Linear models
Ref: Bishop's book
Max-likelihood \& leat-squans
$(*) \rightarrow y=\omega^{\top} x+\epsilon$, where $\in \sim N\left(0, \frac{1}{\beta}\right)$
Suppose $\mathcal{D}_{n}=\left\{\left(x_{i}, y_{i}\right), i_{2} 1 \ldots n\right\}$ fid \& satisfoyiz ((0).

$$
\mathcal{L}(w, \beta)=\prod_{T=1}^{n} \frac{\sqrt{\beta}}{\sqrt{2}-a} \exp \left(-\frac{\beta}{2}\left(y_{i}-\omega^{\top}{x_{i}}^{2}\right)^{2}\right)
$$

$$
l(\omega, \beta)=\log \mathcal{L}(\omega, \beta)=\frac{n}{2} \log \beta-\frac{n}{2} \log 2 \pi-\beta\left[\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\omega^{\top} x_{i}\right)^{2}\right]
$$

To maximize $l(\omega, \beta) \omega$ rt ω, it is enough to

$$
\hat{w}_{M L}=\arg _{\min } \frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2} \in \text { empirical risk }
$$

Line ar
Regression: Given data $\left\{\left(x_{i}, y_{i}\right) ; i=1 \ldots n\right\}$

$$
J(\omega)=\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}^{\top} \omega-y_{i}\right)^{2} x_{i} \in \mathbb{R}^{d}, y \in \mathbb{R}
$$

Minimize $\tau: \quad A=\left[\begin{array}{c}-x_{1}^{\top}- \\ -x_{2}^{\top}- \\ \vdots \\ -x_{n}^{\top}-\end{array}\right] n \times d$

$$
\begin{aligned}
& A \omega=\left[\begin{array}{c}
x_{1}^{\top} \omega \\
\vdots \\
x_{n}^{\top} \omega
\end{array}\right] \\
& A \omega-y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
x_{1}^{\top} \omega-y_{1} \\
\vdots \\
x_{n}^{\top} \omega-y_{n}
\end{array}\right] \\
& \left.y_{n}\right] \\
& (A \omega-y)^{\top}(A \omega-y)=\sum_{i=1}^{n}\left(x_{i}^{\top} \omega-y_{i}\right)^{2}=2 J(\omega) \\
& \nabla_{\omega} J(\omega)=\frac{1}{2} \nabla_{\omega}(A \omega-y)^{\top}(A \omega-y)=A^{\top}(A \omega-y)
\end{aligned}
$$

So, $\quad \nabla J(\omega)=0 \Leftrightarrow \quad\left(A^{\top} A\right) \omega=A^{\top} Y$
Can we write $\quad w=\left(A^{\top} A\right)^{-1} A^{\top} y$?
Yes, if A is full rank.
since full rank $A \Rightarrow A^{\top} A$ is invertible (Why! argue $\operatorname{rank}(A)=\operatorname{rant}\left(A^{\top} A\right)$ by showing

$$
\left.N(A)=N\left(A^{\top} A\right)\right)
$$

Augmented features: $\left\{\left(\tilde{x}_{i}, y_{i}\right), i=1 \ldots n\right\} \quad \tilde{x}_{i} \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \left.x_{i}=\left(1,<\tilde{x}_{i}\right)\right) \\
& f(x)=\sum_{i=1}^{d} \omega_{i} x_{i}+\omega_{0}=\omega_{\lambda}^{\top} \tilde{x}+w_{0}
\end{aligned}
$$

d-dimensianal obgols

Why w_{0} ?

$$
T(\omega)=\frac{1}{2} \sum_{i=1}^{n}\left(\omega^{\top} \tilde{x}_{i}+w_{0}-y_{i}\right)^{2}
$$

Take partial derivative wot wo

$$
\begin{aligned}
& \frac{\partial J}{\partial \omega_{0}}=0 \\
& \sum_{i / 1}^{n}\left(\omega^{\top} \tilde{x}_{i}+\omega_{0}-y_{i}\right)=0
\end{aligned}
$$

Simplifyry, $\quad \omega_{0}=\frac{1}{n} \sum_{i=c}^{n} y_{i}-\omega^{\top}\left(\sum_{i=1}^{n} \tilde{x}_{i}\right)$
Polynomial regression:

$$
d=1, \quad\left\{\left(x_{i}, y_{i}\right), i=1 \ldots n\right\} \quad x_{i}, y_{i} \in \mathbb{R}
$$

Use transformed features, i.e.,
the following model

$$
\hat{y}(x)=\underbrace{\omega_{0}+w_{1} x+w_{2} x^{2}+\cdots+w_{m} x^{m}}
$$

$m^{\text {th }}$ degree polynomial features - polynomial bans.

$$
\hat{y}(x)=\sum_{j=0}^{n} \omega_{j} \phi_{j}(x), \quad \phi_{j}(x)=x^{j}
$$

$$
\begin{aligned}
& =\omega^{\top} \phi(x) \\
\omega & =\left(\omega_{0}, \ldots \omega_{m}\right) \\
\phi(x) & =\left(\phi_{0}(x), \ldots \phi_{m}(x)\right) \\
& =\left(1, x, x^{2}, \ldots, x^{m}\right)
\end{aligned}
$$

ACternateby , $\quad \phi_{j}(1)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right) \in \begin{gathered}\text { hawnian } \\ \text { boñs }\end{gathered}$

(M)

Least-squares: heomctric vicwpoint

Recap of projections:-

$$
\begin{aligned}
p & =\hat{x} a \\
(b-\hat{x} a) & \perp a
\end{aligned}
$$

$$
\begin{aligned}
& a^{\top}\left(b-x^{A} a\right)=0 \\
& \hat{x}=\frac{a^{\top} b}{a^{\top} a} \\
& P=\hat{x} a=\left(\frac{a^{\top} b}{a^{\top} a}\right) a \\
& =a \frac{a^{\top} b}{a^{\top} a}=\left[\frac{1}{a^{\top} a}\left(a a^{\top}\right)\right] b \\
& P=\frac{1}{a^{T} a} a a^{\top}
\end{aligned}
$$

Projection natrix is (i) symmetric
(ii) $P^{2}=P$

Project onto a subspace:
A is a man-matrix.
Wat: Project bonto $\operatorname{col}(A)$

$$
\begin{aligned}
& \rightarrow \operatorname{Coc}(A)=\operatorname{span}(\text { columns of } A) \\
& P=A \hat{x} \\
& e=b-p=b-A \hat{x}
\end{aligned}
$$

e 1 every vector in $C(A)$
$\Rightarrow \quad e \in N\left(A^{\top}\right)$ because $N\left(A^{\top}\right) \perp((A)$

$$
\begin{aligned}
& A^{\top}(b-A \hat{x})=0 \\
& A^{\top} A \hat{x}=A^{\top} b \\
& \text { [observe } A=\left[\begin{array}{ccc}
1 & 1 \\
a_{1} & \ldots & a_{n} \\
1 & & 1
\end{array}\right] \\
& \left.\begin{array}{c}
a_{1}^{\top}(b-A \hat{x})=0 \\
\vdots \\
a_{n}^{\top}(b-A \hat{y})=0
\end{array}\right\} \\
& {\left[\begin{array}{c}
a_{1}^{T} \\
\vdots \\
a_{n}^{T}
\end{array}\right] \hat{a_{n}}\left[b-A_{\hat{s}}^{A}\right]=0} \\
& A^{\top}(b-A \hat{x})=0
\end{aligned}
$$

So, $\quad A^{\top} A \hat{x}=A^{\top} b$ \& this minimize

$$
E=\|A x-b\|^{2}
$$

If A is full col-rak, then

$$
\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

Projection $p=\hat{x}=A\left(\hat{A}^{\top} A\right)^{-1} A^{\top} b$
Example:-

$$
\left[\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
\theta^{\prime} \\
\theta^{\prime \prime}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]
$$

Wont to solve $A \theta=b$

Check if b is in $C(A)$.

$$
\left[\begin{array}{cc|c}
-1 & 1 & 1 \\
+1 & 1 & 1 \\
2 & 1 & 3
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Least-squares: $\quad A^{\top} A \hat{\theta}=A^{\top} b$

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right] \\
& {\left[\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
\hat{\theta}^{\prime} \\
\hat{\theta}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
6 \\
5
\end{array}\right]} \\
& \hat{\theta}^{\prime}=\frac{4}{7} \quad \hat{\theta}^{4}=\frac{9}{7}
\end{aligned}
$$

$$
P_{1}=\frac{5}{7}, \quad P_{2}=\frac{13}{7}, \quad P_{3}=\frac{17}{7}
$$

$$
\begin{aligned}
& E^{2}=\|b-A \hat{\theta}\|^{2} \\
& =\left[1-\left(-\frac{4}{7}+\frac{9}{7}\right)\right]^{2}+ \\
& +\left[1-\left(\frac{4}{7}+\frac{9}{7}\right)\right]^{2}+\left[3-\left(\frac{8}{7}+\frac{9}{7}\right)\right]^{2} \\
& =+\frac{2}{7} \\
& e=b-p=\left(\frac{2}{7},-\frac{6}{7}, \frac{4}{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
& e \perp(-1,1,2) \quad e \perp(1,1,1) \\
& a_{1} \\
& a_{2}
\end{aligned}
$$

BIAS-VARIANCE TRADE OFF
$f(.) \rightarrow$ predictor ie., $f(a)$ is the prediction for input feature $x, 4 y$ is the target suppose (x, y) are chosen uris some distribution g. Then, the expected loss or the "risk" is

$$
R(f)=\underset{(\underset{\text { over }}{ } x, y}{\left.E(f(x)-y)^{2}\right)}
$$

Claim: $f^{*}(x)=E[y \mid x]$ is the best predictor, ie., f^{*} minimizes $R(f)$.

Pf:

$$
\begin{aligned}
& E\left((f(x)-y)^{2}\right) \\
= & E\left[\left(f(x)-E[y \mid x]+E[y[x]-y)^{2}\right]\right.
\end{aligned}
$$

(x) $\left.E(f(x)-y)^{2}\right)=E(f(x)-E[y \mid x))^{2}+E\left[(E(y \mid x)-y)^{2}\right]$

个 \uparrow or f preset only a this form
noise term ${ }^{\epsilon}$
(*) is minimized for $f=E[y \mid x]$

In a typical ML setting, $R(f)$ Cannot be evaluated for a given f, since the underlying distributions are unknown.

So, collect training data $\left\{\left(x_{i}, y_{i}\right), i=1-n\right\}$ sampled lid from \mathcal{D}, and minimize

$$
\text { Empirical }_{\text {risk }} \rightarrow R_{n}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

Intuitively,
f_{1} is very simple
f_{3} is very accurate
Maybe f_{2} is the right fit
So, it is not enough to we $f_{n}(f)$ to judge f, since f_{3} minimizes $R_{n}(f)$ (\& fits noise). This phenomenon is referred to as "overfiting".

$$
\begin{aligned}
& \text { Test generalization error }=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-f\left(\bar{x}_{i}\right)\right)^{2} \text {, where } \\
& \text { for } f
\end{aligned}
$$

$\left\{\left(\bar{x}_{i}, \bar{y}_{i}\right), i=1 \ldots m\right\}$ is the test data generated usia distribution \mathcal{D} (yod for generating train g data as well).

Goal: $\quad \min _{f} E\left(\left(f_{D}(x)-y\right)^{2}\right)$
$f_{D}(\cdot) \rightarrow$ predictor learnt wing some datalet D.

$$
\begin{aligned}
& E\left(\left(f_{D}(x)-y\right)^{2}\right) \\
& \begin{array}{c}
=E\left(\left(f_{D}(x)-E[y \mid x]\right)^{2}\right)+E\left(\begin{array}{c}
\left.(E(y \mid x)-y)^{2}\right) \\
\nu_{1} \\
\text { of } \\
\text { (I) term } \\
\\
\\
\text { (unavoidable) }
\end{array}\right)
\end{array} \\
& (I)=E\left(\left(f_{D}(x)-E(y \mid x)\right)^{2}\right) \\
& E_{D}\left(f_{D}(x)\right) \\
& \begin{aligned}
=E[& \left(f_{D}(x)-E_{D}\left(f_{D}(x)\right)\right)^{2} \\
& +\left(E_{D}\left(f_{D}(x)\right)-E(y \mid x)\right)^{2}
\end{aligned} \\
& \left.=E\left(f_{D}(x)\right) p x\right) \\
& \text { Fix } x \& \\
& \text { average over } \\
& +2\left(f_{D}(x)-E_{D}\left(f_{D}(x)\right)\left(E_{D}\left(f_{D}(x)\right)-E(y \mid x)\right)\right] \\
& \begin{array}{l}
\text { many datarcts, } \\
\text { say } D_{1}, D_{2} \ldots-
\end{array} \\
& =E\left[\left(f_{D}(x)-E_{D}\left(f_{D}(x)\right)\right)^{2}\right] \rightarrow \text { Variance } \\
& +E\left[\left[E_{D}\left(f_{D}(x)\right)-E(y \mid x)\right]^{2}\right] \rightarrow\left(B_{i a s}\right)^{2}
\end{aligned}
$$

It is easy to see that as f grows complex, the bias decreases.

Claim: As f grows complex, variance increases.
"Curse of dimensionality".

\#points required to sample a unit hypercube grows exponentially with the dimension $\min \hat{R}(f)$, $\min \hat{R}(f), \ldots 4$ so on, where $f \in F_{1} \quad f \in F_{2}$
$7_{i}=$ set of all polynomial with
Legree at most i.
Vector of coefficients of polynomial in 7_{i} sit in \mathbb{R}^{2+1}

With increasing i, one need to explore more points to find the best f in 7 ;
($O R$)
Given a fixed \# of points, the parameter space is explored less efficiently for higherorder 7 , leaking to errors.

A work around: Add a penalty cost, i.e., solve the following variant of ERM:

$$
\begin{equation*}
\left.\frac{1}{2} \sum_{j=1}^{n}\left(y_{j}-f\left(x_{j}\right)\right)^{2}+\lambda L L_{i}\right) \tag{*}
\end{equation*}
$$

Complexity cost
From ML discussion before,
$\min \frac{1}{2} \sum_{j=1}^{n}\left(y_{j}-f\left(x_{j}\right)\right)^{2} \Leftrightarrow \max \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left[\frac{\left(y_{i}-f\left(x_{i}\right)^{2}\right)}{2}\right)$
where $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$
\rightarrow stenderd Gaussian
Similarly, (*) Can be vicued as

$$
\min \frac{1}{2} \sum_{j^{x}}^{n}\left(y_{j}-f\left(x_{j}\right)\right)^{2}+\lambda C(i)
$$

$\max \prod_{j^{21}}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\left(y_{j}-f\left(x_{j}\right)\right)^{2}}{2}\right) \times \underbrace{((\lambda) \exp (-\lambda C(i))}_{\text {prior probability }}$ prior probability on 7i

A choice for $L(i): L(i)=\|\beta(i)\|^{2}$

Regularized version of regression:- (Ridge regresion)

$$
\hat{R}_{n}(f)=\min _{w} \frac{1}{2} \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda\|w\|^{2}
$$

Too small a $\lambda \rightarrow$ no effect of regularization
(overfit)
Too Large a $\lambda \rightarrow$ under fit
Ref: Table 1.2

Illustration of biai-variace tradeoff for a linear model';

Consider the model $y=\omega^{\top} x+\epsilon, \in \sim N\left(0, \frac{1}{\beta}\right)$
The ML estimate $\hat{\omega}_{M L}$ for ω, given $D=\left\{\left(x_{i}, y_{i}\right), i=1=-n\right\}$

$$
\begin{aligned}
& \hat{\omega}_{M L}=\left(A^{\top} A\right)^{-1} A^{\top} Y \text {, where } \\
& A=\left(\begin{array}{c}
x_{1}^{\top} \\
\vdots \\
x_{n}^{\top}
\end{array}\right), \quad Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \eta=\left(\begin{array}{c}
t_{1} \\
\vdots \\
f_{n}
\end{array}\right)
\end{aligned}
$$

"Assume Cols of A are linearly in dependent",
(a)

$$
\begin{aligned}
E\left(\hat{w}_{M C}\right) & =E\left(\left(A^{\top} A\right)^{-1} A^{\top} y\right) \\
& =\left(A^{\top} A\right)^{-1} A^{\top} E \mathcal{Y} \\
& =\left(A^{\top} A\right)^{-1} A^{\top} A W \\
& =W .
\end{aligned}
$$

(b) $\operatorname{Var}\left(\hat{w}_{M C}\right)$

$$
\begin{aligned}
& \left.=E\left(\hat{\omega}_{M L}-w\right)\left(\hat{\omega}_{M L}-w\right)^{T}\right) \\
& =E\left[\left(\left(A^{\top} A\right)^{-1} A^{\top} y-w\right)\left(\left(A^{\top} A\right)^{-1} A^{\top} y-w\right)^{\top}\right] \\
& =E\left[\left(\left(A^{\top} A\right)^{-1} A^{\top} 1-w\right)\left(Y^{\top} A\left(A^{\top} A\right)^{-1}-\omega^{\top}\right)\right] \\
& =\left(A^{\top} A\right)^{-1} A^{\top} E\left[Y Y^{\top}\right] A\left(A^{\top} A\right)^{-1}-w w^{\top} \\
& =\left(A^{\top} A\right)^{-1} A^{\top} E\left[(A \omega+\eta)(A W+\eta)^{\top}\right] A\left(A^{\top} A\right)^{-1} \\
& \text { - } w w^{\top} \\
& \begin{aligned}
=\left(A^{\top} A\right)^{-1} A^{\top}\left[A W w^{\top} A^{\top}+\frac{1}{\beta} I_{m \times n}\right. &] A\left(A^{\top} A\right)^{-1} \\
& -\omega w^{\top}
\end{aligned} \\
& =\omega \omega^{\top}+\frac{1}{\beta}\left(A^{\top} A\right)^{-1}-w w^{\top} \\
& =\frac{1}{\beta}\left(A^{\top} A\right)^{-1}
\end{aligned}
$$

(C) Bias-variance decomposition

$$
\begin{aligned}
& E\left(\left(f_{D}(x)-y\right)^{2}\right) \\
&=E_{x, y}(\frac{(E(y \mid x)-y)^{2}}{\text { noise }}+E_{x}[\underbrace{\left(E_{D}\left(f_{D}(x)\right)-E(y \mid x)\right.}_{\text {bis }})] \\
&+E(\underbrace{\left.f_{D}(x)-E_{D}\left(f_{D}(x)\right)\right)^{2}}_{\text {Variance }})
\end{aligned}
$$

for linear case, $\quad f_{D}(x)=\hat{\omega}_{m L}^{\top} x$

$$
\begin{aligned}
\text { Bias } & =E_{0}\left(\hat{\omega}_{m L}^{\top} x\right)-w^{\top} x=0\binom{\text { from }}{\text { fort (a) }} \\
V_{\text {ariance }} & =E\left(\left(f_{D}(x)-E_{D}\left(f_{D}(x)\right)\right)^{2} \mid x\right) \\
& =\tilde{E}\left(\left(x^{\top} \hat{\omega}_{M L}-x^{\top} \omega\right)^{2}\right) \\
& =\tilde{E}\left((x) \quad\left(x^{\top}\left(A^{\top} A\right)^{-1} A^{\top} y-x^{\top} w\right)^{2}\right) \\
& =\widetilde{E}\left(\left(x^{\top}\left(A^{\top} A\right)^{-1} A^{\top}(A W+\eta)-x^{\top} W\right)^{2}\right) \\
& =\tilde{E}\left(\left(x^{\top} W+x^{\top}\left(A^{\top} A\right)^{-1} A^{\top} \eta-x^{\top} W\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\tilde{E}\left(x^{\top}\left(A^{\top} A\right)^{-1} A^{\top} \eta\right)^{2}\right) \\
& =\vec{E}\left(\left(x^{\top}\left(A^{\top} A\right)^{-1} A^{\top} \eta\right)\left(x^{\top}\left(A^{\top} A\right)^{-1} A^{\top} \eta\right)^{\top}\right) \\
& =x^{\top}\left(A^{\top} A\right)^{-1} A^{\top} \underbrace{E}_{=\frac{1}{\beta} I_{n+n}}\left(\eta \eta^{\top}\right)\left(x^{\top}\left(A^{\top} A\right)^{-1} A^{\top}\right)^{\top} \\
& =\frac{1}{\beta} x^{\top}\left(A^{\top} A\right)^{-1} A^{\top} A\left(A^{\top} A\right)^{-1} x \\
& =\frac{1}{\beta} x^{\top}\left(A^{\top} A\right)^{-1} x
\end{aligned}
$$

Hew.
(1) Let $C=A\left(A^{\top} A\right)^{-1} A^{\top}$

Show that C is a projection matrix ice, (is symetic $\mathrm{HC}^{2} 2 \mathrm{C}$
(2) Check if $(I-C)$ is a projection matrix
(3) Let $S=\operatorname{span}($ Cols of A). Show kat, for any $2 \in \mathbb{R}^{d}, \quad C_{2}$ is the projection of 2 onto S.
(9) Show that $A \hat{\omega}_{M L}$ is orthogonal to $1-A \hat{\omega}_{m L}$.
H.W. Redo the exercise for a ridge regression-bosed estimate $\hat{\omega}_{\text {Reg }}$.
given $\quad \mathcal{D}=\left\{\left(x_{i}, y_{i}\right), i=1-\hbar\right\}$
(ii) $E\left(\hat{\omega}_{\text {Reg }}\right), \operatorname{Var}\left(\hat{\omega}_{\text {Reg }}\right)$
(iii) (alculate the bias \& variance components.

