Infinite-horizon MDPs Lecture 5" (contd) MDP components: state space &, action space Ar, $E_{\text{fprecked light}} = \lim_{\substack{n \neq h \\ n \neq h}} \frac{1}{2} \lim_{\substack{n \neq h \\ n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \\ n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \\ n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{1}{2} \lim_{\substack{n \neq h \atop n \neq h \end{pmatrix}} \frac{$ policy TT = { Mo, Mi, Mar - - - - 3 "stationary" discount factor 2 € (0,1] God: J(x) = nin J(x) optind repected cast TET _____ sut of admissible policies Let $\tau \tau^* = arg_{\tau} nin \mathcal{D}_{rr}(x_0)$ $\gamma \qquad \tau \in \mathbf{TT}$ Two popular MDPs! (I) Stochastic shortest path (SSP) are episodic MDPs (a) d=1 (b) Finite state - action space stake= \$1,...n3U\$T3 (c) There exist a special state, say "I that is cost-free g(T, a, T)=0, Va absorbing PTT(a)=1, Va action

(II) Des counted MOP (a) 2 < 1 (b) $|q(i,a,j)| \leq m < \infty \quad \forall i, \delta \in \mathbb{X}, a \in \mathbb{A}$ (a) $L(b) = \int_{T} (x_0) is finite.$ (II) Average- Lost MDP : skipped (see Unopter 5 of VolI, DPOC book) Main resulti: (I) Taking finite horizon to the limit Let $J_{N}^{*}(i)$ be the optimal expected both of a "N-stage" finite horizon MDP, with initial state i & stationary cast g(i,a,j) Then, the infinite horizon optimal expected cost J* is given by $\mathcal{J}_{N}^{\star}(i)$ $\mathcal{J}^{*}(i) =$ Lim N-100 Finite horizon optimal last Infinite honzon optial bot

Bellman equation Assure X= Ela-n3, transition prob. p. (a) (\mathbb{T}) N-stage problem, with J^M denoting the cost, the DP algorithm is For a ophind γ oppinal Cost in ophinal cast optime ze action a (++1)-stage for a k-stope intre current likege problem problem In the infinite horizon, the optical cost It satisfies $\mathcal{J}^{\star}(i) = \min_{\substack{\alpha \in \mathcal{A}(i) \\ \alpha \in \mathcal{A}(i)}} \frac{n}{\delta^{2}} P_{i}(\alpha) \left(g(i, \alpha, j) + d \mathcal{J}^{\star}(j) \right)$ Bellman $\mathcal{D}^{\star}(i) = \min_{\substack{a \in \mathcal{L}(i)}} E_{i}\left[g(i,a,i) + 2\mathcal{D}^{\star}(i)\right] \forall i$ DP algorithm is an algorithm, while Bellinen equation is a system of equits. That the optimal cost setisfies. (3) How to get the optimed policy of? For state i, Let ath (i) be the minimizer in the Bellue equation

Proper policiu: costr = 1Shortest path problem Improper policy: 600p botween 122 Expected cort = 00. Proper policy ! hoto T from 1 fr also 2. Stationary policy: TI: 8-2Ar which takes the same action, say a, in a state i, irrespective of the stage k in the intrinite horizon TT= (μ,μ,). So, we identify the stationer policy with a mapping from & to A. Pek: A stationary policy TT is proper if Im 70 en ax $P(i \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $TT = i_{i=1---n}$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $P(i_1 \neq T) < 1$ $P(i_1 \neq T(i_0 = i, TT) < 1$ $P(i_1 \neq T) < 1$ $P(i_$ pos. prob. path from any slak & to the terminal state. Proper poliny! 7 a A policy that isn't proper is improper (i.e., $e_{\tau_1}=1$) Assumptions: (AI) There exists at least one proper policy. (A2) For every improper policy II, the ensociated expected bot J_{TT} (i) is infinite for at least one State i.

Then, for any
$$k = 1, 2, \dots$$

(i) $(T^{k}J)(i) \leq (T^{k}J')(i)$, and
(ii) For any stationary policy T ,
 $(T^{k}J)(i) \leq (T^{k}J')(i)$
FF: $(TJ)(i) = him \sum_{\substack{k \in X \\ n \neq k}} P_{i}(\alpha) (g(i, \alpha, \beta) + J(\beta))$
 $\leq him \sum_{\substack{k \in X \\ n \neq k}} P_{i}(\alpha) (g(i, \alpha, \beta) + J(\beta))$
 $\leq him \sum_{\substack{k \in X \\ n \neq k}} P_{i}(\alpha) (g(i, \alpha, \beta) + J'(\beta))$
 $= (TJ^{1})(i)$.
How complet the rule of the proof uping induction.
How complet the rule of the proof uping induction.
How to he proof for T_{TT} .
Another (runna! (constat-shift lemm)
Stationary T , $S \Rightarrow any$ scalar, $e \Rightarrow vector g n and$.
Then, $\forall i = 1, n$, $\forall k = 1, 2, \dots$, we have
(T) $(T^{k}(J + Se))(i) \leq (T^{k}J)(i) + \delta$
(`i) $(T^{k}_{TT}(J + \delta c))(i) = (T^{k}_{TT}J)(i) + \delta$.
(`i) $(T^{k}_{TT}(J + \delta c))(i) = (T^{k}_{TT}J)(i) + \delta$.

$$J \ge T_{\Pi}^{k} J = P_{\Pi}^{k} J + \sum_{m \ge 0}^{m} P_{\Pi}^{m} \partial_{\Pi} \left(\begin{array}{c} From eqc}{r_{prop}} \\ From eqc} \\ T_{\mu} T is not proper, then
$$J_{\Pi} = \lim_{k \to \infty} \sum_{m \ge 0}^{k} P_{\Pi}^{m} \partial_{\Pi} \quad diverges$$
Two lead to a contradiction since $J \ge \lim_{m \ge 0} T_{\Pi}^{m} J = J_{\Pi}^{m}$

$$\frac{From T_{\Pi}}{r_{\mu}} J = \int_{m \ge 0}^{m} P_{\Pi}^{m} \partial_{\Pi} \quad diverges$$
Two lead to a contradiction since $J \ge \lim_{m \ge 0} T_{\Pi}^{m} J = J_{\Pi}^{m}$

$$\frac{From T_{\Pi}}{r_{\mu}} J = J_{\Pi}^{m} \quad for f = J_{\Pi}^{m} J = J_{\Pi}^{m}$$

$$\frac{From T_{\Pi}}{r_{\mu}} J = J_{\Pi}^{m} \quad for f = J_{\Pi}^{m} J = J_{\Pi}^{m}$$

$$\frac{From T_{\Pi}}{r_{\mu}} J = J_{\Pi}^{m} \quad for f = J_{\Pi}^{m} J = J_$$$$

Lecture -11th "Assume all politice are proper".
We will show that the Bellman optimality operator T
St a contraction w.r.t. a weighted mare norm.
In particular, J a vector
$$S = (S(i), \dots, S(n))$$

S.F. $S(i)?0$ $\forall ield n n n and a scalar $0 < e < 1$
Such that modules of contraction
 $\|TJ - T\overline{J}\|_{S} \leq C \||J - \overline{J}\|_{S}, \forall J, \overline{J} \in \mathbb{R}^{2}$
Here $\|J\|\|_{S} = \max |J(i)|$ weighted mare norm of the
 $\|TJ - T\overline{J}\|_{S} \leq C \|J - \overline{J}\|_{S}, \forall J, \overline{J} \in \mathbb{R}^{2}$
Here $\|J\|\|_{S} = \max |J(i)|$ weighted mare norm of the
 $\|TJ - T\overline{J}\|_{S} \leq C \|J - \overline{J}\|_{S}, \forall J, \overline{J} \in \mathbb{R}^{2}$
 $\|I, T - T\overline{J}\|_{S} \leq C \|J - \overline{J}\|_{S}, \forall J, \overline{J} \in \mathbb{R}^{2}$
 $\|T, J - T_{T}\overline{J}\|_{S} \leq C \|J - \overline{J}\|_{S}, \forall J, \overline{J} \in \mathbb{R}^{2}$
 $\mathbb{P}E^{2}$ Need: a vector S such that T is a contraction with $\|I\|_{S}$
 $\mathbb{P}E^{2}$ Need: a vector S such that T is a contraction with $\|I\|_{S}$
 $\mathbb{P}E^{2}$ Need: a vector S such that T is a contraction below.
 $Consider a new SSP$ with Same $P_{1:S}(n)$, $W_{1:S}(n)$
 $her, different transition costs.$
 $Transition costs.$$

..... Mixt! to show that T is a conhaction wit. Il-llg from the hove shown already that $(T_{\pi} \mathcal{I})(i) \leq (T_{\pi} \mathcal{I})(i) + \mathcal{C} \mathcal{I}(i) \max [\mathcal{I}(i) - \mathcal{I}(i)]$ Salan B(j) Take nunimum over TT on both sides to obtain $(TJ)(i) \leq (T\overline{J}(i) + C \xi(i) \max |J(i) - \overline{J}(i)|)$ $\delta^{2l-n} \overline{\xi(i)}$ Interchange J& J to obtain $(T\overline{J})(i) \in (T\overline{J}(i) + C \ \xi(i) \max | J(i) - \overline{J}(i)|$ $\delta^{2l-n} \ \overline{\xi(i)}$ $\left| (TJ)(i) - (TJ)(i) \right| \leq C \quad S(i) \quad \max \quad |J(i) - \overline{f}(i)| \\ \frac{\delta^{2l-n}}{\delta^{2l-n}} \quad \overline{g(i)}$ $\max_{\Gamma_{2}(-n)} \left[(TJ)(i) - (TJ)(i) \right] \leq C \max_{\delta_{2}(-n)} \left[J(j) - \overline{J}(j) \right]$ S(i) p_{r} , $\|TT - T\bar{T}\|_{\xi} \leq e \|T - \bar{T}\|_{\xi}$ Tip a contraction with II. Ily with Thw, modulus P.

Vector space K.
Norm IIII babistic 3 properties:
(i) IIX + JII = VXII + IIYII,
$$\forall x, y \in K$$
. Tringle raphy
(ii) IIX + JII = VXII + IIYII, $\forall x, y \in K$. Tringle raphy
(iii) IIX + JII = VXII + IIYII, $\forall x \in K$ 4 solar c.
Contraction mapping:
The F: $K \to K$ is a contraction mapping if
 $\exists e \in (0,1)$ S.f.
II $f(x) - f(y)II \leq e ||x - JII|$, $\forall x, y \in K$.
The space K is complete under the norm $|| \cdot II = if$
every Couchy sequence $i x_k i \in K$ converges.
A sequence $f x_k i = k$ (auchy $f \notin F = H = e.t.$
 $V = -x_i II \leq e \forall m, n \geq N$
Facts (i) If K is complete & F in - Contraction
wrt K · II with modules l , then
"F has a unique freed point i.e. raph"
(ii) $x_{k+1} = F(x_k)$. Then
 $x_k \to \infty$.

Contraction mappings in MDPs: (Krs: Sec 1. S of PPOC-UCE). $\frac{\|J\|}{s} = \frac{\max}{x \in \mathcal{X}} \frac{|J(x)|}{s(x)}$ ey & (2)=1 +2 mm, 1711 = 171100). 1/ ~ Sup-norm or more norm where $\xi(x) > 0 \quad \forall x \in \mathcal{X}$. B(X) denote all functions J s.t. IIJIL<00. Let Simple Conc! finite state Space. Prop 3° Let F: B(X) -> B(X) be a contraction mapping with modulus l E (0,1). Assume B(X) is complete. Then, (i) There exists a unique J* EB(&) set. $\mathcal{I}^{\star} = \mathcal{F} \mathcal{I}^{\star}$ VI Converges (asymptotically) (ii) $\lim_{k \to \infty} F^k \mathcal{J}_0 \stackrel{\checkmark}{=} \mathcal{J}_0^* for any \mathcal{J}_0 \in \mathcal{B}(\mathcal{G})$ $A_{40}, \|F^{\dagger}J_{0} - J^{\star}\|_{\xi} \leq e^{\xi}\|J_{0} - J^{\star}\|_{\xi}$ error bound for VI That holds YKZI PF: See next page

Fix some JEB(8). Do .JKHI = FJE starting with Jo $\| \mathcal{J}_{k+1} - \mathcal{J}_{k} \|_{S} = \| \mathcal{F} \mathcal{J}_{k} - \mathcal{F} \mathcal{J}_{k+1} \|_{S} \leq C \| \mathcal{J}_{k} - \mathcal{J}_{k-1} \|_{S}$ Fila l- contraction $\|\mathcal{T}_{k+1} - \mathcal{T}_{k}\|_{q} \leq e^{k} \|\mathcal{T}_{1} - \mathcal{T}_{0}\|_{q} - (\alpha)$ =) So, YEZO, MZI, we have Telescoping sum $\| \mathcal{J}_{k+m} - \mathcal{J}_{k} \|_{\varsigma} = \| \mathcal{O}_{k+m} - \mathcal{J}_{k+m-1} - \mathcal{J}_{k+m-2} - \mathcal{$ $+ - - - - + (J_{r+1} - J_{r}) h_{g}$ $D^{\text{red}} \xrightarrow{\mathcal{I}} \sum_{i=1}^{m} \| \mathcal{I}_{k+i} - \mathcal{I}_{k+i-1} \|_{\xi}$ $wig^{(x)} \rightarrow (e^{k}(1+(e^{2}+\cdots+e^{m-i})||\mathcal{I}_{i}-\mathcal{I}_{o}||_{g})$ $\|\mathcal{J}_{\text{Ffm}} - \mathcal{J}_{\text{E}}\|_{\xi} \leq \frac{e^{\text{E}}}{1 - e} \|\mathcal{J}_{1} - \mathcal{J}_{2}\|_{\xi} \qquad (\neq \ast)$ Is $\{\mathcal{J}_{k}\}\$ a Couchy sequence ? Yes. (rate $\mathcal{H} ts \leq \mathcal{E}$) in (rate) Since B(S) is complete, $T_{k} \rightarrow J^{*}$ and $J^{*} \in B(X)$. $f \rightarrow J^{*}$ is only a limit of $VI \neq J^{*}$.

It can be shown that FQ ka contraction mapping when all yolicies are proper So, VI for Q-Bellman equation is start with Q. (., .) & keep applying (FQ)(·,·) operator $Q \xrightarrow{F} Q \xrightarrow{F} - - - \xrightarrow{F} Q^*$ eventually Once you have 2, we can obtain J wig $\mathcal{J}^{(i)} = \min \mathcal{Q}^{(i)}$ Eq (D-3) is just VI on Q-values. PTO

Policy iteration (PI) VI can possibly take infinite # of iterations to conveye PI la method "guaranteed" to converge within a finite It of iterations for finite state action spaced MDPs. PI: Poling Evaluation ر) ۳۲ TT 1241 Policy improvemat $\mathcal{I}_{\pi} \geq \mathcal{I}_{\pi} - - - -$ inequilibrium shift into the shift one shift is the set of the se PI algorithm: step 23 Start with a proper policy TTo Step 2: Evaluate TIK j.e., compute JIT Junation by solving J= TITE (loligy Evaluation)

 $(\Rightarrow \mathcal{J}(i) = \sum_{ij} (\pi_{k}(i)) (g(i, \pi_{k}(i), j) + \mathcal{J}(j)) \rightarrow \mathcal{J}(j)$ (here $\mathcal{T}(1)$ - $\mathcal{T}(n)$ ure the unknowing the following the solving (\mathfrak{K}) given $\mathcal{T}_{\mathfrak{K}}$) Step 3° Policy improvement Find a new policy T_{k+1} by T_{m} by T_{k+1} by T_{k+1} by T_{m} by T_{m} If $J_{TT}(i) < J_{TT}(i)$ for at least one state i, then go to step 2 & repeat. Else, Stop. In This case, $\mathcal{D}_{TT} = \mathcal{D}_{TT} = \mathcal{D}_{TT} + \mathcal{D$ Remote in (Endig a poper policy to starting with proper policy to starting with proper policy to starting with a finite J& call goiz to Step 3 directly. That would give TT A from there on the stop 243 in tandem until Convergence.

To prove: IT is optimal it the inequality in (200) isn't strict for at least one state Now, \overline{ib} $\overline{J_{T}} = \overline{J_{T}}$, then from eqn (A), $\mathcal{I}_{\pi} = \mathcal{I}_{\pi'} \mathcal{I}_{\pi} - \mathcal{O}$ $T_{\Pi} T_{\Pi} = T T_{\Pi}$ by construction -(2) Ung O & D, we get $\mathcal{I}_{\pi} = \mathcal{I} \mathcal{I}_{\pi}$ =) IT is optimal since Tin the Bellinan operator, which has a unique fixed point Thus, if π is if toptimal, then $\mathcal{T}_{\pi'}(i) < \mathcal{T}_{\pi}(i)$ for at least one stat iClain! If the number of proper policies is finite, the PT converges in a finite number of steps. Why? Policy improvement quarates a better policy if the latter isn't optimal.

Modéfie 2 PI: Let {mo, m,, 3 be positive integers. Let J, J2, -- and TTo, TT, -- be computed as follows: Policy -> T J = T J -> on M PL improvement K - Approx. Policy lotion J J = T T J cvaluation by N Steps N = T T L n " Hnes by me steps of vI Two special Cases: If MR=1, Modified PI = VI $\mathcal{J}_{k+1} = \mathcal{T}_{\pi_k} \mathcal{J}_{\kappa} = \mathcal{T}_{\pi_k} \mathcal{J}_{\kappa} = \mathcal{T} \mathcal{J}_{\kappa}$ Recommended: Choose M >1 Convergence! Mostified PI converges "proof skipped" Sre Ch. 2 of Bertsekas DPOC-VolI

