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Chapter 1

Regret minimization in K-armed
bandits

1.1 The framework

Suppose we are given K arms with unknown distributions Pk, k = 1, . . . ,K.
The interaction of the bandit algorithm with the environment proceeds as follows:

Bandit interaction
For t = 1, 2, . . . , n, repeat

(1) Bandit algorithm selects an arm It ∈ {1, . . . ,K}.

(2) The environment returns a sample Xt from the distribution PIt corresponding
to the arm It.

Let µk denote the expected value of the stochastic rewards from arm k, for k = 1, . . . ,K.
The optimal arm is one that has the highest expected value, i.e., µ∗ = maxk=1,...,K µk.

The goal of the bandit algorithm is to maximize Sn =
∑n

t=1Xt. Notice that Sn is a random
variable (r.v.) and hence, has a distribution. So, a natural objective is to design an algorithm that
maximizes E(Sn).

The framework outlined above captures “exploration-exploitation dilemma”. To elaborate,
in any round the bandit algorithm can choose to either explore by pulling an arm to estimate its
mean reward, or exploit by pulling an arm that has the highest estimated mean reward. Notice that
the rewards are stochastic, i.e, each arm has a reward distribution with a mean and certain spread.
Since the bandit algorithm does not know the arms’ reward distributions, it has to estimate the
mean rewards though sampling and the sampling has to be adaptive, i.e., in any round, based on
the samples obtained so far, the bandit algorithm has to adaptively decide which arm to pull next.
A bandit algorithm that explores too often would end with a lower expected value for the total
reward Sn. On the other hand, an algorithm that does not sample the individual arms enough
number of times to be confident about their mean rewards would end up pulling a sub-optimal
excessively in the exploit stage and this would again lead to a low Sn in expectation. Thus, the
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2 Chapter 1 Regret minimization in K-armed bandits

need is for an algorithm that explores just enough to discard the bad arms (i.e., those with low
mean rewards) and zeroes in on the best arm at the earliest. The notion of regret that we define
next formalizes the exploration exploitation dilemma.

Regret

The cumulative regret Rn incurred by a bandit algorithm is defined as follows:

Rn = nµ∗ − E

(
n∑
t=1

Xt

)
.

The following lemma gives a useful alternative form for the regret Rn.

Lemma 1.1.

Rn =

K∑
k=1

E[Tk(n)]∆k,

where Tk(n) =
∑n

t=1 I {It = k} is the number of times arm k is pulled up to time n and
∆k = µ∗ − µk denotes the gap between the expected rewards of the optimal arm and of arm k.

From the form for regret in the lemma above, it is apparent that the contribution to regret
from pulls corresponding to optimal arm is zero, since the gap ∆a∗ corresponding to optimal
arm a∗ = arg maxi=1,...,K µi is zero. Thus, a bandit algorithm incurs regret only by pulling
suboptimal arms. However, the mean rewards for each arm has to be estimated and hence the
challenge is to balance estimating the mean rewards well-enough (exploration) and minimizing
regret by pulling optimal arm (exploitation) and this dilemma is captured by the notion of regret.

Proof. Notice that

Sn =
n∑
t=1

Xt =
n∑
t=1

K∑
k=1

XtI {It = k} ,

where we have used the fact that
∑K

k=1 I {It = k} = 1. So,

ESn =

n∑
t=1

K∑
k=1

E (XtI {It = k})

=

n∑
t=1

K∑
k=1

E (E (XtI {It = k} | It)) . (1.1)

The conditional expectation inside the summation above can be simplified as follows:

E (XtI {It = k} | It) = I {It = k}E (Xt | It) = I {It = k}µIt = I {It = k}µk,
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where we used the fact that given It, E (Xt | It) = µIt . Plugging the final equality above into
(1.1), we obtain

ESn =

K∑
k=1

n∑
t=1

E (I {It = k}µk) (1.2)

=
K∑
k=1

µkE (Tk(n)) . (1.3)

The lemma follows by substituting the above into the classic regret definition, i.e., Rn =
nµ∗ − ESn together with the definition of the gaps ∆k.

1.2 Explore and then commit

We start with a naive algorithm that clearly separates exploration and exploitation stages.

Explore-then-commit (ETC) algorithm

(1) Exploration phase: During rounds 1, . . . ,mK, play each arm m times.

(2) Exploitation phase: During the remaining n−mK rounds, play the arm with
the highest empirical mean reward, i.e., arg maxk={1,...,K} µ̂k(mK).

In the above, the empirical mean or sample mean for arm i at any time t is defined as

µ̂i(t) ,
1

Ti(t)

t∑
s=1

XsI {Is = i} . (1.4)

Notice that we have not specified the exploration parameter m in the algorithm above. The
regret analysis in the following section would address this gap. In short, choosing m optimally
(i.e., to minimize regret incurred) would require the knowledge of the underlying gaps and the
latter information in not available in a bandit learning framework. On the other hand, a choice
such as m = Θ(n2/3) would result in a regret of the order Õ(n2/3)1. As we shall see much later,
when we present the UCB algorithm, a regret of Õ(

√
n) can be achieved on any problem instance

and hence, ETC algorithm clearly exhibits suboptimal performance.

Regret analysis

Using arguments similar to that in the proof of Lemma 1.1, one can arrive at the following form
for the regret Rn:

Rn =
n∑
t=1

E (∆It) .

Observe that, in the first mK rounds, since ETC algorithm is exploring, the contribution to
regret from this phase ism

∑K
i=1 ∆i. On the other hand, during the exploration phase, if arm i has

1Õ(·) is like the regular Oh-notation, except that the log factors are hidden.
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the highest sample mean, then the contribution to the regret is (n−mK)∆i. Of course, an arm,
say i, getting picked for exploitation hinges on the event that I

{
i = arg maxj=1,...,K µ̂j(mK)

}
.

Thus, the regret of ETC can be simplified as follows:

Rn = m

K∑
i=1

∆i + (n−mK)

K∑
i=1

∆iE

(
I

{
i = arg max

j=1,...,K
µ̂j(mK)

})

= m
K∑
i=1

∆i + (n−mK)
K∑
i=1

∆iP

[
i = arg max

j=1,...,K
µ̂j(mK)

]
.

The probability of the event in the second term on the RHS above can be upper-bounded by using
the fact that if arm i got picked for exploitation, then its sample mean is certainly better than that
of the best arm a∗ and we obtain

P

[
i = arg max

j=1,...,K
µ̂j(mK)

]
≤ P [µ̂i(mK) ≥ µ̂a∗(mK)]

= P [µ̂i(mK)− µi − (µ̂a∗(mK)− µ∗) ≥ ∆i] .

Thus, understanding the regret of ETC comes down to how well µ̂i and µ̂a∗ estimate the true
means µi and µ∗, respectively. At this point, we take a detour and understand concentration
inequalities, which assist in answering the aforementioned question on estimation.

1.3 A brief tour of concentration inequalities

Suppose X1, . . . , Xn are i.i.d. samples of a r.v. X with mean µ and variance σ2. Using these
samples, a popular estimator for µ is the sample mean µ̂n, defined by

µ̂n =
1

n

n∑
i=1

Xi. (1.5)

In the following, we attempt to address the question of how quickly can µ̂n concentrate
around true mean µ. First, notice that

E (µ̂n) = µ,Var (µ̂n) =
σ2

n
, and E

(
(µ̂n − µ)2

)
=
σ2

n
.

From the last equality above, it is apparent that the square error (µ̂n − µ)2 converges to zero in
expectation, as the number of samples n increase. However, a more useful result on the error in
estimation would bound the following tail probabilities:

P [µ̂n ≥ µ+ ε] and P [µ̂n ≤ µ− ε] , for any ε > 0.

Upper bounds on the probabilities above would ensure that µ ∈ [µ̂n − cn, µ̂n + cn] with high
probability, for some cn that can inferred from the bounds on the tail probabilities.
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A first step is to employ Markov inequality, which states that for any positive-valued r.v. X
with mean µ, P [X ≥ ε] ≤ µ

ε
. A application of this inequality for a r.v. X that is not necessarily

positive-valued, but with finite variance σ2, we obtain the well-known Chebyschev’s inequality:

P [|X − µ| ≥ ε] ≤ σ2

ε2
.

Applying the inequality above to the sample mean µ̂n and using the fact that Var (µ̂n) =
σ2

n
,

we obtain

P [|µ̂n − µ| ≥ ε] ≤
σ2

nε2
.

The inequality above suggests a decay rate of the order 1/n for the tail probabilities. While
this rate is arrived by imposing that the underlying r.v. has a finite variance, one can obtain
significantly better rates for random variables whose distributions have tails that do not go above
that of a Gaussian r.v. Before deriving tail bounds for such subgaussian r.v.s, we look at the
asymptotic tail bound that central limit theorem would provide.

Theorem 1.2. Central limit theorem (CLT) Let Sn =
∑n

i=1(Xi − µ), where, as before,
X1, . . . , Xn are i.i.d. samples of r.v. X with mean µ and variance σ2. Then,

Sn√
n

in distribution−−−−−−−→ N (0, σ2) as n→∞.

Using CLT, the tail probability concerning sample mean can be bounded as follows:

P [µ̂n − µ ≥ ε] = P
[
Sn√
n
≥ ε
√
n

]
≈
∫ ∞
ε
√
n

1√
2πσ2

exp

(
−x2

2σ2

)
dx

≤
∫ ∞
ε
√
n

1√
2πσ2ε

√
n
x exp

(
−x2

2σ2

)
dx

=

√
σ2

2πnε2
×
[
− exp

(
−x2

2σ2

)]∞
ε
√
n

=

√
σ2

2πnε2
× exp

(
−nε2

2σ2

)
.

Observe that the bound, suggested by CLT, on the tail probability implies an exponential
decay, while the bound obtained by Chebyschev’s inequality was of the order 1/n (which is
much weaker than the exp (−cn)). While this is an encouraging result that suggests sample mean
concentrates exponentially fast around the true mean, the CLT bound comes with a major caveat,
which is that it is an asymptotic bound (or holds for large n only). One can overcome this issue
and obtain non-asymptotic concentration bounds, provided the underlying distribution satisfies
certain properties. As a gentle start, we investigate concentration of measure when the underlying
distribution is Gaussian.
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Gaussian concentration

Consider a r.v. X with distribution N (0, σ2). Then,

P [X ≥ ε] = P [exp (λX) ≥ exp (λε)] , for any λ > 0,

≤ exp (−λε)E(exp (λX)). (1.6)

The last step above follows from Markov inequality. For a Gaussian r.v. X , E(exp (λX)) is
simplified as follows:

E(exp (λX)) =

∫ ∞
−∞

exp (λx)
1√

2πσ2
exp

(
−x2

2σ2

)
dx

=

∫ ∞
−∞

exp (λσz)
1√
2π

exp

(
−z2

2

)
dz

= exp

(
λ2σ2

2

)∫ ∞
−∞

1√
2π

exp

(
−(z − λσ)2

2

)
dz

= exp

(
λ2σ2

2

)
.

Substituting the simplified form for E(exp (λX)) into (1.6), we obtain

P [X ≥ ε] ≤ exp

(
−λε+

λ2σ2

2

)
.

A straightforward calculation yields
ε

σ2
value for the optimum λ value that minimizes the RHS

above and for the optimal λ, we have

P [X ≥ ε] ≤ exp

(
−ε2

2σ2

)
. (1.7)

The bound above is obtained through the well-known “Chernoff method”.
Supposing that X1, . . . , Xn are i.i.d. copies of a N (0, σ2) r.v., we have

P [µ̂n ≥ µ+ ε] ≤ exp

(
−nε2

2σ2

)
. (1.8)

Sub-Gaussianity

We now generalize the Chernoff bound to the class of subgaussian r.v.s, defined below.

Definition 1.1. A r.v. X is σ-subgaussian if there exists a σ > 0 such that

E(exp (λX)) ≤ exp

(
λ2σ2

2

)
for any λ ∈ R.

For a σ-subgaussian r.v. X , the Chernoff method gives

P [X ≥ ε] ≤ exp

(
−ε2

2σ2

)
. (1.9)

A few examples of subgaussian r.v.s are given below.
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Example 1.1. A r.v. X is Rademacher if P [X = +1] = P [X = −1] =
1

2
. A Rademacher r.v.

X is 1-subgaussian. This can be argued as follows:

E(exp (λX)) =
1

2
(exp (λ) + exp (−λ))

=
1

2

( ∞∑
k=0

(−λ)k

k!
+
∞∑
k=0

(−λ)k

k!

)

=
∞∑
k=0

λ2k

(2k)!
≤ exp

(
λ2

2

)
.

The inequality above follows by using (2k)! ≥ 2kk!.

Example 1.2. A U [−a, a] distributed r.v. X is a-subgaussian and this can be argued as follows:

E(exp (λX)) =
1

2a

∫ a

−a
exp (λx) =

1

2aλ
(exp (aλ) + exp (−aλ))

=

∞∑
k=0

(aλ)2k

(2k)!
≤ exp

(
λ2a2

2

)
.

Exercise 1.1. A zero-mean r.v. X with |X| ≤ B is B-subgaussian.

A few properties satisfied by subgaussian r.v.s are given below and the proofs.

Property I: If X is σ-subgaussian, then cX is |c|σ-subgaussian.

Property II: If X1, X2 are σ1 and σ2-subgaussian, respectively, then X1 + X2 is σ1 + σ2-
subgaussian. In addition, if X1 and X2 are independent, then X1 +X2 is

√
b21 + b22-subgaussian.

Exercise 1.2. Prove properties I and II that are listed above.

With the background on subgaussian r.v.s, we are now in a position to analyze the tail
probability concerning sample mean for the case when the samples X1, . . . , Xn are i.i.d. with
mean µ and in addition, Xi − µ is σ-subgaussian for each i. Notice that

µ̂n − µ =
n∑
i=1

Xi − µ
n

is
σ√
n

-subgaussian by Properties I and II

⇒ P [µ̂n ≥ µ+ ε] ≤ exp

(
−nε2

2σ2

)
.

Exercise 1.3. (Hoeffding’s inequality) Suppose X1, . . . , Xn are i.i.d. samples of r.v. X with
mean µ. Also, Xi ∈ [a, b] for some a < b and i = 1, . . . , n. Prove, from first principles (i.e.,
without directly invoking concentration results for subgaussian r.v.s), the following claim:

P [µ̂n ≥ µ+ ε] ≤ exp

(
−2nε2

(b− a)2

)
.
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1.4 Back to analysis of Explore-then-commit

1.4.1 Gap-dependent bound for ETC

In the following, we derive a bound on the regret of ETC that depends on the underlying gaps ∆i.
In the subsequent section, we derive a gap-independent bound, i.e., a bound that is a function
of n and holds for any problem instance. Such bounds are worst-case guarantees because they
would hold for any problem instance that feeds the sample rewards (and hence, for the problem
instance that leads to maximum regret for the algorithm). On the other hand, gap-dependent
bounds depend on the problem instance and in particular, help understand how quickly can the
algorithm learn in easier problem instance (i.e., ones with large gaps).

Recall that we had the following bound for the regret Rn of ETC:

Rn ≤ m
K∑
i=1

∆i + (n−mK)
K∑
i=1

∆iP [µ̂i(mK)− µi − (µ̂a∗(mK)− µ∗) ≥ ∆i] .

Assuming Xt − E(Xt) is 1-subgaussian for t = 1, . . . , n, we have that

µ̂i(mK)− µi is
1√
m

-subgaussian for i = 1, . . . ,K

⇒ µ̂i(mK)− µi − (µ̂a∗(mK)− µ∗) is

√
2

m
-subgaussian for i = 1, . . . ,K

⇒ P [µ̂i(mK)− µi − (µ̂a∗(mK)− µ∗) ≥ ∆i] ≤ exp

(
−m∆2

i

4

)
.

Using the final result above in the bound for Rn, we obtain

Rn ≤ m
K∑
i=1

∆i + (n−mK)

K∑
i=1

∆i exp

(
−m∆2

i

4

)
.

Choosingm optimally is tricky and we illustrate this for the case of two-armed bandit. Clearly,
we have

Rn ≤ m∆ + (n−mK)∆ exp

(
−m∆2

4

)
.

Minimizing the RHS above over m, we obtain m∗ =

⌈
4

∆2
log

(
n∆2

4

)⌉
and for this m∗, the

regret Rn turns out to be

Rn ≤ ∆ +
4

∆

(
1 + log

(
n∆2

4

))
.

While the bound above is nearly optimal, it is obtained when the exploration parameter m is
chosen optimally and this choice requires the knowledge of underlying gap ∆. In a bandit
framework, the gap information is not available and hence, the requirement is for an adaptive
algorithm that balances exploration and exploitation to incur lowest-possible regret, while not
assuming knowledge of the underlying problem through the gaps. Before getting there, notice
that the regret bound above involves the underlying gaps and we shall refer to such bounds as
“gap-dependent bounds". A valid alternative is to derive gap-independent regret bound for ETC,
which is the content of the exercise below.
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1.4.2 Gap-independent bound for ETC

From the previous section, recall that the ETC algorithm’s regret bound is minimized with the
exploration parameter m is chosen using the underlying gaps. The resulting regret bound derived
there was a function of the underlying gaps. An alternative is to derive a regret bound of the form
Rn ≤ Cf(n), where C is a problem-independent constant. Such a bound is “gap independent"
as it does not involve the problem instance dependent “gap” quantity. We state and prove such a
bound for ETC below.

Theorem 1.3. For the two-armed bandit problem, with stochastic rewards from arms’ distribution
bounded within [0, 1], the regret Rn of ETC with m = n2/3(log n)1/3 satisfies

Rn ≤ cn2/3(log n)1/3,

for some universal constant c.

Remark 1.1. The regret upper bound of the order O(n2/3) for ETC is far from being optimal and
in the next section, we shall present the well-known UCB algorithm whose regret is bounded above
byO(

√
n). Further, we shall establish even later that the UCB upper bound is the best-achievable

in the minimax sense – a topic handled in detail under “lower bounds”.

Proof. From the discussion about subgaussianity earlier, recall that the sample mean µ̂m formed
out of m samples of a bounded (in [0, 1]) r.v. with mean µ satisfies:

P [µ̂m ≥ µ+ ε] ≤ exp

(
−nε2

2

)
.

A straightforward transformation of the bound above yields

P

µ̂m ≥ µ+

√
2 log(1

δ )

m

 ≤ δ.
Along similar lines, it is easy to obtain

P

µ̂m ≤ µ−
√

2 log(1
δ )

m

 ≤ δ.
We need to pick a δ that is small enough to guarantee that the two tail events above do not affect
the regret bound for a horizon n. To simplify the presentation, we shall pick δ = 1

n2 . One could
choose a better δ and optimize the constants in the regret bound, but the order of n, would not
be affected. For δ = 1

n2 , the sample means µ̂1(2m) and µ̂2(2m) corresponding to arms 1 and 2,
respectively, satisfies the following:

P

[
|µ̂j(2m)− µj | ≤

√
4 log(n)

m

]
≥ 1− 2

n2
, for j = 1, 2.
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Let E denote the event that the condition inside the probability above holds for both arm 1 and 2.
We shall refer to E as the good event, since on E the sample mean is close to the corresponding
true mean with high probability, for both arms.

Without loss of generality, assume 1 is the optimal arm. Let R̂n = nµ1 −
∑n

t=1Xt. Then,
we have

Rn = E(R̂n)

= E
(
R̂n | E

)
P [E] + E

(
R̂n | Ec

)
P [Ec]

≤ E
(
R̂n | E

)
+ n× 2

n2
(1.10)

In the last inequality, we have used the fact that the gap ∆2 ≤ 1 since the rewards are bounded
within [0, 1] and that P [Ec] ≤ 1

n2 .
Regret of ETC, conditioned on the good event E, is simplified as follows: After exploration

stage, suppose that ETC chooses arm 2 and not 1, for exploitation. This happens only if
µ̂2(2m) > µ̂1(2m). Since we are conditioning on the good event E, the sample means are not
too far from the true means and hence, we have

µ2 +

√
4 log(n)

m
≥ µ̂2(2m) > µ̂1(2m) ≥ µ1 −

√
4 log(n)

m
,

which implies

µ1 − µ2 ≤ 2

√
4 log(n)

m
.

In other words, if a sub-optimal arm is pulled during exploitation, then there is a good chance
that its mean is close to the mean of the optimal arm. Alternatively, the regret incurred in each

round during exploitation is bounded above by 2

√
4 log(n)
m . So,

E
(
R̂n | E

)
≤ m+ (n− 2m)2

√
4 log(n)

m
≤ m+ 2n

√
4 log(n)

m
.

The first inequality above follows from the fact that the per-round regret during exploration is
bounded above by 1 and arm 2 is pulled m times. Since the first term on the RHS of the final
inequality above is increasing withm and the other is decreasing withm, a simple way to optimize
m is to equate the two terms roughly. This simplification leads to the value n2/3(log n)1/3 for m
and for this value of m, the regret on event E turns out to be

E
(
R̂n | E

)
≤ 5n2/3(log n)1/3,

and the overall regret bound for ETC, from (1.10), simplifies to

Rn ≤ n2/3(log n)1/3 +
2

n
= cn2/3(log n)1/3,

for some problem independent constant c.
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1.5 Upper confidence bound (UCB) algorithm

1.5.1 Basic algorithm

Given i.i.d. samples X1, . . . , Xm of a r.v X with mean µ and assuming 1-subgaussianity of
Xi − µ, for all i, we have that

P [µ̂m ≥ µ+ ε] ≤ exp

(
−mε2

2

)
and P [µ̂m ≤ µ− ε] ≤ exp

(
−mε2

2

)
.

Or equivalently, for any δ ∈ (0, 1),

P

µ ∈ [µ̂m −

√
2 log(1

δ )

m
, µ̂m +

√
2 log(1

δ )

m
]

 ≥ 1− 2δ.

In this section, we describe the UCB algorithm that balances exploration and exploitation in
each round t = 1, . . . , n. A vital ingredient in this balancing act is the concentration inequality
given above. An important question here is, what should be the δ value, so that the UCB algorithm
can ignore the errors in estimation (i.e., the true means falling outside the confidence intervals)
and not suffer linear regret. The finite sample analysis provided by Auer et al. [2002] chose to set
δ = 1

t4
and this is good enough to guarantee a sub-linear regret. For this value of δ, at any round

t of UCB, we have the following high-confidence guarantee for any arm k ∈ {1, . . . ,K}:

P

[
µk ∈ [µ̂k(t− 1)−

√
8 log t

Tk(t− 1)
, µ̂k(t− 1) +

√
8 log t

Tk(t− 1)
]

]
≥ 1− 2

t4
.

In the above, the quantity µ̂k(t− 1) denotes the sample mean of rewards seen from arm k so far
and Tk(t− 1) samples from arm k’s distribution are used to form this sample mean.

We are now ready to present the UCB algorithm.

UCB algorithm
Initialization: Play each arm once,
For t = K + 1, . . . , n, repeat

(1) Play arm It = arg maxk=1,...,K UCBt(k), where

UCBt(k) , µ̂k(t− 1) +
√

8 log t
Tk(t−1) .

(2) Observe sample Xt from the distribution PIt corresponding to the arm It.

Notice that the confidence estimates are applicable only if there is at least one sample for
any arm and hence, in the initialization phase, UCB pulls each arm once. Further, UCB is an
anytime algorithm, since the UCB index for any arm depends only on the round index t and does
not require the horizon n.

Intuitively, the first term in the UCB index for any arm is geared towards exploitation (i.e., if
the sample mean of an arm is high, then the UCB index is high and hence the algorithm is likely
to play this arm), while the second term is to do with exploration, since an arm that has not been
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played often would get a higher UCB index through the second term. For a rigorous justification
for the explicit form used in the UCB index’s second term, we now bound the number of times
the UCB algorithm pulls a suboptimal arm.

1.5.2 Regret analysis

Bounding the number of pulls of a suboptimal arm

Let 1 denote the optimal arm, without loss of generality. Fix a round t ∈ {1, . . . , n} and suppose
that a sub-optimal arm k is pulled in this round. Then, we have

µ̂k(t− 1) +

√
8 log t

Tk(t− 1)
≥ µ̂1(t− 1) +

√
8 log t

T1(t− 1)
.

The UCB-value of arm k can be larger than that of 1 only if one of the following three conditions
holds:

(1) µ1 is outside the confidence interval

µ̂1,T1(t−1) ≤ µ1 −

√
8 log t

T1(t− 1)
, (1.11)

(2) µk is outside the confidence interval

µ̂k,Tk(t−1) ≥ µk +

√
8 log t

Tk(t− 1)
, (1.12)

(3) Gap ∆k is small If we negate the two conditions above and use the fact UCBt(k) ≥
UCBt(1), then we obtain

µk + 2

√
8 log t

Tk(t− 1)
≥ µ̂k,Tk(t−1) +

√
8 log t

Tk(t− 1)
≥ µ̂1,T1(t−1) +

√
8 log t

T1(t− 1)
> µ1

⇒ ∆k < 2

√
8 log t

Tk(t− 1)
or Tk(t− 1) ≤ 32 log t

∆2
k

(1.13)

Let u =
32 log n

∆2
k

+ 1. When Tk(t− 1) ≥ u, i.e., when the condition in (1.13) does not hold,
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then either (i) arm k is not pulled at time m, or (ii) (1.11) or (1.12) occurs. Thus, we have

Tk(n) = 1 +
n∑

t=K+1

I {It = k}

≤ u+

n∑
t=u+1

I {It = k;Tk(t) ≥ u}

≤ u+

n∑
t=u+1

I

{
µ̂k,Tk(t−1) +

√
8 log t

Tk(t− 1)
≥ µ̂1,T1(t−1) +

√
8 log t

T1(t− 1)
;Tk(t− 1) ≥ u

}

≤ u+

n∑
t=u+1

I

{
min

u≤sk<t
µ̂k,sk +

√
8 log t

sk
≥ max

0<s<t
µ̂1,s +

√
8 log t

s

}

≤ u+
∞∑
t=1

t−1∑
s=1

t−1∑
sk=u

I

{
µ̂k,sk +

√
8 log t

sk
≥ µ̂1,s +

√
8 log t

s

}

≤ u+

∞∑
t=1

t−1∑
s=1

t−1∑
sk=u

I

{(
µ̂1,s ≤ µ1 −

√
8 log t

s

)

or

(
µ̂k,sk ≥ µk +

√
8 log t

sk

)
occurs

}
.

From the discussion earlier on concentration inequalities, we can upper bound the probability of
occurence of each of the two events inside the indicator on the RHS of the final display above as
follows:

P

[
µ̂1,s ≤ µ1 −

√
8 log t

s

]
≤ 1

t4
and P

[
µ̂k,sk ≥ µk +

√
8 log t

sk

]
≤ 1

t4
.

Plugging the bounds on the events above and taking expectations on Tk(n) related inequality
above, we obtain

E[Tk(n)] ≤ u+
∞∑
t=1

t−1∑
s=1

t−1∑
sk=u

2

t4

≤ u+ 2
∞∑
t=1

1

t2
≤ u+

(
1 +

π2

3

)
.

The preceding analysis together with the fact that Rn =
∑K

k=1 ∆kE[Tk(n)] leads to the
following regret bound:

Theorem 1.4. For a K-armed stochastic bandit problem where the stochastic rewards from the
arms’ distributions are bounded within [0, 1], the regret Rn of UCB is satisfies

Rn ≤
∑

{k:∆k>0}

32 log n

∆k
+K

(
1 +

2π2

3

)
.
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Gap-independent regret bound

We arrive at a gap-independent bound on UCB algorithm’s regret as follows:

Rn =
∑
k

∆k E[Tk(n)]

=
∑
k

(
∆k

√
E[Tk(n)]

)(√
E[Tk(n)]

)

≤

(∑
k

∆2
k E[Tk(n)]

) 1
2
(∑

k

E[Tk(n)]

) 1
2

(Cauchy-Schwarz inequality)

≤
(
K

(
32 log n+

π2

3
+ 1

)) 1
2 √

n,

=

√
Kn

(
32 log n+

π2

3
+ 1

)
.

where the final inequality follows from the fact that
∑

k E[Tk(n)] = n, together with the following
bound on the number of pulls of a a suboptimal arms, i.e., k with ∆k > 0:

E[Tk(n)] ≤ 32 log n

∆2
k

+

(
1 +

π2

3

)
.

Thus, we have obtained a Õ(
√
n) regret bound for UCB and this is clearly better than the

corresponding Õ(n2/3) regret bound for ETC algorithm. A natural question that arises is if
Õ(
√
n) is the best achievable regret bound and we shall arrive at a positive answer, when we

discuss lower bounds on regret in the next section.

1.6 A brief tour of information theory

Before presenting regret lower bounds, we briefly cover the necessary information theory concepts.
In the following, we assume that the underlying random variables are discrete and leave it to the
reader to fill in the necessary details for the continuous extension.

1.6.1 Entropy

Definition 1.2. Consider a discrete r.v. X taking values in the set X with p.m.f. p. Then, the
entropy H(X) is defined as

H(X) = −
∑
x∈X

p(x) log p(x),

where the log is to base 2.

It is easy to see that H(X) ≥ 0 for any X , since log p(x) ≤ 0 for p(x) ∈ [0, 1].
The entropy of a Bernoulli r.v. X with parameter p is H(X) = −p log p− (1−p) log(1−p).

Plotting H(X) as a function of p, it is easy to infer that H(X) is maximized at p = 1/2,
H(X) = 0 at p = 0 and p = 1.
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The notion of entropy came has roots in information theory, as it gives the expected number of
bits necessary to encode a random signal (= a random variable). We illustrate this interpretation
through the following r.v.:

X =


a w.p. 1/2,

b w.p. 1/4,

c w.p. 1/8,

d w.p. 1/8.

If one were to design a sequence of binary questions to infer the value of the r.v. X and ask
the minimum number of questions in expectation, then it would serve him/her to start with “Is
X = a?” rather than start with “Is X = d?”. Now using the pmf of X given above, the expected
number of questions asked is 1× 1

2 + 2× 1
4 + 31× 1

8 + 3× 1
8 = 7

4 . It is not a coincidence that
H(X) turns out to be 7

4 for this r.v.
An equivalent interpretation is the following: Suppose that the value a is represented by the

code “1”, b by “01”, c by “001” and d by “000”. Then, the average code length, assuming that
the values a, b, c, d occur with probabilities given above, then the average code length turns out
to be the same as H(X).

Definition 1.3. The joint entropy H(X,Y ) of r.v. pair (X,Y ) with joint pmf p(x, y) is defined
as

H(X,Y ) = −
∑
x

∑
y

p(x, y) log p(x, y).

Definition 1.4. The conditional entropy H(Y | X), assuming the r.v. pair (X,Y ) has joint pmf
p(x, y), is defined as

H(Y | X) =
∑
x

p(x)H(Y | X = x)

= −
∑
x

p(x)
∑
y

p(y | x) log p(y | x)

= −
∑
x

∑
y

p(x, y) log p(y | x).

Theorem 1.5. H(X,Y ) = H(X) +H(Y | X).

Proof. Follows by using the definition of H(X,Y ) followed by a separation of terms using
p(x, y) = p(x)p(y | x) to obtain H(X) and H(Y | X).

We now are ready to define the concept of KL-divergence between two probability distribu-
tions, a notion that serves us well in obtaining regret lower bounds in a bandit framework.

1.6.2 KL-divergence (aka relative entropy)

Definition 1.5. The KL-divergence D(p, q) between two pmfs p and q is defined as

D(p, q) =
∑
x

p(x) log

(
p(x)

q(x)

)
,
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where 0 log 0
q = 0 and p log p

0 =∞.

Example 1.3. Let p and q be pmfs of Bernoulli r.v.s with parameters α and β, respectively. Then,

D(p, q) = α log
α

β
+ (1− α) log

1− α
1− β

.

Plugging in values 1/4 and 1/2 for α and β, it is easy to see that D(p, q) is not equal to D(q, p).

KL-divergence is not a metric because it is not symmetric, as shown in the above example.
Moreover, KL-divergence does not satisfy the triangle inequality. However, KL-divergence is
non-negative and zero if and only if the probability distributions are the same – a claim made
precise below.

Lemma 1.6. The KL-divergence D(p, q) between two pmfs p and q is non-negative and equals
zero if and only if p(x) = q(x), ∀x.

Proof. Let A = {x | p(x) > 0} be the support of p. Then, using Jensen’s inequality for the
concave log function, we have

−D(p, q) = −
∑
x∈A

p(x) log

(
p(x)

q(x)

)
=
∑
x∈A

p(x) log

(
q(x)

p(x)

)

≤ log

(∑
x∈A

p(x)
p(x)

q(x)

)

= log

(∑
x∈A

q(x)

)
≤ log

(∑
x

q(x)

)
= log 1 = 0,

which proves the first part of the claim. For the second part, observe that log is stricly concave
and hence, equality holds in Jensen’s if and only if p(x)

q(x) = 1, ∀x.

Definition 1.6. The conditional KL-divergence between two pmfs p and q is defined as

D(p(y | x), q(y | x)) =
∑
x

p(x)
∑
y

p(y | x) log
p(y | x)

q(y | x)
.

Lemma 1.7. (Chain rule)

D(p(x, y), q(x, y)) = D(p(x), q(x)) +D(p(y | x), q(y | x)).

In addition, if x and y are independent, then

D(p(x, y), q(x, y)) = D(p(x), q(x)) +D(p(y), q(y)).
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Proof.

D(p(x, y), q(x, y)) =
∑
x

∑
y

p(x, y) log
p(x, y)

q(x, y)

=
∑
x

∑
y

p(x, y) log
p(x)

q(x)
+
∑
x

∑
y

p(x, y) log
p(y | x)

q(y | x)

= D(p(x), q(x)) +D(p(y | x), q(y | x)).

1.6.3 Pinsker’s inequality and friends

Lemma 1.8. (Pinsker’s inequality) Given two pmfs p and q, for any event A, we have

2(p(A)− q(A))2 ≤ D(p, q).

Proof. Fix an event A. Then, we have∑
x

p(x) log
p(x)

q(x)
≥ p(A) log

p(A)

q(A)
. (1.14)

The proof of the claim above is as follows: Letting pA(x) = p(x)
p(A) and qA(x) = q(x)

q(A) , we have

∑
x∈A

p(x) log
p(x)

q(x)
= p(A)

∑
x∈A

pA(x) log
p(A)pA(x)

q(A)qA(x)

= p(A) log
p(A)

q(A)

∑
x∈A

pA(x) + p(A)
∑
x∈A

pA(x) log
pA(x)

qA(x)

≥ p(A) log
p(A)

q(A)
,

where the last inequality follows from the fact that
∑

x pA(x) log pA(x)
qA(x) = D(pA, qA) ≥ 0 and∑

x pA(x) = 1.
Letting α = p(A) and β = q(A) and using (1.14), we have

D(p, q) ≥ α log
α

β
+ (1− α) log

1− α
1− β

=

∫ β

α

(
−α
x

+
1− α
1− x

)
dx

=

∫ β

α

(
x− α
x(1− x)

)
dx ≤

∫ β

α

−α
1/4

dx since x(1− x) ≤ 1/4,

= 2(α− β)2.
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Lemma 1.9. (Pinsker’s inequality - high-probability variant)
Given two pmfs p and q, for any event A, we have

P (A) +Q(Ac) ≥ exp(−D(p, q)),

where P (A) (resp. Q(Ac)) is shorthand for
∑

x∈A p(x) (resp.
∑

x∈Ac q(x)).

Proof. Notice that∑
x

min(p(x), q(x)) =
∑
x∈A

min(p(x), q(x)) +
∑
x∈Ac

min(p(x), q(x))

≤
∑
x∈A

p(x) +
∑
x∈Ac

q(x) = P (A) +Q(Ac).

So, it is enough to prove a lower bound on
∑

x∈A min(p(x), q(x)). We claim that

∑
x

min(p(x), q(x)) ≥ 1

2

(∑
x

√
p(x)q(x)

)2

.

The inequality above holds because(∑
x

√
p(x)q(x)

)2

=

(∑
x

√
min(p(x), q(x)) max(p(x), q(x))

)2

≤

(∑
x

min(p(x), q(x))

)(∑
x

max(p(x), q(x))

)
≤ 2

∑
x

min(p(x), q(x)),

where the last inequality holds because∑
x

max(p(x), q(x)) =
∑
x

(p(x) + q(x)−min(p(x), q(x))) ≤ 2−
∑
x

min(p(x), q(x)) ≤ 2.

Now, we have(∑
x

√
p(x)q(x)

)2

= exp

(
2 log

(∑
x

√
p(x)q(x)

))

= exp

(
2 log

(∑
x

p(x)

√
q(x)

p(x)

))

≥ exp

(
2

(∑
x

p(x) log

√
q(x)

p(x)

))
(Jensen’s inequality)

= exp

(∑
x

p(x) log
q(x)

p(x)

)
= exp (−D(p, q)) .
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For establishing lower bounds for regret minimization setting of this chapter as well as best
arm identification setting treated in the next chapter, it would be handy to have the KL-divergence
between two Bernoulli r.v.s bounded above and the following claim makes this bound explicit.

Lemma 1.10. For some 0 < ∆ < 1/2, let p, q and r correspond to the pmfs of Bernoulli r.v.s
with parameters 1

2 , 1+∆
2 and 1−∆

2 , respectively. Then,

D(p, q) ≤ ∆2, D(q, p) ≤ 2∆2, D(p, r)) ≤ ∆2 and D(r, q)) ≤ 4∆2.

Proof.

D(p, q) =
1

2
log

(
1

1 + ∆

)
+

1

2
log

(
1

1−∆

)
= −1

2
log
(
1−∆2

)
≤ −1

2
(−2∆2) = ∆2, (log(1−∆2) ≥ −2∆2 for ∆2 ≤ 1

2
).

Along similar lines, it is easy to see that D(p, r) ≤ ∆2.

D(q, p) =
1 + ∆

2
log (1 + ∆) +

1−∆

2
log (1−∆)

=
1

2
log
(
1−∆2

)
+

∆

2
log

(
1 + ∆

1−∆

)
≤ ∆

2
log

(
1 +

2∆

1−∆

)
, (log(1−∆2) < 0)

≤ ∆

2

2∆

1−∆
≤ 2∆2.

Finally,

D(r, q) =
1−∆

2
log

(
1−∆

1 + ∆

)
+

1 + ∆

2
log

(
1 + ∆

1−∆

)
= ∆ log

(
1−∆

1 + ∆

)
≤ ∆ log

(
1 +

2∆

1−∆

)
≤ ∆

2∆

1−∆
≤ 4∆2 (Since ∆ ≤ 1/2).

1.7 Regret lower bounds

1.7.1 Worst-case lower bounds

Consider two bandit problems with Bernoulli distributions for the arms, with means given in the
following table: For some ∆ > 0 to be specified later,
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Arm 1 Arm 2

Problem 1 1
2

1−∆
2

Problem 2 1
2

1+∆
2

Let p1, p2 and p′2 denote the pmfs of Bernoulli r.v.s with means 1
2 , 1−∆

2 and 1+∆
2 , respectively.

Let vt (resp. v′t) denote the product distribution (p1, p2)⊗t (resp. (p1, p
′
2)⊗t), for t = 1, . . . , n.

The distributions vt and v′t govern the sample rewards up to time t for any bandit algorithm.
Let Pvt (resp. Pv′t) denote the probability law with underlying distribution vt (resp. v′t) and

with the arms chosen by the algorithm A. Further, let Rn(v) (resp. Rn(v′)) denote the regret
incurred by the algorithm when the underlying problem instance is 1 (resp. 2), i.e., when the
sample rewards are generated from vn (resp. v′n). For the sake of notational convenience, we
have suppressed the dependence of regret Rn(v) and Pv on the algorithm A. Then, we have the
following claim:

Theorem 1.11. For any bandit algorithm A, we have

max(Rn(v), Rn(v′)) ≥ 1

16∆
log
(
n∆2

)
.

Proof. Notice that, on problem 1, the bandit algorithm incurs a regret of ∆/2 if it pulls arm 2
and the number of times it pulls arm 2 is T2(n) leading to

Rn(v) ≥ ∆

2
EvnT2(n)

⇒max
(
Rn(v), Rn(v′)

)
≥ Rn(v) ≥ ∆

2
EvT2(n). (1.15)

Since the max is greater than the average, we obtain

max
(
Rn(v), Rn(v′)

)
≥ 1

2

(
Rn(v) +Rn(v′)

)
=

∆

4

n∑
t=1

(
Pvt(It = 2) + Pv′t(It = 1)

)
≥ ∆

8

n∑
t=1

exp(−D(Pvt ,Pv′t)) (Pinsker’s inequality)

=
∆

8

n∑
t=1

exp(−4EvtT2(t)∆2) (1.16)

≥ n∆

8
exp(−4EvnT2(n)∆2).

In the above, we have used the following fact in inequality (1.16):

D(Pvt ,Pv′t) =

EvT2(n)∑
s=1

D((p1, p2), (p1, p
′
2))

=

EvT2(n)∑
s=1

D(p2, p
′
2) ≤ EvT2(n)4∆2, (Lemma 1.10)
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where we used the fact that the KL-divergence, between the arms distributions under problem 1
and 2, is not zero only when the bandit algorithm pulls arm 2 in a certain round and also that the
underlying distribution is i.i.d. in time.

Combining (1.15) and (1.16), we have

max
(
Rn(v), Rn(v′)

)
≥ ∆

4

(
EvnT2(n) +

n

4
exp(−4∆2EνT2(n))

)
≥ min

x∈[0,n]

∆

4

(
x+

n

4
exp(−4∆2x)

)
≥ log(n∆2)

16∆
.

Hence proved.

Plugging in a value of 2√
n

for ∆, we have the following gap-independent regret lower bound:

Corollary 1.1. For any bandit algorithm,

max
(
Rn(v), Rn(v′)

)
≥ 1

32

√
n.

We now generalize the result in Corollary 1.1 to a setting involving more than two arms.

Theorem 1.12. For any bandit algorithm A, there exists a problem instance v such that

Rn(v) ≥ c
√
Kn,

where Rn(v) is the regret2 incurred by algorithm A on problem v and c is a universal constant.

Proof. As in the proof for the case of two-armed bandit, we consider two bandit problem instances
v and v′ such that a bandit algorithm A that does well on v would end up suffering high regret
on v′ and vice-versa. Let v correspond to a Bernoulli-armed bandit problem instance, with the
underlying means given by p1 ∼ Ber(1

2) and pi ∼ Ber(1−∆
2 ), for i 6= 1 and for some ∆ > 0 to

be specified later. Let Pv denote the probability law of the rewards when algorithm A is run on
problem v (for the sake of notational convenience, we have suppressed the dependence on Pv on
A. Let i be the arm that is pulled least (in expectation) by A on v, i.e.,

i = arg min
j=2,...,K

Ev(Tj(n)).

In the above, Ev is the expectation under Pv and Tj(n) is the number of times arm j is pulled
up to time n. Define the problem instance v′ as follows: For j 6= i, p′j = pj , i.e., the arms’
distributions are unchanged, while pj ∼ Ber(1+∆

2 ). Let v′ refer to the problem where arm i’s
distribution is modified as described before and let Pv′ denote the probability law of the sample
rewards when algorithm A is run on problem v′. Then, it is easy to see that

Rn(v) ≥ Pv(T1(n) ≤ n

2
)
n∆

4
.

2For notational convenience, we have suppressed the dependence of regret on the algorithm.
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The inequality above holds because an algorithm that pulls the optimal arm 1 on problem v less
than n/2 times would suffer at least a regret of n/2×∆/2. Along similar lines, it can be argued
that

Rn(v′) ≥ Pv′(T1(n) >
n

2
)
n∆

4
.

Invoking Pinsker’s inequality with event A defined as {T1(n) ≤ n
2 }, we obtain

Rn(v) +Rn(v′) ≥ n∆

4
(Pv(A) + Pv′(A

c))

≥ n∆

8
exp(−D(Pv, Pv′)).

As in the two-armed bandit case, it can be shown that D(Pv, Pv′)) ≤ Ev(Ti(n))4∆2, which
leads to the following bound:

Rn(v) +Rn(v′) ≥ n∆

4
exp

(
−Ev(Ti(n))4∆2

)
,

Notice that Ev(Ti(n)) ≤ n
K−1 . Suppose not. Then, n =

∑
j Ev(Ti(n)) >

∑
j

n
K−1 > n, a

contradiction. Hence, we have

Rn(v) +Rn(v′) ≥ n∆

8
exp

(
− n4∆2

K − 1

)
,

Choosing ∆ =
√

K−1
8n , we have that

max(Rn(v), Rn(v′)) ≥ 1

2

(
Rn(v) +Rn(v′)

)
≥ n∆

16
exp

(
− n4∆2

K − 1

)
≥ c
√
Kn,

for some problem-independent constant c. The claim follows.

1.7.2 Instance dependent lower bounds

to be done

1.8 A tour of Bayesian inference

So far, we have been working in a setting that statisticians would classify as frequentist - a
worldview where probability refers to a long-term frequency (think of tossing a coin a large
number of times. The frequency of heads would coincide with the intuitive notion of the
probability that the coin turns up heads). Further, a good algorithm here (in the frequentist
setting) would come with long run frequency guarantees (for e.g., sample mean and its associated
convergence guarantees).
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An alternative view is Bayesian, where probability refers to a (subjective) belief and the
algorithms are built around updating the beliefs, based on observations from the real-world. We
illustrate the difference between the frequentist and Bayesian view in the following example.

Consider the problem of mean estimation of a normally distributed r.v. with unit variance. To
be more precise, let X1, . . . , Xn be i.i.d. samples from N (θ, 1), i.e., the normal distribution with
mean θ and variance 1. The well-known sample mean X̄n = 1

n

∑n
i=1Xi satisfies

Pθ(θ ∈ C) = 0.95, where C =

(
X̄n −

1.96√
n
, X̄n +

1.96√
n

]
.

The statement above implies that the random quantity C would contain the constant parameter θ
with high probability.

The Bayesian approach to the mean estimation would proceed as follows:

1. Choose a prior density π(·) that reflects your belief about the parameter θ;

2. Collect data Dn = {X1, . . . , Xn}, which is sampled iid from p(X | θ). The latter quantity
denotes the density of X conditioned on θ;

3. Update your belief, i.e., the posterior density p(θ | Dn), using the Bayes theorem as
follows:

p(θ | Dn) =
p(Dn | θ)π(θ)

p(Dn)

=
Ln(θ)π(θ)

cn
,

where Ln(θ) =
∏n
i=1 p(Xi | θ) is the likelihood function and cn =

∫
θ Ln(θ)π(θ)dθ is a

normalization constant. Note that we have assumed independence for the samples from the
conditional density p(X | θ) and hence, Ln(θ) splits into a nice product.

Using the posterior density, the posterior mean can be calculated as

θ̄n =

∫
θp(θ | Dn)dθ =

∫
θLn(θ)π(θ)dθ∫
θLn(θ)π(θ)dθ

.

Further, one can find c and d such that∫ c

−∞
∂(θ | Dn)dθ =

∫ ∞
d

∂(θ | Dn)dθ =
α

2
,

leading to the Bayesian counterpart C = (c, d) of the confidence interval. In other words, we
have

P (θ ∈ C | Dn) = 1− α.

Notice that θ above is a random variable, unlike the frequentist setting.
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Example 1.4. Suppose we start with a uniform prior, i.e., π(θ) = 1, ∀θ and the conditional
density p(X | θ) is Bernoulli with parameter θ. Then, the posterior density can be calculated as
follows:

p(θ | Dn) = cπ(θ)Ln(θ)

= c
n∏
i=1

θXi(1− θ)1−Xi

= cθSn(1− θ)n−Sn , where Sn =
n∑
i=1

Xi

= cθSn+1−1(1− θ)n−Sn+1−1. (1.17)

Recall that a r.v. is Beta-distributed with parameters α and β, if the underlying density is

πα,β(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

where Γ is the gamma function. Further, the mean of a beta r.v. is α
α+β . Comparing (1.17) with

beta density, we have
θ | Dn ∼ Beta(Sn + 1, n− Sn + 1),

where ∼ is short hand for “distributed according to”. The posterior mean is given by

θ̄n =
Sn + 1

n+ 2
=

(
n

n+ 2

)
Sn
n

+

(
1− n

n+ 2

)
1

2
.

Thus, the posterior mean is a convex combination of the prior mean and the sample average, with
the latter factor dominating for large n.

Repeating the calculation in the example above, starting with a non-uniform prior π ∼
Beta(α, β), it is easy to see that

θ | Dn ∼ Beta(α+ Sn, β + n− Sn).

Notice that the special case of α = β = 1 corresponds to the uniform prior. The posterior mean
is given by

θ̄n =
α+ Sn

α+ β + n
=

(
n

α+ β + n

)
Sn
n

+

(
1− n

α+ β + n

)
α

α+ β
.

Exercise 1.4. Repeat the calculations in the example above for the case when p(X | θ) is
N (θ, σ2) and the prior π is N (θ0, σ

2
0). Conclude that the posterior density p(θ | Dn) corre-

sponds to N (θn, σ
2
n), where

θn =

(
nσ2

0

nσ2
0 + σ2

)
Sn
n

+

(
σ2

nσ2
0 + σ2

)
θ0.

Discuss the case when σ0 = 0 and σ0 6= 0 and n is large.
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1.9 Bayesian bandits

A Bayes approach to bandits would involve a prior over problem instances and the notion of
Bayes regret would be the regret suffered for each problem instance, combined with an averaging
over the problem instances through the prior. In contrast, the frequentist regret notion that we have
discussed earlier fixes the problem instance and considers the regret incurred for any algorithm
on the chosen problem instance. The crucial difference in the Bayesian view is that the problem
instance is chosen randomly through the prior. We make the Bayesian view of bandits precise
now.

1.9.1 Setting and Bayes regret

Consider a K-armed stochastic bandit problem, where the underlying arms’ distributions are
parameterized. In particular, for the sake of simplicity, we assume 1-parameter distributions for
the arms. Bernoulli and normal distribution with known variance are popular examples in this
class. Let θ1, . . . , θK denote the parameters for the arms i = 1, . . . ,K. The overall flow is as
follows:

1. The prior density π is used to pick a θ = (θ1, . . . , θK), which corresponds to a problem
instance. We assume independence in the prior, i.e., (θi)i=1,...,K is drawn independently
from (πi)i=1,...,K .

2. Conditioned on the problem instance corresponding to θ, the samples
(Yt,1)t≥1, . . . , Yt,K)t≥1 are jointly independent and iid with marginals denoted by
νθ1 , . . . , νθK . The expectation of the marginal distribution νθj is denoted by µj , for
j = 1, . . . ,K.

Let µ∗(θ) = maxi=1,...,K µi(θi) denote the mean of the best arm, under the parameter θ. The
expected regret Rn(θ), conditioned on the parameter θ, for an algorithm that chooses arm It in
round t = 1, . . . , n, is defined as

Rn(θ) =

n∑
t=1

E (µ∗ − µIt | θ) .

The Bayes regret RBn would average the regret defined above, over problem instances (or,
equivalently over the parameter θ), with the averaging governed by the prior density, i.e.,

RBn = Eπ(Rn(θ)) =
n∑
t=1

Eπ (E (µ∗ − µIt | θ)) .

1.9.2 Thompson sampling for Bernoulli bandits

We illustrate the main ideas behind the Thompson sampling algorithm, for the case when the
arms’ distributions are Bernoulli. Let θ = (θ1, . . . , θK) denote the vector of Bernoulli parameters.
From the discussion in the earlier section on Bayesian inference, it is apparent that a Beta prior
is a good choice for this problem, due to its conjugacy property. So, suppose that the prior
π = (π1, . . . , πK), with πi ∼ Beta(αi, βi).
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Under the Beta prior, the posterior update is straightforward. Letting It denote the arm pulled
by the bandit algorithm in round t and rt the sample reward obtained, the posterior update is

(αIt , βIt)← (αIt , βIt) + (rt, 1− rt).

What remains to be specified the decision rule for choosing arms in each round, based on the
beliefs specified by the posterior density p(θi | Ht) for each arm. Here
Ht = (aI1 , r1, aI2 , r2, . . . , aIt−1 , rt−1 is the history of actions chosen and sample rewards ob-
served up to time t.

A greedy playing choice is to select the arm with the highest posterior mean. In the
Bernoulli bandit setting considered here, this is equivalent to playing the arm that achieves
maxi=1,...,K

αi
αi+βi

. Such a decision rule is prone to high regret because of reasons similar to
those arguing against an algorithm that picks the arm with the highest sample mean (in the
frequentist setting). To illustrate, consider a contrived scenario as discussed in Russo et al. [2017],
where there are three arms, which have been pulled 1000, 1000 and 5 times and their posterior
means are 0.6, 0.6 and 0.4. The greedy choice would end up pulling arm 1, without resolving
the uncertainty around the mean of arm 3 and given the small number of samples used for arm
3, there is a positive probability that its mean is higher than 0.6. The UCB algorithm has an
exploration factor that ensures arm 3 ends up being pulled well enough to resolve the uncertainty
around its mean. The Thompson sampling (TS) algorithm achieves the same effect by sampling
from the posterior densities. With the Beta prior and posterior update as mentioned above, TS
choice for the arm It to be played in each round is given by

It = arg max
i=1,...,K

θ̂i, where θ̂i ∼ Beta(αi, βi).

Thus, TS obtains a random estimate of each arm’s mean, by sampling from its posterior density
and then plays the arm with the highest sample. An equivalent description for TS choice of arm
played in each round is given below:

It ∼ p(a∗ | Ht).

The statement above is equivalent to saying that TS plays the arm that has the highest posterior
probability of being the best arm, given the history of sample rewards so far. Finally, if we view
a∗ as a r.v. with density π(·) (i.e., the prior), then we have that

p(a∗ = i | Ht) = p(It = i | Ht), for i = 1, . . . ,K.

The statement above follows by definition of It and in simple terms means that the optimal arm
a∗ and the arm It played by TS have the same distribution, when conditioned on the history Ht.
Let us return to the three armed example used while discussing the shortcomings of the greedy
algorithm. In that example setting, TS would do better exploration as there would be a small
probability that arm 3’s posterior sample is better than that of arm 1. Moreover, the posterior
sampling ensures that arm 1, which has the highest sample mean would be played with much
higher probability than arm 3, while arm 2 would have zero chances, given it has lower sample
mean and enough samples to rule out any uncertainty.
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Kinship of TS to optimistic exploration ala UCB

Let It = arg maxi=1,...,K UCBt(i) denote the UCB index for arm i in round t, where UCBt(i) is
as defined earlier (in Section 1.5). Let θ denote the underlying parameter vector and µ∗(θ) =
maxi=1,...,K µi the optimal mean value, achieved by an arm a∗ ∈ {1, . . . ,K}. As mentioned in
the setting description above, we have assumed 1-parameter distributions for the arms and µi(θ)
denotes the mean value for arm i under parameter θi. Notice that

µ∗(θ)− µIt(θ) = µ∗(θ)− UCBt(It) + UCBt(It)− µIt(θ)
≤ µ∗(θ)− UCBt(a∗)︸ ︷︷ ︸

(A)

+ UCBt(It)− µIt(θ)︸ ︷︷ ︸
(B)

. (1.18)

The last inequality above holds since UCBt(It) ≥ UCBt(i), for all i. If UCBt(a∗) is an upper-
confidence bound, i.e., UCBt(a∗) > µ∗ with high probability, then the term (A) is negative and
can be ignored. On the other hand, the term (B) in (1.18) related to how well the algorithm has
estimated the mean of a sub-optimal arm and the confidence width that is of the order O(

√
logn
TIt (t))

would play a role in bounding (B).
Summing over t in (1.18), we obtain

RBn (UCB) ≤ E
n∑
t=1

(µ∗(θ)− UCBt(a∗)) + E
n∑
t=1

(UCBt(It)− µIt(θ)) . (1.19)

We now analyze the Bayes regret of TS. Letting It denote the arm played by TS in round t,
using samples from the posterior distributions for each arm and Ht denote the history of sample
rewards and actions chosen by TS upto time t, we have

E (µ∗(θ)− µIt(θ)) = E (E (µ∗(θ)− µIt(θ) | Ht))

= E (E (µ∗(θ)− UCBt(It) + UCBt(It)− µIt(θ) | Ht))

= E (E (µ∗(θ)− UCBt(a∗) + UCBt(It)− µIt(θ) | Ht)) (1.20)

= E (µ∗(θ)− UCBt(a∗))︸ ︷︷ ︸
(A’)

+E (UCBt(It)− µIt(θ))︸ ︷︷ ︸
(B’)

. (1.21)

In the above, for arriving at the equality in (1.20), we have used the fact that E (UCBt(a∗) | Ht) =
E (UCBt(It) | Ht), which holds because (i) a∗ and It (chosen by TS) have the same distribution
conditioned on the history Ht and (ii) UCBt(·) is a deterministic function given Ht.

Summing over t in (1.21), we obtain

RBn (TS) ≤ E
n∑
t=1

(µ∗(θ)− UCBt(a∗)) + E
n∑
t=1

(UCBt(It)− µIt(θ)) . (1.22)

The RHS in the equality above bears a striking resemblance to that in (1.19), even though the
TS algorithm did not incorporate confidence widths explicitly. Thus, posterior sampling in TS
is performing the task of optimistic exploration, while explicit confidence bounds did a similar
job in UCB algorithm. Further, any upper confidence bound can be used to arrive at (1.21) for
TS, while UCB algorithm requires clear specification of the confidence widths to handle the
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exploration-exploitation dilemma. This fact about implicitness of optimistic exploration in TS
makes it advantageous to use TS in complicated settings, where the confidence widths are not
apparent, for instance, due to dependencies between arms. The flip side to TS is the computational
expense involved in updating the posterior, a problem that can be eased with conjugacy under
well-known arms’ distribution choices.

The Bayes regret bound for TS in (1.22) holds in general, since no distributional assumptions
were made. We now specialize the bound for the case of Bernoulli bandit, which in turn leads to
a Õ(
√
KT ) bound on RBn (TS). For notational convenience, we shall drop the dependence on θ

in µi.

Let us define upper and lower confidence bounds as follows: For any arm i,

UCBt(i) = µ̂i(t− 1) +

√
2 log n

Ti(t− 1)
, and LCBt(i) = µ̂i(t− 1)−

√
2 log n

Ti(t− 1)
,

where µ̂i(·) and Ti(·) denote the sample mean and number of times arm i is pulled up to time t.
From the discussion in Section 1.3, we know that

P [µi(θ) > UCBt(i)] ≤
1

n
, for any arm i.

Hence,

E(µi(θ)− UCBt(i)) ≤
1

n
, ∀i,

⇒E(µ∗(θ)− UCBt(a∗)) ≤ max
i

E(µi(θ)− UCBt(i)) ≤
1

n
,

where we used the fact that, for any r.v. X with |X| ≤ c, EX ≤ cP (X > 0).

Thus, term (A) in (1.22) can be bounded as follows:

E
n∑
t=1

(µ∗(θ)− UCBt(a∗)) ≤
n∑
t=1

1

n
= 1.

For the term (B), observe that UCBt(i)−µi = LCBt(i)−µi+2
√

2 logn
Ti(t−1) . From Hoeffding’s

inequality, it is clear that

P [µi(θ) < LCBt(i)] ≤
1

n
, for any arm i.
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Hence, we have

E
n∑
t=1

(UCBt(It)− µIt) = E
n∑
t=1

(LCBt(It)− µIt) + E
n∑
t=1

2

√
2 log n

TIt(t− 1)

≤ 1 + 2 E

(
K∑
i=1

∑
t:It=i

√
2 log n

Ti(t− 1)

)

≤ 1 + 2
√

2 log n E

 K∑
i=1

Ti(t−1)∑
j=1

√
1

j


≤ 1 + 2

√
2 log n E

(
K∑
i=1

2
√
Ti(t− 1)

)

≤ 1 + 4
√

2 log n E


√√√√K

K∑
i=1

Ti(t− 1)


= 1 + 4

√
2 log n

√
Kn = O(

√
Kn log n).

To arrive at the penultimate inequality above, we have compared a sum with an integral, while
the last inequality follows from Cauchy-Schwarz.

The above analysis allows us to conclude the following:

Theorem 1.13. For the K-armed bandit problem with Bernoulli arms, the Bayes regret of
Thompson sampling satisfies

RBn (TS) = O(
√
Kn log n).

1.10 Bibliographic remarks

A bandit framework for learning dates back to Thompson [1933], where the motivation was
clinical trials. The stochastic K-armed bandit problem was formulated by Robbins [1952]. The
presentation of the ETC algorithm and concentration inequalities is based on blog posts by
Szepesvári and Lattimore [2017]. Some of the material on subgaussian r.v.s is taken from Martin
Wainwright’s course notes, see [Wainwright, 2015].

The seminal upper confidence type index strategy was first proposed by Lai and Robbins
[1985], refined to use a sample mean-based index by Agrawal [1995] and Burnetas and Katehakis
[1996]. The finite-time analysis of UCB using Hoeffding-type bounds was done by Auer et al.
[2002] and the UCB regret bound presented here closely follows this approach. To know further
into UCB-type approaches, the reader is referred to KL-UCB [Cappé et al., 2013], UCB-V
Audibert et al. [2009] and UCB-Improved [Auer and Ortner, 2010]. For further reading, the
reader is referred to [Salomon and Audibert, 2011] and the survey article [Munos, 2014].

The presentation of lower bounds is based on blog posts by Szepesvári and Lattimore [2017]
and Chapter 3 of [Slivkins, 2017]. The information theory background is based on the classic
text book by Cover and Thomas [2012].
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The presentation of Bayesian inference related topics is based on Chapter 11 of [Wasserman,
2013]. The Bayes regret analysis of Thompson sampling is from [Russo and Van Roy, 2014],
while a high-level introduction to Thompson sampling is available in [Russo et al., 2017]. A
frequentist regret analysis, which is skipped in this chapter, is available in [Korda et al., 2013,
Agrawal and Goyal, 2012, 2013, Kaufmann et al., 2012b]. For further reading on TS, the reader
is referred to [Liu and Li, 2016, Kaufmann et al., 2012a, Gopalan et al., 2014, Bubeck and Liu,
2013, Russo and Van Roy, 2016, 2013].
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