

 $R(F) = E\left(\left(F(x) - y\right)^{2}\right)$) over x,y $f^{*}(x) = E[y|x]$ is the best predictor, i.e., f^{*} minimizes R(f). Clain: $E\left(\left(f(x)-y\right)^{2}\right)$ PF: $= E\left[\left(f(x) - E\left[y(x] + E\left[y(x] - y\right)^{2}\right]\right]$ (*) $E(f(x)-y)^2) = E(f(x) - E(y|x))^2 + E[(E(y|x)-y)^2]$ Predictor of present on by in this term hoise term (*) is minimized for f=E[y]] In a typical ML setting, R(f) Cannot be evaluated for a given of since the underlying distributions are unknown. So, collect training data { (x;, y;), i=1--n} sampled its from D, and minimize Empirical -> $R_n(f) = \frac{1}{2} \sum_{n=1}^{\infty} (f(x_i) - y_i)^2$

y tr In his tive by , f, is very single fy is very accurate Maybe fz is the right fit So, it is not enough to me half) to judge f, since f, minimizes & (E) (& fits norse). This phenomenon is referred to as "over-fitting". Test error = $\frac{1}{1} = \frac{\sum_{i=1}^{m} (\overline{y}_i - f(\overline{x}_i))^2}{\sum_{i=1}^{n} (\overline{y}_i - f(\overline{x}_i))^2}$, where ¿(x;,y,), i=1--m3 is the test data generated using distribution D (wedfor generating training Lata as well). K-Singlest models successfort ? overfitting models Jeaniz crior Tut Error LELOT Complexity *complexity* (e.g., degree of The polynomial) PTO

A work around: Add a penalty cost, i.e., solve the following variat of ERM: $\frac{1}{2} \frac{S}{J^{1}} \left(\frac{y_{j}}{y_{j}} - f(x_{j}) \right)^{2} + \lambda L(i) - (x_{j})$ $\int Complexity Cost$ From ML Liscussion before, $\min \frac{1}{2} \frac{\hat{S}(y_{j} - f(a_{j}))}{\int_{2}^{2} (z_{j} - f(a_{j}))} (z_{j}) \max \frac{1}{\int_{2}^{2} (z_{j} - f(a_{j}))}{\int_{2}^{2} (z_{j} - f(a_{j}))}$ where $y_{i} = f(x_i) + f_i$ > Stand)+ fi >> Stondord Gautian Similarly, (*) can be viewed as $\min \frac{1}{2} \sum_{j=1}^{2} \left(\frac{1}{j} - f(x_{j}) \right)^{2} + \lambda C(i)$ $\max \prod_{j=1}^{n} \frac{\left(\frac{y_{j}}{2} - f(x_{j})\right)^{2}}{2} \propto \left(\frac{y_{j}}{2} - \frac{f(x_{j})}{2}\right) \approx \left(\frac{y_{j}}{2} - \frac{y_{j}}{2}\right)$ Ir prior probability on 7; A choice for L(i): $L(i) = ||B(i)||^2$

Regalarized version of regression: (Ridgergrassion)

$$\hat{R}_{n}(f) = \min_{W} \frac{1}{2} \sum_{i=1}^{N} (w^{T} i; -y_{i})^{2} + \lambda \|w\|^{2}$$

Too small a $\lambda \rightarrow no$ effect of regularization
(overfit)
Too (arge a $\lambda \rightarrow w$ der fit
Def : Table 1.2
Illustration of bios-variance tradeoff for a
Unear model;
Consider the model $y_{2} = w^{T} x + f$, $f \sim N(0, \frac{1}{p})$
The ML extincte \widehat{w}_{ML} for $w, given D = \hat{f}(x; y_{i}), \hat{f} = h, \hat{f}^{T}$
 $\widehat{W}_{ML} = (A^{T} A)^{-1} A^{T} Y, where
 $A = \begin{pmatrix} x_{1}^{T} \\ x_{n} \end{pmatrix} Y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} A = \begin{pmatrix} f_{1} \\ \vdots \\ y_{n} \end{pmatrix}$
"Assume (als of A are linearly independent",$

$$= \underbrace{E}^{i} \left(x^{T} (A^{T}A)^{-1} A^{T} \eta \right)^{2} \right)$$

$$= \underbrace{E}^{i} \left((x^{T} (A^{T}A)^{-1} A^{T} \eta) (x^{T} (A^{T}A)^{-1} A^{T} \eta) \right)$$

$$= \underbrace{x}^{T} (A^{T}A)^{-1} A^{T} \underbrace{E} (\eta \eta^{T}) (x^{T} (A^{T}A)^{-1} A^{T})^{T} \right)$$

$$= \underbrace{x}^{T} (A^{T}A)^{-1} A^{T} \underbrace{E} (\eta \eta^{T}) (x^{T} (A^{T}A)^{-1} A^{T})^{T} \right)$$

$$= \underbrace{x}^{T} (A^{T}A)^{-1} A^{T} A (A^{T}A)^{-1} x$$

$$= \underbrace{x}^{T} (A^{T}A)^{-1} A^{T} A (A^{T}A)^{-1} x$$

$$= \underbrace{x}^{T} (A^{T}A)$$

r g given D= { (ki, y:), :=1-h3 (ii) E (with the provide the provide the provide the providence of the provide the providet the provide the provide the provide the provide the provi (jī.) (alculate the birs 4 voriance Longonents.