^{*}

J^{*} is the largest solution that Satisfies $J \leq T J$

Optimization problem:

$$
x \leq \min _{y \in y_{1}, y_{k}} f(y)
$$

$$
x \leq f\left(y_{1}\right)
$$

$$
x \leq f\left(y_{2}\right)
$$

g for simplicity, a slue sigh stage cont dounn't dead on nentishat.

So, the LP formulation is:

> constraint $s: \tau \leq T J$
> objective: mar J

Variables: $\lambda_{1}, \ldots \lambda_{n}$
Objective: $\max \sum_{i} \lambda_{i}$
subject to

$$
\begin{aligned}
& j \leqslant T_{\text {costhint }} \quad\left\{\lambda_{i} \leqslant g(i, a)+\alpha \sum p_{i j}(a) \lambda_{j}\right. \text {, } \\
& \text { for } i=1, \ldots n \text {, ad } \\
& a \in A(i)
\end{aligned}
$$

Hemal! Attiring $A(i)=\& \not \approx: \quad|A|=q$, we hare $n \times q$ constraints in the $L P(*)$
\# variables $=n \in$ Cardinality of the state space

On problems with a large state space, $L P$ is not practical.

Remark! Can we LP approach for solving SSP as wall.
H.W.: Write down the LP for the I-state 2 -action example used for VI/ PI above.

