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ABSTRACT

This book deals with methods for stochastic or data-driven
optimization. The overall goal in these methods is to mini-
mize a certain parameter-dependent objective function that
for any parameter value is an expectation of a noisy sample
performance objective whose measurement can be made
from a real system or a simulation device depending on the
setting used. We present a class of model-free approaches
based on stochastic approximation which involve random
search procedures to efficiently make use of the noisy ob-
servations. The idea here is to simply estimate the minima
of the expected objective via an incremental-update or re-
cursive procedure and not to estimate the whole objective
function itself. We provide both asymptotic analysis as well
as finite sample analysis of the procedures used for convex
and non-convex objectives.

We present algorithms that either estimate the gradient in
gradient-based schemes or estimate both the gradient and
Hessian in Newton-type procedures using random direction
methods. As mentioned these approaches estimate the gradi-
ent and/or Hessian using sample observations and hence are
zeroth order methods. We provide both asymptotic conver-
gence guarantees in the general setup as well as asymptotic
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normality results for various algorithms. We also provide
an introduction to stochastic recursive inclusions as well as
their asymptotic convergence analysis. This is necessitated
because many of these settings involve set-valued maps for
any given parameter. We finally also present a couple of
interesting applications of these methods in the domain
of reinforcement learning. A large portion of this work is
motivated from our own contributions to this domain.



Preface

This monograph is written with the idea of providing a self-contained
introduction to stochastic gradient algorithms for solving a zeroth-order
optimization problem. Towards this goal, we have included a detailed
introduction to stochastic approximation, which can be of interest to
readers working in allied areas such as reinforcement learning, and first-
order stochastic smooth optimization. We provide a detailed coverage
of zeroth-order gradient estimates, including classic ones such as SPSA,
SF, and more recent ones such as RDSA and generalized SPSA. The
convergence analysis includes both asymptotic guarantees via the ODE
and DI approaches, as well as non-asymptotic bounds. The convergence
analysis should be of interest to students as well as researchers working
in the broad area of stochastic optimization and machine learning.
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1
Introduction

1.1 Zeroth-order optimization

The underlying processes in many engineering systems can often be
quantified by defining suitable objective functions. However, quite often,
these functions are not analytically known but their noisy samples are
available. Further, one is often interested in finding optima of such
functions despite the challenge that the functions themselves are not
known analytically. One may be tempted to try and estimate the whole
function through multiple observations from the underlying process
at different parameter values that would in turn reveal the function
optima. However, such a function estimation scheme would likely be
extremely computationally intensive, more so, since we are interested
in obtaining the optima of objective functions over continuously valued
sets.

We shall primarily be concerned here with the problem of finding
the minima of a performance objective whose analytical form is not
known, however, noise-corrupted observations or samples from such a
function are made available either through a simulation device or as
‘real’ data. The solution approaches that we present shall not aim at
estimating the objective function itself but make use of the available

4
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Figure 1.1: Model-free optimization framework

‘noisy’ data recursively and converge thereby to the optima. Thus, in
the end, even though we may still not know the precise nature of the
performance objective, the scheme would nonetheless converge to an
optimum of the unknown function.

One of the primary goals in model-free, i.e., purely data-driven
or simulation-based optimization methods is to find the minima of a
real-valued function f that is often not known analytically. Thus, the
goal is to find a parameter θ∗ such that

θ∗ ∈ arg min
θ
f(θ), (1.1)

given noisy samples or observations of the performance objective f . As
illustrated in Figure 1.1, an iterative optimization algorithm queries
the zeroth-order oracle for the objective value at the parameter θn at
time instant n, and receives the observation f(θn) + ξn. Here ξn, n ≥ 1
is a sequence of ‘noise’ random variables. For instance, as we consider
in this book, this sequence could be a martingale difference sequence.
This is the basic setting of simulation or data driven optimization. It is
important to note here that the noisy observations f(θn) + ξn above
cannot be separated into the objective function f(θn) and the noise
component ξn to infer the objective function value directly from the
given noise corrupted data. It is assumed that the noisy data samples are
obtained either from a simulation device or a real system. The obtained
data is then used by the optimization algorithm. Since we do not
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estimate the objective function f and yet run the optimization procedure
using only noisy samples, we many times refer to techniques that solve
such problems as model-free optimization methods. On the contrary,
approaches that are based on estimating the function f are called model-
based optimization techniques. The performance value f(θ) and the
sample performance g(θ, ξ) = f(θ) + ξ are related as f(θ) = E[g(θ, ξ)],
where E[·] denotes the expectation w.r.t the distribution of ξ. It is
assumed here that the noise random variable ξ has a mean of zero.

Note also that (1.1) contains ‘∈’ instead of ‘=’. This is because the
minimizer need not be unique in general. Further, finding one of the
minimizers is usually sufficient in most cases (as opposed to finding all of
them). It must be noted however that finding a global minimum, in this
setting, is far more computationally intensive in general, as compared
to finding a local minimum. In this book, we shall focus on solution
methods that aim at finding a local minimum. In most applications, the
minima are also isolated in the sense that around any minimum, one
can draw a ball of a small enough radius such that it contains only the
given (and no other) minimum.

1.2 Applications

Several real-world systems in disciplines such as networks, healthcare,
finance, are too complex to directly optimize among a set of choices.
A viable alternative is to build a simulator for various components
of the system, and then perform the optimization over decisions or
choices via simulator access. Simulation optimization refers to this set-
ting, where the goal is to find the optimum choice for a certain design
parameter. For a given parametric description of the system, perfor-
mance evaluations using the simulator are typically noisy (i.e., have a
spread or distribution), and each simulation to obtain an evaluation is
computationally expensive. Thus, in addition to searching for optima,
a simulation optimization algorithm has to ensure that the number of
evaluations is minimum.

Simulation optimization falls under the realm of zeroth-order opti-
mization, and gradient-based algorithms are efficient solution alterna-
tives for finding an optimum using observations from a simulator. The
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reader is referred to (Fu, 2015) for a detailed introduction to simulation
optimization. For a survey of simulation software catering to a variety
of applications, see (Swain, 2017).

Another area of practical interest for zeroth-order optimization
algorithms is reinforcement learning (RL) (Sutton and Barto, 2018;
Bertsekas and Tsitsiklis, 1996). In a typical RL setting, the goal is
to maximize the cumulative reward over time by learning an optimal
policy to choose actions. The underlying formalism is Markov decision
process (MDP), where the algorithm interacts with the environment
through actions, and as a response the environment changes its state
and provides a reward. In an MDP, the next state depends on the
current state and the chosen action.

Policy gradient methods are a popular solution approach for such
problems. The basis for such algorithms is the policy gradient theorem,
which motivates the uses of likelihood ratio based gradient estimates.
While such an approach of obtaining unbiased gradient estimates works
in an risk-neutral RL setting, the same is not true if one incorporates
a risk measure in the problem framework. As an example, one could
modify the problem to find a policy with the highest mean cumulative
discounted reward, while imposing a constraint on the variance. In
such a setting, it is difficult to employ the likelihood ratio method for
estimating gradient, and simultaneous perturbation methods, which we
discuss in detail in this book, are a viable alternative. In (Prashanth and
Ghavamzadeh, 2016), the authors employ such an approach to find a risk-
optimal policy, which handles a mean-variance tradeoff. Moreover, in
(Vijayan and Prashanth, 2021), the authors show that a policy gradient
algorithm employing the simultaneous perturbation method for gradient
estimation performs on par with REINFORCE — an algorithm that
uses the likelihood ratio method for gradient estimation.

1.3 Stochastic approximation algorithms

The algorithms that we shall present here are all going to be of the
stochastic approximation type. The basic stochastic approximation
scheme, also referred to as the Robbins-Monro algorithm, named after
it’s inventors, H.Robbins and S.Monro, see (Robbins and Monro, 1951),
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was designed to find the zeros of an unknown function h : Rd → Rd. The
algorithm tunes up the parameter values incrementally based on noisy
observations of the function h obtained using the most recent parameter
values as they become available. The basic stochastic approximation
scheme has the following form:

θn+1 = θn + a(n)(h(θn) + ξn), (1.2)

starting from an initial parameter estimate θ0 ∈ Rd. Here, a(n), n ≥ 0
is the step-size sequence of positive real numbers. Given the parameter
update θn at the nth epoch, a noise-corrupted measurement h(θn) + ξn
of the objective is obtained and used to update the parameter θn to
obtain a new parameter θn+1 according to (1.2). As can be seen, smaller
step-sizes result in reducing the noise-effects, thereby resulting in more
graceful albeit slower convergence. On the other hand, larger step-sizes
result in faster tracking of the function’s zeros though at the cost of
higher variance in the iterates. A crucial aspect is one of ensuring
convergence that would result in the desired outcome. This and other
related aspects will be made more precise in later chapters.

Typical applications of stochastic approximation algorithms include
finding the fixed points of a certain function as well as finding a minimum
of an objective function both under noisy observations. In the former
case, h(θ) in (1.2) can have the form h(θ) = g(θ)− θ for some function
g : Rd → Rd, while in the latter, h(θ) can be of the form h(θ) = −∇f(θ)
for some function f : Rd → R. The gradient form of the objective will
be of interest to us here except that we will assume that just like the
objective function, even the gradient is also not known analytically to us.
Noisy function estimates will be used to estimate the gradient. We shall
also present some recent Hessian estimation approaches in addition to
gradient estimation procedures that will be used in noisy Newton-based
schemes. We shall see that one may write the noisy gradient scheme
involving gradient estimates as

θn+1 = θn + a(n)(−∇f(θn) + ξn + ηn). (1.3)

Here h(θn) in (1.2) is replaced with −∇f(θn). However, the important
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difference is that there is an extra error term ηn in (1.3) that is however
not present in (1.2). This error arises because of gradient estimates
obtained from noisy objective function observations.

The original Robbins-Monro algorithm was aimed at solving the
root finding problem under noisy observations of the function objective
with the noise random variables assumed to be forming an independent
and identically distributed (i.i.d) sequence. Under certain conditions,
convergence was shown to the root of the desired system of equations
in the mean-squared sense. Kiefer and Wolfowitz developed a stochastic
approximation algorithm to find the maximizer of a given objective func-
tion, see (Kiefer and Wolfowitz, 1952). We shall discuss this algorithm
in more detail below. This algorithm used finite-difference gradient
estimates derived from noisy function measurements. As with (Robbins
and Monro, 1951), the objective function in (Kiefer and Wolfowitz, 1952)
was considered to be a regression function. The iterate-sequence was
shown to converge in probability to the optimum. In (J.R.Blum, 1954),
weaker conditions were developed to ensure that both Robbins-Monro
and Kiefer-Wolfowitz algorithms converge with probability one to the
desired equilibria. In (A.Dvoretzky, 1956), more general objective func-
tion was considered and under weaker conditions both mean-squared
convergence and convergence with probability one were shown.

In another major development, the ordinary differential equation
(ODE) based analysis of stochastic approximation algorithms was in-
troduced by Ljung, 1977 and Kushner and Clark, 1978. It was shown
that under certain conditions, one may study the asymptotic behavior
of a stochastic approximation algorithm by analyzing the same for
an associated ODE. The ODE associated with (1.2) can be seen to
correspond to

θ̇(t) = h(θ(t)). (1.4)

The main result of Ljung, 1977 and Kushner and Clark, 1978 would say
the following:
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Let θ∗ denote a stable equilibrium of (1.4). Then under certain
conditions on the driving vector field h(·), noise sequence ξn, n ≥ 0,
learning rates a(n), n ≥ 0, if the sequence θn governed by (1.2)
enters infinitely often a compact subset of the domain of attraction
of θ∗, then θn → θ∗ almost surely.

The above corresponds to a strong notion of recurrence for the
ODE and may not be applicable in many situations. In (Benaïm, 1996),
(Benaïm, 1999) and (Benaïm and Hirsch, 1996), the ODE based analysis
of (Ljung, 1977) and (Kushner and Clark, 1978) has been extended to
the setting where the asymptotic behavior of the algorithm is analyzed
via a weaker notion of recurrence, namely chain recurrence, of the
underlying ODE. Most of the modern ODE based analyses follow the
latter approaches.

1.4 Zeroth-order stochastic gradient algorithm

Consider the following stochastic approximation scheme:

θn+1 = θn + a(n)(−∇̂f(θn)), (1.5)

where ∇̂f(θn) is a noisy estimate of the gradient of f(θn), with f : Rd →
R being the objective function to be minimized. The Kiefer-Wolfowitz
scheme, see (Kiefer and Wolfowitz, 1952), estimates the gradient ∇f(θ)
using the following estimator: For i = 1, . . . , d,

∇̂if(θn) = 1
2δ
(
f(θn + δei) + ξ+

i (n)− f(θn − δei)− ξ−i (n)
)
,

(1.6)
= 1

2δ
(
(f(θn + δei)− f(θn − δei)) +

(
ξ+
i (n)− ξ−i (n)

))
,

where, ∇̂if(θn) denotes the estimate of the ith partial derivative of
f(θn). Further, ei = (0, . . . , 0, 1, 0, . . . , 0)T is the unit d-dimensional
vector with 1 in the ith place and 0 elsewhere. Here ξ+

i (n) (resp. ξ−i (n))
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is the noise associated with the estimate of the function f measured at
the parameter value (θn + δei) (resp. (θn − δei)).

Notice that in (1.6), assuming the function f to be sufficiently
smooth, a first order Taylor’s expansion would lead to

f(θn + δei)− f(θn − δei)
2δ = ∇if(θn) + o(δ).

This happens because the first and the third terms in the Taylor’s
expansion get cancelled as a consequence of the balanced nature of
the iterates. The term comprising o(δ) contributes to the bias in the
gradient estimates. In relation to (1.3), if δ → 0 as n→∞, the analysis
turns out to be a simple extension of the corresponding analysis for
(1.2), see Chapter 2 of (Borkar, 2022). However, letting the δ-parameter
approach zero has the undesirable effect of constraining the choice of
the step-size sequence {a(n)}. For a fixed δ, it can be shown that for an
algorithm as in (1.5) with say the Kiefer-Wolfowitz gradient estimator
(1.6), given ε > 0, ∃δ0 > 0, such that when the ‘perturbation parameter’
δ ∈ (0, δ0], the term ηn is O(ε).

A disadvantage with the above gradient estimator is that it requires
2d function measurements or simulations in order to run one update
of the parameter according to (1.5). The amount of computation thus
can be very high for a large value of d. In (Spall, 1992), the following
estimator for the gradient has been proposed that uses only two function
measurements regardless of the value of d.

∇̂if(θn) = (f(θn + δ∆(n)) + ξ+(n)− f(θn − δ∆(n))− ξ−(n))
2δ∆i(n) .

(1.7)

Here, ∆(n) = (∆1(n), . . . ,∆d(n))T is a vector of i.i.d random vari-
ables ∆j(n), j = 1, . . . , d, n ≥ 0 that are typically zero-mean with a
finite inverse moment bound. Independent symmetric Bernoulli random
variables such as ∆j(n) = ±1 w.p. 1/2 are commonly used here. A
Taylor’s expansion as with the Kiefer-Wolfowitz estimator would give
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the following in this case:

f(θn + δ∆(n))− f(θn − δ∆(n))
2δ∆i(n) = ∆(n)T∇f(θn)

∆i(n) + o(δ)

= ∇if(θn) +
∑
j 6=i

∆j(n)∇jf(θn)
∆i(n) + o(δ). (1.8)

Note the presence of an extra (the second) term on the RHS that
contributes to the bias. It may however be observed that

E

∑
j 6=i

∆j(n)∇jf(θn)
∆i(n) | θn

 = 0.

Hence, we obtain ∥∥∥E [∇̂f(θn) | θn
]
−∇f(θn)

∥∥∥ ≤ Cδ2, (1.9)

for some positive scalar C.
Since this estimate of ∇f is used in the recursion (1.5), a stochastic

approximation scheme, one recovers the expectation in the asymptotic
limit of the iterate sequence as the noise effects die down. A one-
simulation estimator was proposed in (Spall, 1997) where the form of
the estimator was simply

∇̂if(θn) = f(θn + δ∆(n)) + ξ+(n)
δ∆i(n) . (1.10)

A Taylor’s expansion in the above gives

f(θn + δ∆(n))
δ∆i(n) = f(θn)

δ∆i(n) +∇if(θn) +
∑
j 6=i

∆j(n)∇jf(θn)
∆i(n) +O(δ).

The third term on the RHS above is the same as a corresponding term
that contributes to the bias in (1.8). However, there is an additional first
term on the RHS that also has zero mean given the parameter update
θn. The latter term, however, is primarily responsible for below par per-
formance of this estimate because of the presence of δ, a typically small
term, in the denominator. The aforementioned estimators are popularly
referred to as two-measurement and one-measurement simultaneous
perturbation stochastic approximation (SPSA) estimators.
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Deterministic perturbation versions of the above algorithms are
available in (Bhatnagar et al., 2003). In other work along similar lines,
the smoothed functional estimators have been studied in (Rubinstein,
1981), (Katkovnik and Kulchitsky, 1972), (Bhatnagar and Borkar, 2003),
(Bhatnagar, 2007), (Bhatnagar et al., 2013), where the underlying per-
turbation distributions are primarily Gaussian, uniform and Cauchy. In
(Ghoshdastidar et al., 2014b; Ghoshdastidar et al., 2014a), smoothed
functional algorithms with q-Gaussian perturbations have been pre-
sented that are seen to significantly extend the class of perturbations
and allowing for a continuum of distributions depending on the value
of the q-parameter.

Random directions stochastic approximation (RDSA) algorithm
has been presented in (Kushner and Clark, 1978) where the underlying
distribution has been considered to be uniform on the surface of a sphere
that is akin to the multivariate Gaussian distribution. In (Prashanth
et al., 2017), algorithms with i.i.d., uniformly distributed perturbations
have been proposed. These perturbations lie within a d-dimensional
cube. Further, in (Prashanth et al., 2020), deterministic perturbation
versions of these algorithms have been studied and analyzed. We shall
be discussing some of these algorithms in more detail in a later chapter.

1.5 Zeroth-order stochastic Newton algorithm

Recall that a SG algorithm involves the following update iteration:

θn+1 = θn − an∇̂f(θn), (1.11)

where ∇̂f(θn) is an estimate of the gradient ∇f(θn).
There are three main shortcomings in employing a SG algorithm.

First, from an asymptotic convergence rate analysis (cf. (Fabian, 1968)),
it is apparent that the SG algorithm would achieve an order O

( 1√
n

)
convergence when the stepsize is set using the curvature of f , i.e.,
an = a0/n with a0 > δ/2λmin(∇2f(θ∗)). In practice, such curvature
information is seldom available, and hence, it is problematic to assume
such knowledge in setting the step-size for optimal convergence speed.
Second, it is widely observed empirically that a SG algorithm declines
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fast initially, but slows down towards the end, i.e., when the SG iterate is
near an optimum θ∗. Third, the update rule (1.11) is not scale-invariant,
i.e., changing θ to Bθ for some matrix B, would imply a change in
the update (1.11). Finally, a SG algorithm may get stuck in traps or
unstable equilibria such as local maxima and saddle points, while the
goal is for it to converge to local minima (esp. since convexity is not
assumed).

A second-order algorithm overcomes the shortcomings of a first-order
SG algorithm mentioned above. A general gradient-search algorithm
involves an update rule of the form:

θn+1 = θn − anB(θn)−1∇f(θn), (1.12)

where B(θ) for any θ ∈ Rd is a d× d matrix. The following choices of
the B(θ) matrix are widely popular (see (Bertsekas, 1999)):

(i) B(θ) = I (the identity matrix) for all θ: In this case, the algorithm
(1.12) reduces to the first-order gradient algorithm (1.11).

(ii) B(θ) is a diagonal matrix with diagonal entries being ∇2
i,if(θ).

This corresponds to the (second order) Jacobi algorithm.

(iii) B(θ) = ∇2f(θ): This corresponds to the (second order) Newton
algorithm.

In the following, we focus on the Newton algorithm (corresponding
to the full Hessian case). As illustrated in Figure 1.2, the update rule
above then requires computation of the Hessian as well as the gradient
estimate at any parameter update θn.

We elaborate on the advantages of such an algorithm over the
first-order scheme in (1.11) (or alternatively the case of B(θ) = I in
(1.12)). First, such algorithms achieve the optimum speed of convergence
without the knowledge of λmin(∇2f(θ∗)). Setting a0 = 1 would suffice.
Second, it is generally observed that second-order methods exhibit faster
convergence in the final phase, i.e., when the iterates are close to the
optima. This can be attributed to the fact that second-order methods
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Figure 1.2: Overall flow of a second-order stochastic gradient algorithm

minimize a quadratic model of f , while SG algorithm (1.11) uses a
first-order Taylor’s approximation. Third, second-order algorithms are
scale-invariant, i.e., they auto-adjust to the scale of θ. Finally, second-
order algorithms avoid traps naturally, since they factor in curvature
information through the Hessian. On the flip side, second-order methods
have a higher per-iteration cost than their first-order counterparts, as
the Hessian matrix has to be inverted during each iteration.

In the zeroth-order optimization setting that we consider, we do
not have direct access to the gradient and the Hessian of the objective
function. Instead, as illustrated in Figure 1.2, both gradient and Hessian
have to estimated from noisy function observations before performing a
parameter update. In other words, letting ∇̂f(θn) and Hn denote the
gradient and Hessian estimates, we update the parameter as follows:

θn+1 = θn − an
(
Hn

)−1
∇̂f(θn). (1.13)

The topic of gradient estimation is handled in Chapter 3, while Chapter
6 focuses on Hessian estimation, and subsequently, in Chapter 7, we shall
perform a convergence analysis of (1.13), where we use zeroth-order
estimates of both the gradient and the Hessian.

To understand the problem of Hessian estimation, we now discuss
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a finite difference approximation, which requires O(N2) function mea-
surements. Simultaneous perturbation trick brings this number down
to a constant, irrespective of the problem dimension. We shall discuss
these schemes in detail in Chapter 6.

Consider a scalar variable θ. A finite difference approximation of
the first derivative for this simple case of a scalar parameter θ is:

df(θ)
dθ

≈
(
f(θ + δ)− f(θ − δ)

2δ

)
. (1.14)

Assuming the objective is smooth, and employing Taylor series expan-
sions of f(θ + δ) and f(θ − δ) around θ, we obtain:

f(θ ± δ) = f(θ)± δ df(θ)
dθ

+ δ2

2
d2f(θ)
dθ2 +O(δ3),

Thus, f(θ + δ)− f(θ − δ)
2δ = df(θ)

dθ
+O(δ2).

From the above, it is easy to see that the estimate (6.2) converges to
the true gradient df(θ)

dθ
in the limit as δ → 0.

This idea can be extended to estimate the second derivative by
applying a finite difference approximation to the derivative in (6.2) as
follows:
d2f(θ)
dθ2 ≈(
f(θ + δ + δ)− f(θ + δ − δ)

2δ

)
−
(
f(θ − δ + δ)− f(θ − δ − δ)

2δ

)
2δ

(1.15)

As before, using Taylor series expansions, it can shown that the RHS
above is a good approximation to the second derivative.

For the case of a vector parameter, one needs to perturb each co-
ordinate separately, leading to the following scheme for estimating the
Hessian ∇2f(θ): For any i, j ∈ {1, . . . , d},

∇2
ijf(θ) ≈ 1

4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)

− (f(θ − δei + δej)− f(θ − δei − δej))
)
. (1.16)
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Such an approach requires 4N2 number of function measurements
to form the Hessian estimate. In the next section, we overcome this
limitation by employing the simultaneous perturbation trick. Before
that, we extend the estimate in (6.4) to the noisy case as follows: Suppose
we have the following function measurements: For any i, j ∈ {1, . . . , d},

y1 = f(θ + δei + δej) + ξ1ij , y2 = f(θ + δei − δej) + ξ2ij , (1.17)
y3 = f(θ − δei + δej) + ξ3ij and y4 = f(θ − δei − δej) + ξ4ij . (1.18)

Using these function measurements, we form the Hessian estimate Ĥ
as follows:

Ĥij =
(
y1 − y2 − y3 + y4

4δ2

)
, ∀i, j (1.19)

Assuming the function is sufficiently smooth, as in the gradient case
and the noise elements in the function measurements are zero mean, it
can be shown through Taylor series expansions that

E[Ĥij | θ] = 1
4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)

− (f(θ − δei + δej)− f(θ − δei − δej))
)

= ∇2
ijf(θ) +O(δ2).

While the bias of the estimator is one the lower side, with explicit
control via the δ parameter, the problem is in the number of function
measurements. The latter number is 4N2, limiting the practical via-
bility on high-dimensional problems. In Chapter 6, we discuss several
alternative schemes using the simultaneous perturbation method for
Hessian method. These schemes use a constant number of function
measurements, while ensuring a bias of O(δ2).

1.6 Organization of the book

We now describe the organization of the rest of the book.
In Chapter 2, we provide an introduction to stochastic approxima-

tion algorithms, and outline a few popular applications such as mean
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estimation, gradient-type algorithms, fixed-point iterations, and quantile
estimation. These algorithms are incremental update procedures that
work with stochastic data as it becomes available and are model-free
procedures. In Chapter 2, we provide an introduction to stochastic
approximation algorithms, provide motivating applications and subse-
quently provide the main results on convergence of these schemes. It
turns out that many of the stochastic optimization schemes require a
treatment of algorithms with set-valued maps. We also present such
algorithms in a general setting and discuss the main convergence results
in connection with these as well. In addition, Newton-based stochastic
optimization schemes involve estimating the inverse of the Hessian of
the objective. This cannot be done using the standard stochastic ap-
proximation template and we need such algorithms to perform updates
using two-timescale procedures. We therefore also discuss two-timescale
stochastic approximation algorithms in this chapter.

In Chapter 3, we provide a variety of gradient estimators using the
simultaneous perturbation method. These include unified two point
as well as one point gradient estimates. The unified estimates feature
abstract random perturbations that are required to satisfy certain
conditions to ensure that the bias and variance of the estimate are
manageable. Specializing these estimates with specific choice of random
perturbations leads to several well-known simultaneous perturbation-
based schemes such as the smoothed functional scheme (Katkovnik
and Kulchitsky, 1972) with later refinements in (Polyak and Tsybakov,
1990; Dippon, 2003; Nesterov and Spokoiny, 2017), random direction
stochastic approximation (RDSA) scheme proposed by (Kushner and
Clark, 1978), and recently enhanced in (Prashanth et al., 2017), and the
popular simultaneous perturbation stochastic approximation (SPSA)
scheme proposed by (Spall, 1992). In this chapter, we analyze the bias
and variance of the aforementioned estimators in the convex as well as
non-convex regimes. In either case, the analysis requires the objective
to be smooth.

In Chapter 4, we present a detailed mathematical treatment of a
stochastic gradient algorithm that employs simultaneous perturbation-
based gradient estimates. In particular, we cover asymptotic convergence
of the stochastic gradient scheme, and provide a non-asymptotic bound
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that quantifies the convergence rate. For the asymptotic convergence, we
use the theory of differential inclusions to establish that the stochastic
gradient algorithm converges to a chain recurrent set of a differential
inclusion.

In Chapter 5, we present the non-asymptotic analysis for ZSG
algorithm. In the case of a non-convex objective, we bound the expected
decrease in the objective function in each iteration using the bias
and variance properties of the gradient estimators together with a
standard Taylor series argument. This bound is used to provide an
overall bound, which shows that the stochastic gradient algorithm
converges to an approximate stationary point of the objective, with
a rate O( 1√

N
), where N is the number of iterations. In this chapter,

we also analyze the rate of convergence of ZSG algorithm when the
underlying objective is convex and strongly-convex. In the former case,
we bound the optimization error (difference in function value between
that of the iterate and the optimum), while in the latter case, we
bound the parameter error, which is the norm of the distance between
ZSG iterate and the optimum. Strong convexity allows a bound on the
parameter error, while in the case of a non-strongly convex function,
only a bound on the difference in function value is feasible. This is
true even in the deterministic optimization setting, though the rate
are slower in the stochastic zeroth-order setting that we study in this
book. In this chapter, we also present a minimax lower bound using
information-theoretic arguments, and this bound shows that the upper
bounds for ZSG algorithm are optimal up to constant factor for the
convex/strongly-convex cases.

In Chapter 6, we cover Hessian estimation using simultaneous pertur-
bation methods. In particular, we provide a theoretical introduction to
second-order SPSA proposed in (Spall, 2000), its later enhancements in
(Bhatnagar, 2005; Bhatnagar and Prashanth, 2015a). We also describe
second-order smoothed functional (Bhatnagar, 2007) and second-order
RDSA (Prashanth et al., 2017) schemes. We analyze the bias of these
Hessian estimates, and establish that each of these aforementioned
schemes result in an asymptotically unbiased Hessian estimate.

In Chapter 7, we analyze a stochastic Newton algorithm using
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gradient/Hessian estimates based on the simultaneous perturbation
method. The theoretical guarantees include the asymptotic convergence
of the stochastic Newton scheme, and an asymptotic normality result
that can be used to bound the asymptotic covariance, which in turn
helps one understand the mean-square error of the algorithm after
a sufficiently large number of iterations. The latter analysis provides
a convergence rate for the stochastic Newton algorithm, albeit in an
asymptotic sense.

In Chapter 8, we provide applications of simultaneous perturbation
methods in a reinforcement learning (RL) context. The first application
involves a constrained discounted Markov decision process (MDP).
In an RL setting, direct gradient measurements of the objective or
value function are not available. Instead, one can estimate the value
function using a Monte Carlo scheme, or the popular temporal difference
(TD) learning algorithm. Assuming a smooth class of parameterized
policies, we describe a policy gradient scheme that employs SPSA-based
gradient estimates in conjunction with value function estimation using
Monte Carlo samples as with the REINFORCE algorithm. We present a
convergence analysis of our algorithm, which shows that the algorithm
converges to local optima in the limit. The second application considers
a risk-sensitive RL problem, where the goal is to find a policy that
maximizes the value function while satisfying a constraint that is formed
using a risk measure. As in the first application, we describe a policy
gradient algorithm for solving the risk-constrained MDP, and provide
an asymptotic convergence analysis of this algorithm.

1.7 Bibliographic remarks

Kiefer and Wolfowitz in (Kiefer and Wolfowitz, 1952) presented the
first paper on stochastic gradient descent with zeroth order estimators
and analysed their algorithm using the approach in (Robbins and
Monro, 1951). A comprehensive and detailed treatment of stochastic
optimization including direct methods and evolutionary algorithms, in
addition to zeroth order methods such as SPSA is available in (Spall,
2005). A detailed treatment of stochastic simulation of random variables
and processes including those driven by stochastic differential equations
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that also contains stochastic optimization is given in (Asmussen and
Glynn, 2007). Another textbook primarily on stochastic simulation that
also deals with Markov chain Monte Carlo and discrete event system
simulation, in addition to stochastic optimization (specifically, smoothed
functional approaches) is (Rubinstein, 1981).

A text that deals primarily with the theory of stochastic approxi-
mation is (Borkar, 2022) that however also has a chapter on stochastic
zeroth order methods for gradient estimation where methods such as
SPSA and SF are briefly surveyed. Discrete event system simulation
and optimization has been well-studied and analysed using perturbation
analysis based methods in (Cassandras and Lafortune, 2008). A text
mainly dedicated to optimal control and reinforcement learning but
which also delves a bit on zeroth order stochastic optimization is (Meyn,
2022). A recent text on stochastic optimization and reinforcement learn-
ing covering a wide range of topics in (Powell, 2021).

A textbook treatment of zeroth order stochastic optimization ap-
proaches is available in (Bhatnagar et al., 2013). The focus of the
approaches presented in that text was to find the optimum parame-
ter of an objective which in itself is a certain long-run average cost
over noisy cost samples. A variety of methods for both unconstrained
and constrained optimization including reinforcement learning are pre-
sented there. The resulting algorithms largely have a two-timescale
structure and the asymptotic convergence analysis of these algorithms
is presented. In our current text, we primarily consider single-timescale
stochastic optimization algorithms that estimate the gradient and (in
some cases) Hessian using zeroth order estimators though we also con-
sider two-timescale algorithms. We present both asymptotic as well as
non-asymptotic convergence analyses of the presented algorithms. The
asymptotic analyses are shown using limiting arguments involving un-
derlying ordinary differential equation (ODE) or differential inclusions.
Our current text also covers many recent algorithms on top of those
contained in (Bhatnagar et al., 2013).



2
Stochastic approximation

In this chapter, we provide an introduction to stochastic approximation
algorithms, and outline a few popular applications such as mean esti-
mation, gradient-type algorithms, fixed-point iterations, and quantile
estimation. We provide the main asymptotic convergence results under
two approaches, namely ODE and recursive inclusions. The former ap-
proach is applicable to Lipschitz continuous objective functions, which
allows viewing a linearly-interpolated stochastic approximation algo-
rithm’s sample path as approximating the trajectory of an ODE. Using
this ‘dynamical systems’ viewpoint, we list the assumptions that ensure
almost sure convergence of stochastic approximation iterates to the
equilibria of the underlying ODE. The approach of recursive inclusions
is useful for handling objective functions with discontinuities. As in
the ODE case, the stochastic approximation algorithm’s interpolated
trajectory is seen as an approximation to that of the recursive inclusion,
leading to an almost sure convergence result. In the context of this book,
when the perturbation constant δ, which features in the simultaneous
perturbation-based gradient estimator presented above, is taken to zero,
the stochastic gradient algorithm’s behavior can be analyzed using
ODEs, while a constant δ leads to recursive inclusions-based analysis.

22
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2.1 Introduction

The basic stochastic approximation recursion is of the following form:

θn+1 = θn + a(n)(h(θn) +Mn+1), (2.1)

where θn ∈ Rd, n ≥ 0, is the stochastic sequence of iterates that are
updated according to (2.1), h : Rd → Rd is a point-to-point map,
Mn+1, n ≥ 0 is the associated noise sequence, and the multipliers
a(n), n ≥ 0 form a sequence of positive step-sizes or learning rates.

Under certain conditions on the aforementioned quantities that we
shall discuss in this chapter, one can show that the recursion (2.1)
almost surely tracks asymptotically the limit sets of the ODE (2.2) in a
manner that will be made precise later.

θ̇(t) = h(θ(t)). (2.2)

We shall also consider here generalizations of the scheme (2.1) via
stochastic recursive inclusions as well as recursions with an additional
Markov noise component. Stochastic recursive inclusions are algorithms
as in (2.1) except that the function h(θ) is in general a set instead of a
point for any given θ. Such recursions will also be seen to almost surely
track asymptotically the underlying differential inclusions.

2.2 Applications

We begin with a few well-known applications of stochastic approximation.
These include minimizing a function given noisy function measurements,
which forms the core content of this book, as well as estimation of various
quantities, e.g., mean, fixed-point, quantile, from noisy observations.

2.2.1 Mean estimation

Consider a random variable (r.v.) X with mean µ and variance σ2.
Suppose we are given independent and identically distributed (i.i.d.)
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samples X1, . . . , Xn from the distribution of X . Let θn = 1
m

n∑
k=1

Xk be

the sample mean computed using these n samples. We now derive an
iterative scheme for updating the sample mean.

θn+1 = 1
n+ 1

n+1∑
k=1

Xk = n

n+ 1

(
1
n

n∑
k=1

Xk

)
+ 1
n+ 1Xn+1

= n

n+ 1θm + 1
n+ 1Xn+1

θn+1 = θm + 1
n+ 1 (Xn+1 − θm) . (2.3)

The update rule above is a stochastic approximation scheme with step-
size a(n) = 1

n+ 1.
Strong law of large numbers says the following:

θm → µ a.s. as n→∞.

Rewriting the update rule (2.3), we obtain

θn+1 = θn + a(n) (Xn+1 − θn)
= θn + a(n) [(µ− θn) + (Xn+1 − µ)]

Letting Mn+1 = Xn+1 − µ, it is easy to see that Mn+1 is a martingale
difference sequence satisfying EM2

n <∞.
From an application of Kushner Clark lemma, to be presented later

(see Theorem 2.3 below), it can be shown that θn → µ as n → ∞ for
more general step-sizes that satisfy

a(n) > 0, a(n)→ 0, and
∑
n

a(n) =∞. (2.4)

2.2.2 Stochastic gradient algorithm using unbiased gradient infor-
mation

Consider the following problem:

θ∗ ∈ arg min
θ
f(θ), (2.5)

where f is a smooth function (see Appendix C for background material
on smoothness).



2.2. Applications 25

A stochastic gradient algorithm for solving (2.5) would update as
follows:

θn+1 = θn − a(n)∇̂f(θn). (2.6)

In the above, ∇̂f(θn) is an estimate of the gradient ∇f(θn), and {a(n)}
are (pre-determined) step-sizes satisfying standard stochastic approxi-
mation conditions (see (2.4) above).

Here we shall assume unbiased gradient information is available, i.e.,
E(∇̂f(θn) | θn) = ∇f(θn). In this case, the algorithm in (4.4) becomes
an instance of the seminal stochastic approximation scheme proposed
by Robbins and Monro in 1951. The latter algorithm was proposed to
find the zeroes of a function, and in the case of (4.4), the function of
interest is ∇f . If the gradient estimates ∇̂f(θn) have bounded variance,
then the algorithm in (4.4) can be shown to converge to the stationary
points of f . We make this claim precise later in Section 4.1.

2.2.3 Stochastic gradient algorithm using a zeroth-order oracle

In a zeroth-order setting, the gradient information is not directly avail-
able, and instead, the optimization algorithm has oracle access to
noise-corrupted function measurements, as illustrated in the figure
below.

θn
Function measurement

oracle f(θn) + ξn

Zero mean

Figure 2.1: Simulation optimization

The stochastic gradient algorithm updates as follows:

θn+1 = θn − a(n)∇̂f(θn), (2.7)

where ∇̂f(θn) is formed from the function measurements. Two such
gradient estimators, using two function measurements, were presented
earlier in (1.6) and (1.7), respectively. Such estimates are not unbiased,
but feature a parameter that can reduce the bias at the cost of variance.
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In the next chapter, we present the simultaneous perturbation trick
that generalizes the example in (1.7).

Under suitable assumptions, θn governed by (2.7) can be shown to
converge almost surely to the set H̄ = {x | ∇f(θ) = 0}. We provide
this result later in Section 4.1.

2.2.4 Stochastic fixed point iterations

Consider a function f : Rd → Rd that satisfies

‖f(x)− f(y)‖ ≤ α ‖x− y‖ , (2.8)

for any x, y ∈ Rd. Here α ∈ (0, 1), and ‖·‖ is the `2-norm.
Assuming the underlying space is Euclidean (and hence complete),

by the Banach fixed point theorem, there exists a unique fixed point θ∗
of the function f .

A first attempt at finding such a fixed point is via the following
iterative scheme: start with some θ0 ∈ Rn and update as

θn+1 = f(θn).

A smoothened variation to this update rule is given by

θn+1 = (1− a(n))θn + a(n)f(θn),

where a(n) is the step size.
Note that if θn → θ∗ and f is continuous at θ∗, then f(θ∗) = θ∗.
So far we have assumed that f is perfectly observable for any given

input parameter. However, in many learning scenarios, e.g., reinforce-
ment learning, this isn’t the case. In particular, consider the setting
where f is not precisely known, but we have black box access to f , as
illustrated in Figure 2.1. The simplest noise model would correspond to
i.i.d., e.g., N (0, 1), while a martingale difference noise structure is more
general.

For this setting, a stochastic fixed point iteration would update as
follows:

θn+1 = (1− a(n))θn + a(n)(f(θn) + ξn+1), (2.9)



2.2. Applications 27

A simple setting is where {ξm} is an i.i.d. sequence with E(ξn) = 0, and
E(ξ2

n) <∞, for all n. Now, it is desirable to have θn → θ∗ almost surely
as n→∞. From the convergence analysis of stochastic approximation
algorithms, to be presented later, we shall see that θn → θ∗ if (i)f is
a contraction; (ii) step sizes satisfy standard stochastic approximation
conditions, see (2.4); and (iii) noise ξm is a martingale difference sequence
that has bounded varaince, or satisfies a linear growth condition (see
Assumption A2.8 in the next chapter).

Remark 2.1. The stochastic fixed point iteration algorithm discussed
above would not necessarily converge if the modulus of contraction
α = 1 in (2.8). In this case, a fixed point is not even guaranteed to
exist, e.g., consider f(θ) = x + 1. Alternatively, more than one fixed
points may exists (e.g., f(θ) = x), or only one fixed point exists (e.g.
f(θ) = −x). Under an additional assumption that at least one fixed
point exists, the stochastic fixed point iteration (2.9) is guaranteed to
converge almost surely to a sample path dependent fixed point solution.

Stochastic fixed point iterations are ubiquitous in the context of
reinforcement learning. In particular, the well-known TD-learning and
Q-learning algorithms are stochastic fixed-point iterations. The reader
is referred to (Bertsekas, 2012; Sutton and Barto, 2018; Bertsekas and
Tsitsiklis, 1996) for a detailed introduction to these algorithms.

2.2.5 Linear stochastic approximation

Consider the following stochastic approximation algorithm:

θn+1 = θn + a(n) (An+1θn + bn+1) ,

where the step-size a(n) satisfies
∑
n

a(n) = ∞, and
∑
n

a(n)2 < ∞.

Further, An and bn are matrices and vectors that satisfy

E [An+1 | θ1, . . . , θn] = A,E [bn+1 | θ1, . . . , θn] = b,

where A is a negative-definite matrix. Moreover, E
[
‖(An −A)‖2

]
≤ C1

and E
[
‖bn − b‖2

]
≤ C2. In this setting, applying the Kushner Clark

lemma (to be presented later), it can be shown that

θn → θ∗ a.s. as n→∞,
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where the limit θ∗ satisfies Aθ∗ + b = 0.
A prominent LSA algorithm is TD-learning with linear function ap-

proximation, see (Tsitsiklis and Van Roy, 1997). Other examples include
solving a linear regression problem using a stochastic gradient algorithm
(Prashanth et al., 2021; Mou et al., 2020), and linear approximations to
non-learning SA recursions (Chen et al., 2020).

2.2.6 Quantile estimation

Consider the following problem, which is a variant of mean estimation.
For a continuous random variable (r.v.) X with cumulative distribution
function F and for a given α ∈ (0, 1), define

qα(X) = F−1(α).

Notice that qα(X) is the median of the distribution of X when α = 0.5.
Let {Xn}n≥1 be a independent sequence of r.v.s with common

distribution F .
Notice that F (qα(X)) = E[I {X ≤ qα(X)}] = α. A stochastic ap-

proximation algorithm for estimating qα(X) for a pre-specified α can be
arrived at as follows: Let qn denote an estimate of qα(X) after observing
samples X1, . . . , Xn. On observing Xn+1, qn is updated as follows:

qn+1 = qn + an (I {Xn+1 ≤ qn} − α) . (2.10)

Notice that the update is iterative, i.e., given an estimate qn at time
instant n and a new sample Xn+1, the algorithm should perform an
incremental update using qn, Xn+1 to arrive at qn+1.

Consider the following alternative observation model is as follows: At
time instant n, the stochastic approximation algorithm picks a threshold,
say T , and the environment returns a boolean that indicates whether
Xn+1 < T or not. Quantile estimation in this threshold-based model
would follow the same iterative scheme as (2.10). To see this, let

Yn+1 =

1 if Xn+1 ≤ qn
0 else.

.

Then, the update rule in (2.10) is equivalent to

qn+1 = qn + an (Yn+1 − α) . (2.11)
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Using a variant of Kushner Clark lemma it is possible to establish
almost sure convergence of qn to qα(X), and we omit the details.

In finance literature, a risk measure closely related to quantiles is
‘Value at Risk (VaR)’. For any random variable X, we define the VaR
at level α ∈ (0, 1) as

VaRα(X) := inf {ξ | P (X ≤ ξ) ≥ α} .

If the distribution of X is continuous, then VaR is the lowest solution to
P (X ≤ ξ) = α. VaR as a risk measure has several drawbacks, which pre-
cludes using standard stochastic optimization methods. This motivated
the definition of coherent risk measures in (Artzner et al., 1999). A risk
measure is coherent if it is convex, monotone, positive homogeneous
and translation equi-variant. Conditional Value at Risk (CVaR) is one
popular risk measure defined by

CVaRα(X) := E [X|X ≥ VaRα(X)] .

Unlike VaR, the above is a coherent risk measure.
A well-known result from (Rockafellar and Uryasev, 2000) is that

both VaR and CVaR can be obtained from the solution of a certain
convex optimization problem and we recall this result next.

Theorem 2.1. For any random variable X, let

v(ξ,X) := ξ + 1
1− α(X − ξ)+ and V (ξ) = E [v(ξ,X)] (2.12)

Then, VaRα(X) =
(
arg minV :=

{
ξ ∈ R | V ′(ξ) = 0

})
, where V ′ is the

derivative of V w.r.t. ξ. Further, CVaRα(X) = V (VaRα(X)).

From the above, it is clear that in order to estimate VaR/CVaR, one
needs to find a ξ that satisfies V ′(ξ) = 0. Stochastic approximation (SA)
is a natural tool to use in this situation. Recall that SA is used to solve
the equation h(θ) = 0 when analytical form of h is not known. However,
noisy measurements h(θn) + ξn can be obtained, where θn, n ≥ 0 are
the input parameters and ξn, n ≥ 0 are zero-mean random variables,
that are not necessarily i.i.d.

Using the stochastic approximation principle and the result in The-
orem 2.1, we have the following scheme to estimate the VaR/CVaR
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simultaneously from the samples {X1, . . . , Xn}:

VaR: qn+1 = qn − an(1− 1
1− αI {Xn+1 ≥ qn}), (2.13)

CVaR: ψn+1 = ψn −
1

n+ 1 (ψn − v(qn, Xn+1)) . (2.14)

In the above, (2.13) can be seen as a gradient descent rule, while (2.14)
can be seen as a plain averaging update.

An interesting question is whether the stochastic gradient-based
estimation scheme in (2.13) converges faster than the root-finding esti-
mation scheme in (2.10).

2.3 Convergence analysis using the ODE approach

So far, we have provided an introduction to stochastic approximation,
and outlined a few popular applications. We now cover preliminary
results on the convergence of stochastic approximation algorithms using
the limit sets of the associated ordinary differential equation (ODE).
In the next section, we provide convergence results with stochastic
recursive inclusions, i.e., those algorithms that involve set-valued maps.

Consider now the following recursion:

θn+1 = θn + a(n)(h(θn) + βn + ηn). (2.15)

Let L({θn, n ≥ 0}) denote the limit set of the sequence θn, n ≥ 0
obtained from (2.15). Consider the following ODE associated with (2.15):

θ̇(t) = h(θ(t)). (2.16)

This is the same ODE as (2.2). Define a sequence {t(n), n ≥ 0} of
time points as follows:

t(0) = 0, t(n) =
n−1∑
k=0

a(k), n ≥ 1.

We now state the following result given as Theorem 1.2 in (Benaïm,
1996)): For the algorithm (2.15), we make the following assumptions:
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A2.1. h : Rd → Rd is a Lipschitz continuous function with Lipschitz
constant L > 0.

A2.2. lim
n→∞

βn = 0 w.p.1.

A2.3. The step-sizes satisfy a(n) > 0, ∀n, a(n)→ 0 as n→∞ and∑
n

a(n) =∞.

A2.4. For each T > 0, ε > 0,

lim
n→∞

P

sup
j≥n

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi ‖≥ ε

 = 0 w.p.1,

where
m(t) =

{
max{n|t(n) ≤ t}, t ≥ 0,

0 t < 0.

A2.5. sup
n
‖ θn ‖<∞ w.p.1.

A2.6. There exists a locally asymptotically stable attractor θ∗ ∈ Rd

of the ODE (2.16) with domain of attraction Ω̌.

We now discuss these assumptions. Assumption A2.1 ensures that the
ODE (2.16) is well-posed. Assumption A2.2 ensures that the bias βn
vanishes asymptotically. Assumption A2.3 contains standard stochastic
approximation conditions on the step sizes {a(n)}. From the viewpoint
that a linearly interpolation of the stochastic approximation iterates
approximates a trajectory of the ODE, the conditions on the stepsizes
can be understood as follows:

∑
n

αn =∞ ensures that the entire time

axis is covered since we a(n) can be seen as the time steps (along the
x-axis) with the corresponding stochastic approximation iterate θn along
the y-axis; The condition a(n)→ 0 ensures the discretization errors can
be ignored. Assumption A2.4 imposes conditions on the noiseMn+1 that
ensure the effect of noise is asymptotically negligible. Assumption A2.6
is satisfied for most gradient systems. This assumption can however be
easily relaxed to the case where the attractor is a compact connected
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set of points instead of being ‘isolated’. Theorem 2.2 however takes
the form of Theorem 2.3 when one does not have an attractor in the
underlying system.

Motivation for step-size assumptions One can reason about the need
for the step-size conditions using a simpler noise setting as follows:
Suppose βn = 0, ∀n and {ηn} is an i.i.d. sequence with mean zero and
variance σ2. Then, variance of θm+1 is

Var(θm+1) = Var [θm + a(m)h(θm)] + a(m)2V ar(ηm+1)
= Var [θm + a(m)h(θm)] + a(m)2σ2

≥ a(m)2σ2.

If we choose a constant stepsize, i.e., a(m) = a ∀m, then, V ar(θm+1) ≥
a2σ2. Thus, with a constant stepsize, θm 6−→ θ∗ almost surely, motivat-
ing the need for having a diminishing stepsize that vanishes asymptoti-
cally. However, such a stepsize cannot go down too fast, since

θm+1 = θm + a(m)(h(θm) + ηm+1)

|θm − θ0| ≤
m−1∑
τ=0

a(τ)|h(θτ ) + ητ+1|

If |h(θτ )+ητ+1| ≤ C1 and
∞∑
τ=0

a(τ) ≤ C2 <∞, then |θm−θ0| is bounded

above. This implies θm is within a certain radius of the initial point θ0.
This will be problematic if θ∗ lies outside this radius. Hence, we need∑
τ

a(τ) =∞.

The main result, which is Theorem 2.3.1 of (Kushner and Clark,
1978), that establishes convergence of (2.15) is given below.

Theorem 2.2 (Kushner and Clark Theorem). Under A2.1–A2.6,
outside a set of zero probability, if there is a compact set A ⊂ Ω̌
such that {θn} given by (2.15) satisfies θn ∈ A infinitely often, then
θn → θ∗ as n→∞.

We briefly present a proof of this result which follows along the lines
of Theorem 2.3.1 of (Kushner and Clark, 1978). A more generalized
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result is then provided as Theorem 2.3 which is also given in (Benaïm,
1996) [Theorem 1.2].

Proof. Recall the stochastic recursion (2.15):

θn+1 = θn + a(n)(h(θn) + βn + ηn).

Let θ0(t), t ≥ 0, denote a continuous linear interpolation of the θn
iterates obtained as follows: For t ∈ [t(n), t(n+ 1)], n ≥ 0,

θ0(t) = t(n+ 1)− t
t(n+ 1)− t(n)θn + t− t(n)

t(n+ 1)− t(n)θn+1.

Similarly, for t as above, let

β0(t) = t(n+ 1)− t
t(n+ 1)− t(n)

(
n−1∑
i=0

a(i)βi
)

+ t− t(n)
t(n+ 1)− t(n)

(
n∑
i=0

a(i)βi
)
,

η0(t) = t(n+ 1)− t
t(n+ 1)− t(n)

(
n−1∑
i=0

a(i)ηi
)

+ t− t(n)
t(n+ 1)− t(n)

(
n∑
i=0

a(i)ηi
)
,

respectively. We also define a piecewise constant interpolated process
θ̄0(·) according to

θ̄0(t) = θn, θ ∈ [t(n), t(n+ 1)).

Then the recursion (2.15) can be written in continuous time as

θ0(t) = θ0(0) +
∫ t

0
h(θ̄0(τ))dτ + β0(t) + η0(t), t ≥ 0. (2.17)

From these continuous-time functions, we define a sequence of left-
shifted functions θn(·), βn(·), ηn(·) as follows: For n ≥ 0,

θn(t) =
{
θ0(t+ t(n)), t ≥ −t(n)

θ0, t ≤ −t(n)

ηn(t) =
{
η0(t+ t(n))− η0(t(n)), t ≥ −t(n)

−η0(t(n)), t ≤ −t(n)

βn(t) =
{
β0(t+ t(n))− β0(t(n)), t ≥ −t(n)

−β0(t(n)), t ≤ −t(n)
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respectively.
Before proceeding further, we show that under Assumption A2.3

and Assumption A2.4, η0(·) is uniformly continuous on [0,∞) almost
surely. Further, for any 0 < T <∞,

lim
t→∞

sup
|s|≤T

‖η0(t+ s)− η0(t)‖ = 0 w.p.1.

By Assumption A2.4, given ε > 0, there exists nk > 0 such that

P

 sup
j≥nk

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi‖ ≥ ε

 ≤ 1
2k .

Thus, ∑
k

P

 sup
j≥nk

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi‖ ≥ ε

 <∞.

Thus, corresponding to {nk}, we get a sequence of events {Ek} where

Ek = { sup
j≥nk

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi‖ ≥ ε}.

By the Borel-Cantelli lemma, P (Ek infinitely often) = 0. Thus,

sup
{|s|≤T,t≥nk}

‖η0(t+ s)− η0(t)‖ < ε,

for all but finite number of nk (integers) w.p.1. Since η0(·) is continuous
w.p.1 on [0,∞), the above implies that η0(·) is also uniformly continuous
w.p.1. Thus, {ηn(·) is uniformly continuous on R, bounded on compacts
and ηn(·) → 0 w.p.1 uniformly on compacts in R. Likewise, from
Assumption A2.2, {βn(·)} is uniformly continuous on R, bounded on
compacts and βn(·)→ 0 w.p.1 uniformly on compacts in R.

Now, (2.17) can be equivalently written as follows: For t ≥ 0,

θn(t) = θn(0) +
∫ t

0
h(θ̄0(t(n) + τ))dτ + βn(t) + ηn(t)

= θn(0) +
∫ t

0
h(θn(τ))dτ + εn(t) + βn(t) + ηn(t), (2.18)
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where
εn(t) =

∫ t

0
h(θ̄0(t(n) + τ))dτ −

∫ t

0
h(θn(τ))dτ.

Note that by Lipschitz continuity of h(·) (cf. Assumption A2.1),

‖εn(t)‖ ≤ L
∫ t

0
‖θ̄0(t(n) + τ))− θn(τ))‖dτ, (2.19)

where L > 0 is the Lipschitz constant of the function h(·). Now, observe
that

θn(t) = θ0(t+t(n)) = θ̄0(t+t(n))+
∫ t

0
h(θ̄0(t(n)+τ))dτ+βn(t)+ηn(t).

Thus,

‖θn(t)− θ0(t+ t(n))‖ ≤
∫ t

0
‖h(θ̄0(t(n) + τ))‖dτ + ‖βn(t)‖+ ‖ηn(t)‖.

(2.20)
Now, by Lipschitz continuity of h(·),

‖h(θ̄0(t(n) + τ))‖ − ‖h(0)‖ ≤ ‖h(θ̄0(t(n) + τ))− h(0)‖

≤ L‖θ̄0(t(n) + τ)‖.
Thus, with Ľ = max(L, ‖h(0)‖), we get that

‖h(θ̄0(t(n) + τ))‖ ≤ Ľ(1 + ‖θ̄0(t(n) + τ)‖).

Since, outside a set of zero probability, ∃M̌ > 0 such that ‖θ̄0(t(n) +
τ)‖ ≤ M̌ . Thus,

‖h(θ̄0(t(n) + τ))‖ ≤ Ǩ,

where Ǩ 4= Ľ(1 + M̌) > 0. Thus, from (2.20), it follows that

‖θn(t)− θ0(t+ t(n))‖ ≤ a(n)Ǩ + ‖βn(t)‖+ ‖ηn(t)‖.

The RHS above → 0 as n→∞ uniformly on compact intervals. Substi-
tuting the above inequality in (2.19), one obtains

‖εn(t)‖ ≤ La(n)(a(n)Ǩ + ‖βn(t)‖+ ‖ηn(t)‖)→ 0,

as n → ∞ uniformly on compact intervals. Thus, (εn(t) + βn(t) +
ηn(t))→ 0 as n→∞ uniformly on compact intervals. From Assump-
tion A2.5, {Xn(·)} is bounded and further it is easy to observe that
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this sequence is equicontinuous. From the Arzela-Ascoli theorem, it
then follows that {Θn(·)} is relatively compact. Thus, there exists a
convergent subsequence that we continue to call {θn(·)} itself without
loss of generality. Let θ(·) be the limiting function of this sequence.
Then θ(·) can be seen to satisfy the limiting ODE (2.16) as

θ(t) = θ(0) +
∫ t

0
h(θ(τ))dτ,

which is the integral form of the ODE (2.16).
Now note that under Assumption A2.6, θ∗ ∈ Rd is an attractor

for the ODE (2.16). Let ε1, ε2 > 0 be two scalars with ε1 < ε2 with
ε1 being small in particular. Then the ε1 and ε2 neighborhoods of θ∗
satisfy Nε1(θ∗) ⊂ Nε2(θ∗) and let Nε2(θ∗) ⊂ A. Since θn ∈ A infinitely
often, it follows that there exists a subsequence {nm} of {n} such that
θnm ∈ A,∀nm. Consider then the process θnm(·) which will have a
subsequence (also indexed by {nm} for simplicity) that will converge
to a limit θ̂(·) that in turn will satisfy the ODE (2.16). Since θ̂(0) ∈ A
and θ∗ is asymptotically stable, θ̂(t)→ θ∗ as t→∞.

Consider again the process θnm(·) formed from the stochastic iterates.
Since θnm(·) → θ̂(·) uniformly on compacts and θ̂(t) → θ∗, it follows
that there is a subsequence {θnmj} of {θnm} that will be contained
in Nε1(θ∗). However, we know that {θnm} is entirely contained in A.
Suppose then that there is a subsequence {θnmk of {θnm} that is entirely
contained in A\Nε2(θ∗), i.e., A ∩N c

ε2(θ∗). Then {θnm} will move from
Nε1(θ∗) to A\Nε2(θ∗) and back infinitely often since there are an infinite
number of points in each of these sets. Then there is a sequence of
time points τ1 < τ̄1 < τ2 < τ̄2 · · · such that θ0(τj) ∈ ∂Nε1(θ∗) and
θ0(τ̄j) ∈ ∂Nε2(θ∗), ∀j. Further, θ0(t) ∈ N̄ε2(θ∗)\Nε1(θ∗), for t ∈ (τj , τ̄j)
for all j. Consider the [τj , τ̄j ] portions of the trajectory θ0(·). This
sequence will have a convergent subsequence whose limit is say θ̃(·)
which again satisfies (2.16). Consider two cases: (i) There is a T > 0
such that along a subsequence τ̄j − τj → T . Then, θ̃(0) ∈ ∂Nε1(θ∗)
and θ̃(T ) ∈ ∂Nε2(θ∗). This is not possible by asymptotic stability
of θ∗ since ε1 > 0 is small. (ii) Let rj − lj → ∞. Then the set of
{[lj ,∞)} segments of θ0(·) are bounded and equicontinuous. Again by
the Arzela-Ascoli theorem, one can obtain a convergent subsequence
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with limit say θ̌(·) that again satisfies (2.16). Then θ̌(0) ∈ ∂Nε1(θ∗)
and θ̌(t) ∈ N̄ε2(θ∗)\Nε1(θ∗). This contradicts that θ∗ is asymptotically
stable. The claim follows.

Remark 2.2. A more formal argument on the tracking of the iterate
sequence to the underlying ODE (2.16) is provided in Chapter 2 of
Borkar, 2022. We briefly sketch that argument here for completeness.

Let T > 0 be a given time element and define a sequence of time
points {Tn} as follows: Let T0 = t(0) = 0. Further, for n ≥ 1, let

Tn = min{t(m)|t(m) ≥ Tn−1 + T},

denote a sequence of time points. Let θTn(t), t ≥ Tn denote the solution
to the ODE (2.16) with θTn(Tn) = θ0(Tn) as the initial condition of the
ODE. It is argued in Lemma 1, Chapter 2, of Borkar, 2022, using an
application of the Gronwall’s inequality, that

lim
n→∞

max
t∈[Tn,Tn+1]

‖θ0(t)− θTn(t)‖ = 0,

almost surely. In fact, the above holds for any time point s ∈ R (in
positive and negative time), not just the time instants Tn above. Now
if the ODE has a globally asymptotically stable attractor A, any trajec-
tory of the ODE (2.16) will eventually converge to it, and so will the
interpolated iterates θ0(t), and thereby the iterate sequence θn, n ≥ 0.
Figure 2.2 illustrates this iterate-tracking process.

Theorem 2.3 (Generalized Kushner and Clark Theorem). Under
A2.1–A2.5, L({θn, n ≥ 0}) is a connected internally chain recurrent
set for the ODE (2.16).

This result is a generalization of the Kushner and Clark lemma
(cf. (Kushner and Clark, 1978)) and is stated under the same assump-
tions as used in the aforementioned result.

We now state some alternative assumptions that in fact we shall
use for our analysis.
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Figure 2.2: The continuously interpolated algorithm’s trajectory θ0(t) represented
by the solid line asymptotically tracks the ODE’s trajectory (the dashed-dotted
line) θTn (t) suitably reset to the algorithm’s trajectory after every (regular) time
interval say T instants long. On the X-axis are the instants t(0), t(1), · · · , with
t(n)− t(n−1) = a(n), ∀n with t(0) = 0. From the step-size conditions, it follows that
t(n)→∞ as n→∞. This ensures that the algorithm does not converge prematurely.

A2.7.
∑
n

a(n) =∞ and
∑
n

a(n)2 <∞.

A2.8. {ηn} is a square integrable martingale difference sequence
with respect to the filtration {Fn}, with Fn = σ(θm, βm,m ≤
n, ηm,m < n), n ≥ 0. Further,

E[‖ηn+1‖2 | Fn] ≤ C0(1 + ‖θn‖2), n ≥ 0.

Assumption A2.7 is stronger than Assumption A2.3. However, As-
sumptions A2.7 and A2.8 turn out to be sufficient conditions for the
verification of Assumption A2.4 (in addition to Assumption A2.5). This
can be seen as follows: Let

χn =
n−1∑
m=0

a(m)ηm, n ≥ 1.

Then, from Assumption A2.8, it will follow that (χn,Fn), n ≥ 0 is a



2.3. Convergence analysis using the ODE approach 39

martingale sequence. Moreover,

E[
∑
n

‖χn+1 − χn‖2 | Fn] = E[
∑
n

a(n)2‖ηn‖2 | Fn]

≤
∑
n

a(n)2C0(1 + ‖θn‖2) (by Assumption A2.8)

<∞ a.s. (by Assumption A2.5).
Thus the quadratic variation process associated with the martingale
{χn} is almost surely convergent. Hence, by the martingale convergence
theorem for square integrable martingales, see Chapter 3 of (Borkar,
1995), {χn} itself is almost surely convergent. Assumption A2.4 will
thus follow.

We now discuss the specific case of stochastic gradient algorithms of
the form (2.15) with h(θ) = −∇f(θ) for which we shall use Assumptions
A2.1, A2.2, A2.5 and A2.8.

Theorem 2.4 (Kushner and Clark Theorem for Gradient Search Algo-
rithms). For the recursion (2.15), under Assumptions A2.1, A2.2,
A2.5, A2.7, A2.8, L({θn, n ≥ 0}) is a connected internally chain
recurrent set for the ODE (A.1). Further, L({θn, n ≥ 0}) ⊂ H

4=
{θ | ∇f(θ) = 0}.

Stability of stochastic approximation, i.e., Assumption A2.5, is one
of the strongest requirements to ensure convergence of the stochastic
iterates. Various sets of sufficient conditions to ensure stability of the
stochastic iterates can be found in (Kushner and Yin, 2003; Borkar
and Meyn, 2000; Abounadi et al., 2002; Tsitsiklis, 1994) and other
references.

There are however many practical situations where it is difficult to
verify such sufficient conditions for stability for the stochastic recursions.
In such scenarios, a popular approach is to enforce stability on the
stochastic iterates by selecting a convex and compact set in which the
parameter iterates can take values and thereafter projecting the iterates
to the aforementioned set whenever they escape from the same. This
approach also helps in situations where the parameter takes values only
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in a pre-specified compact set. Stability of the iterates is then enforced
due to the projection.

We review here an important result originally due to Kushner and
Clark (cf. Theorem 5.3.1 on pp. 191-196 of (Kushner and Clark, 1978))
that shows the convergence of projected stochastic approximations.
While the result, as stated in (Kushner and Clark, 1978), is more
generally applicable, we present its adaptation here that is relevant to
the setting that we consider.

Let C ⊂ Rd be a compact and convex set and Γ : Rd → C denote
a projection operator that projects any x = (x1, . . . , xd)T ∈ Rd to its
nearest point in C. Also, let C(C) denote the space of all continuous
functions from C to Rd.

Consider the following d-dimensional stochastic recursion:

Xn+1 = Γ(Xn + a(n)(h(Xn) + ξn + βn)), (2.21)

under the assumptions listed below. Also, consider the following ODE
associated with (2.21):

Ẋ(t) = Γ̄(h(X(t))). (2.22)

Here, Γ̄ : C(C)→ C(Rd) is defined according to

Γ̄(v(x)) = lim
η→0

(Γ(x+ ηv(x))− x
η

)
, (2.23)

for any continuous v : C → Rd. The limit in (2.23) exists and is unique
since C is a convex set. In case C is not convex, the limit Γ̄(v(x)) in
(2.23) will not be unique in general for all x and so Γ̄(h(X(t))) will be
a set of points for any X(t), that is not necessarily a singleton, and so
instead of the ODE (2.22), one may consider the following differential
inclusion:

Ẋ(t) ∈ Γ̄(h(X(t))). (2.24)

A similar result as below can then be seen to hold in this case. For
simplicity, we shall restrict our attention to the case where C is a
compact and convex set.

From the definition of Γ̄ in (2.23), note that Γ̄(v(x)) = v(x) if
x ∈ Co (the interior of C). This is because for such an x, one can
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find η > 0 sufficiently small so that x+ ηv(x) ∈ Co as well and hence
Γ(x+ ηv(x)) = x+ ηv(x). On the other hand, if x ∈ ∂C (the boundary
of C) is such that x+ ηv(x) 6∈ C, for any small η > 0, then Γ̄(v(x)) is
the projection of v(x) to the tangent space of ∂C at x.

Consider now the assumptions listed below.

A2.9. The function h : Rd → Rd is Lipschitz continuous.

A2.10. The step-sizes a(n), n ≥ 0 satisfy

a(n) > 0 ∀n,
∑
n

a(n) =∞, a(n)→ 0 as n→∞.

A2.11. The sequence βn, n ≥ 0 is a bounded random sequence
with βn → 0 almost surely as n→∞.

Let t(n), n ≥ 0 be a sequence of positive real numbers defined according

to t(0) = 0 and for n ≥ 1, t(n) =
n−1∑
j=0

a(j). By Assumption A2.10,

t(n)→∞ as n→∞. Let m(t) = max{n | t(n) ≤ t}. Thus, m(t)→∞
as t→∞.

A2.12. There exists T > 0 such that ∀ε > 0,

lim
n→∞

P

sup
j≥n

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ξi ‖≥ ε

 = 0.

Let K ⊂ Rd denote the set of asymptotically stable attractors of (2.22).
Then, Kushner and Clark, 1978, Theorem 5.3.1 (pp. 191-196) essentially
says the following:

Theorem 2.5 (Kushner and Clark Theorem - Projected case). Under
Assumptions A2.9–A2.12, almost surely, Xn → K as n→∞.
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2.4 Convergence analysis using stochastic recursive inclusions

We present here some results on stochastic recursive inclusions (SRI)
from (Benaïm et al., 2005). Let J : Rd → {subsets of Rd} be a Peano
map. The DI (A.3) then admits typically nonunique solutions through
any initial point x0 ∈ Rd.

Let (Ω,F , P ) be the underlying probability space with {Fn} as the
filtration. A stochastic recursive inclusion (SRI) is a recursion of the
following form:

xn+1 − xn − a(n)Mn+1 ∈ a(n)J(xn), (2.25)

where (Mn,Fn), n ≥ 0, is a martingale difference sequence.
Let t(n), n ≥ 0 be a sequence of time points defined as follows:

t(0) = 0 and for n ≥ 1, t(n) =
n−1∑
k=0

a(k). Thus, t(n+ 1) = t(n) + a(n).

For any t ≥ 0, let m(t) 4= sup{k ≥ 0 | t ≥ t(k)}. Define a continuous
time affine interpolated process W : [0,∞)→ Rd as follows:

W (t(n) + s) = xn + s

(
xn+1 − xn
a(n)

)
, s ∈ [0, a(n)].

From the above, W (t(n)) = xn,∀n.

Proposition 2.1. Assume the following hold:

(i) For all T > 0,

lim
n→∞

sup{‖
l−1∑
k=n

a(k)Mk+1‖ | k = n+ 1, . . . ,m(t(n) + T )} = 0.

(ii) sup
n
‖xn‖ <∞ almost surely.

Then the process W (·) is a perturbed solution of J .

Consider now the assumptions A2.7-A2.8 with ηn = Mn+1, n ≥ 0 as
the martingale difference sequence. Assume also the stability require-
ment on the iterates (2.25).

A2.13. The iterates (2.25) satisfy sup
n
‖xn‖ <∞ almost surely.
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Let ζ(n) =
n−1∑
m=0

a(m)Mm+1, n ≥ 1. Then (ζ(n),Fn), n ≥ 1 can be

seen to be a martingale sequence. From Assumptions A2.8 and A2.13,
it can be seen that the quadratic variation process of the martingale
{ζ(n)} converges almost surely, and by the martingale convergence
theorem, the martingale itself converges almost surely. It is then clear
that the requirement (i) in Proposition 2.1 is satisfied. Together with
Assumption A2.13, it implies from Proposition 2.1 that the process
W (·) is a bounded perturbed solution to the DI (A.3). We thus have
the following main result.

Theorem 2.6. The limit set of W (·), the continuous time affine in-
terpolated process obtained from the stochastic recursion (2.25) with
W (0) = z, given by L(z) =

⋂
t≥0
{W [t,+∞)}, is internally chain transi-

tive for the DI (A.3).

2.4.1 Stochastic Approximation with Markov Noise

An important setting not previously considered thus far in this text is
of Markov noise in addition to the martingale difference noise sequence
when considering the stochastic iterates. Such a setting arises in the case
of problems of optimization and control when data becomes available
online one at a time in real time as well as in reinforcement learning
with online updates. The results here are based on (Borkar, 2022;
Ramaswamy and Bhatnagar, 2019). Consider the following update of
the θ-parameter:

θn+1 = θn + a(n) (h(θn, X(n)) +Mn+1) , (2.26)

where X(n), n ≥ 0 is the sequence of random variables characterizing
Markov noise. Let Š denote the set of states for {X(n)}. Also, let
Fn = σ(θ(m), X(m),Mm,m ≤ n), n ≥ 0. We let

P (X(n+ 1) = j | Fn) = pθn(X(n), j) a.s.,

where pθn(·, ·) are the transition probabilities that depend on the pa-
rameter iterates θn, n ≥ 0.
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Consider now a sequence {t(n)} of time points defined as follows:

t(0) = 0, t(n) =
n−1∑
k=0

a(k), n ≥ 1. Now define the algorithm’s trajectory

θ̄(t) according to: θ̄(t(n)) = θn, ∀n, and with θ̄(t) defined as a continuous
linear interpolation on each of the intervals [t(n), t(n+ 1)].

Consider now the following assumptions:

A2.14. h : Rd × Š → Rd is Lipschitz continuous in the first argument,
uniformly with respect to the second.

A2.15. For any given θ ∈ Rd, the set D(θ) of ergodic occupation
measures of {Xn} is compact and convex.

A2.16. {Mn}n≥0 is a square-integrable martingale difference sequence.
Further, E

[
||Mn+1||2|Fn

]
≤ K(1 + ||θn||2).

A2.17. The step-size sequence {a(n)} satisfies a(n) > 0, ∀n. Further,
∞∑
n=0

a(n) =∞ and
∞∑
n=0

a2(n) <∞.

A2.18. Let h̃(θ, ν) =
∫
h(θ, x)ν(dx). Also, h̃c(θ, ν) = h̃(cθ, ν(cθ))

c
.

(i) The limit h̃∞(θ, ν) = lim
c→∞

h̃c(θ, ν) exists uniformly on compacts.

(ii) There exists an attracting set A associated with the differential
inclusion (DI) θ̇(t) ∈ H(θ(t)) where H(θ) = c̄o({h̃∞(θ, ν) : ν ∈
D(θ)}) such that sup

u∈A
||u|| < 1 and B̄1(0) 4= {x | ||x|| ≤ 1} is a

fundamental neighborhood of A.

Theorem 2.7. Under A2.14–A2.18, {θ̄(s+ ·), s ≥ 0} remains uniformly
bounded with probablity one anconverges to an internally chain transi-
tive invariant set of the differential inclusion

θ̇(t) ∈ ĥ(θ(t)),

where ĥ(θ) = {h̃(θ, ν) | ν ∈ D(θ)}. In particular, {θt} converges almost
surely to such a set.
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Example 2.1. We present first a simple example as an application
to Theorem 2.7. The temporal difference (TD) learning algorithm in
reinforcement learning has a similar structure as considered in this
example. Consider a Markov chain {Xn} taking values in a set S (the
state space) assumed finite for simplicity. Assume {X(n)} is an ergodic
Markov process that does not depend on the parameter θ. Let ν denote
the unique stationary distribution of {X(n)}. Consider now the following
update of the parameter θ:

θn+1 = θn + a(n)(A(X(n))θn + b(X(n))), (2.27)

where A(X(n)) for any n ≥ 0 is a d× d matrix and b(X(n)) ∈ Rd is a
d-dimensional vector. Further, suppose the step-size sequence {a(n)}
satisfies Assumption A2.17. Let

Ā =
∑
i∈S

A(i)ν(i) and b̄ =
∑
i∈S

b(i)ν(i).

Assume now that Ā is negative definite. In the setting of Theorem 2.7,

h(θ,X) = A(X)θ + b(X),

that is easily seen to satisfy Assumption A2.14. Since {X(n)} is ergodic
Markov, D(θ) = {ν}, a singleton set (with ν independent of θ. Thus,
Assumption A2.15 is trivially satisfied. Now note that in recursion (2.27),
we do not have an explicit martingale difference noise term. Thus, one
may let Mn+1 ≡ 0 here for all n. Thus, Assumption A2.16 is trivially
satisfied as well. Now, as before, let

h̃(θ, ν) =
∑
i

h(θ, i)ν(i) =
∑
i

(A(i)θ + b(i))ν(i) = Āθ + b̄.

Again, let

h̃c(θ, ν) = h̃(cθ, ν)
c

= Āθ + b̄

c
.

Now,
h̃∞(θ, ν) 4= lim

c→∞
h̃c(θ, ν) = Āθ.

Further, note that the set-valued map H(θ) in Theorem 2.7 takes the
form H(θ) = {Āθ}, a singleton. Then the DI θ̇(t) ∈ H(θ(t)) is actually
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the ODE θ̇(t) = Āθ(t). Let V (θ) = 1
2θ

T ĀT Āθ. It can be seen that V (θ)
is a Lyapunov function for the above ODE since

dV (θ)
dt

= ∇V (θ)T θ̇ = θT ĀT ĀĀθ = (Āθ)T Ā(Āθ)

Thus,

dV (θ)
dt

=

< 0 if θ 6= 0,
0 otherwise.

The strict inequality above follows because Ā is negative definite and
whereby Ā is also a full rank matrix. Thus, θ̇(t) = Āθ(t) has the origin
as its unique globally asymptotically stable attractor with the unit ball
B̄1(0) = {θ|‖θ‖ ≤ 1} as the fundamental neighborhood of the origin.
Thus Assumption A2.18 holds as well.

Consider now the ODE

θ̇(t) = Āθ + b̄.

This ODE can be easily seen to have θ∗ = −Ā−1b̄ as its unique globally
asymptotically stable attractor which then can be viewed as an internally
chain transitive invariant set of the above ODE. Now from Theorem 2.7,
{θn} remains uniformly bounded w.p.1. Moreover, it follows that θn →
θ∗ almost surely.

2.5 Two timescale stochastic approximation

Many times, one is faced with the problem of optimizing parameters
under a nested loop structure. The objective function to be optimized
in such cases is obtained as a long-run average over other sample
cost functions many times in non-i.i.d noise settings. The outer loop
procedure in such a case would perform the optimization but the inner
loop would perform the averaging corresponding to any given parameter
value as determined by the outer-loop procedure and that in turn would
have performed a parameter update using the averaged value provided
by the inner-loop step in the previous round. Policy iteration in Markov
decision processes to determine the optimal policy is one such scheme
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where the policy evaluation step proceeds in the inner loop while policy
improvement is conducted in the outer loop, cf. (Bertsekas and Tsitsiklis,
1996). In general, running a nested loop procedure, however, comes with
the challenge of dealing with a potentially large computation time for
the procedure.

To simplify such computations in the dual-loop, particularly in
the model-free setting, one often resorts to stochastic approximation
with two timescales. In these algorithms, the nested loop structure
is replaced with two recursions that perform updates simultaneously
but using different step-size schedules, both of which satisfy the usual
Robbins-Monro step-size conditions though one of these tends to zero at
a rate faster than the other. The actor-critic algorithm, see (Sutton and
Barto, 2018), in reinforcement learning (that mimics policy iteration) or
the simulation optimization algorithm for optimizing long-run average
cost objectives under Markov noise, see (Bhatnagar et al., 2013), are
instances of such algorithms.

Suppose θn, γn, n ≥ 0 be two parameter sequences that are governed
according to

θn+1 = θn + αn(f(θn, γn) +N1
n+1), (2.28)

γn+1 = γn + βn(g(θn, γn) +N2
n+1), (2.29)

where θn ∈ Rd and γn ∈ Rl, ∀n ≥ 0 under the following assumptions:

A2.19. The functions f : Rd ×Rl → Rd and g : Rd ×Rl → Rl are both
Lipschitz continuous.

A2.20. The step-size sequences {αn} and {βn} satisfy αn, βn > 0, ∀n.
In addition, ∑

n

αn =
∑
n

βn =∞,
∑
n

(
α2
n + β2

n

)
<∞, (2.30)

lim
n→∞

βn
αn

= 0. (2.31)

A2.21. The noise sequences {N1
n} ⊂ Rd and {N2

n} ⊂ Rl are both mar-
tingale difference sequences w.r.t. the σ-fields F̄n = σ(θm, γm, N1

m, N
2
m,

m ≤ n), n ≥ 0, and in addition satisfy

E[‖ N i
n+1 ‖2| F̄n] ≤ D(1+ ‖ θn ‖2 + ‖ γn ‖2), i = 1, 2, n ≥ 0,
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for i = 1, 2 and some constant D <∞.

A2.22. sup
n
‖ θn ‖, sup

n
‖ γn ‖<∞ almost surely.

In Assumption A2.20, (2.31) is an important requirement which
results in the separation of timescales. As a consequence of (2.31),
βn → 0 faster than {αn}. Consider now the ODEs

θ̇ = f(θ(t), γ(t)), (2.32)

γ̇(t) = 0. (2.33)
As a consequence of (2.33), one can alternatively consider the ODE

θ̇ = f(θ(t), γ) (2.34)

in place of (2.32), where because of (2.33), γ(t) ≡ γ, a constant.

A2.23. The ODE (2.34) has a unique globally asymptotically stable
equilibrium µ(γ) where µ : Rl → Rd is a Lipschitz continuous function.

Consider also the ODE

γ̇ = g(µ(γ(t)), γ(t)). (2.35)

A2.24. The ODE (2.35) has a unique globally asymptotically stable
equilibrium γ?.

Define two real-valued sequences {rn} and {sn} as rn =
n−1∑
m=0

αm

and sn =
n−1∑
m=0

βm, respectively, n ≥ 1 and with r0 = s0 = 0. Define

continuous time processes θ̄(r), γ̄(r), r ≥ 0 as follows:

θ̄(r) = rn+1 − r
rn+1 − rn

θn + r − rn
rn+1 − rn

θn+1, r ∈ [rn, rn+1],

γ̄(r) = rn+1 − r
rn+1 − rn

γn + r − rn
rn+1 − rn

γn+1, r ∈ [rn, rn+1],

For s ≥ 0, let θs(r), γs(r), r ≥ s denote the trajectories of (2.32)-
(2.33) with θs(s) = θ̄(s) and γs(s) = γ̄(s). Note that because of (2.33),
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γs(r) = γ̄(s) ∀r ≥ s. Now (2.28)-(2.29) can be viewed as ‘noisy’ Euler
discretizations of the ODEs (2.32)-(2.33) when the time discretization
corresponds to {rn}. This is because (2.29) can be written as

γn+1 = γn + αn

(
βn
αn

(
g(θn, γn) +N2

n+1

))
,

and (2.31) implies that the term multiplying αn on the RHS above
vanishes in the limit. One can now show, see (Borkar, 2022), using a
sequence of approximations involving the Gronwall inequality that for
any given T > 0, with probability one, sup

r∈[s,s+T ]
‖ θ̄(r) −θs(r) ‖ → 0

as s → ∞. The same is also true for sup
r∈[s,s+T ]

‖ γ̄(r) −γs(r) ‖ as well.

Further, using the time discretization {st} for the ODE (2.35), a similar
conclusion with regards to iteration (2.29) (and ODE (2.35)) can be
drawn following a continuous time trajectory that is obtained with the
iterates in (2.29) interpolated along the time line {sn} according to

γ̌(s) = sn+1 − s
sn+1 − sn

γn + s− sn
sn+1 − sn

γn+1, s ∈ [sn, sn+1],

The following is the main two-timescale convergence result (cf. (Borkar,
2022)).

Theorem 2.8. With probability one, (θn, γn)→ (µ(γ?), γ?) as n→∞.

2.6 Bibliographic remarks

Stochastic approximation has a long history, starting with the seminal
work of Robbins and Monro (Robbins and Monro, 1951), who provided
a stochastic root finding scheme. Subsequently, (Kiefer and Wolfowitz,
1952) analyzed a zeroth-order stochastic gradient scheme. For a textbook
introduction, the reader is referred to (Borkar, 2022; Kushner and Yin,
2003). The main convergence result in Section 2.3 is the well-known
Kushner Clark lemma, see (Kushner and Clark, 1978), while the Markov
noise case is handled in (Borkar, 2022; Ramaswamy and Bhatnagar,
2019). The convergence result for two timescale is based on Theorem
8.1 of (Borkar, 2022). Finally, the reader is referred to (Benaïm et al.,
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2005) for a detailed introduction to differential inclusions and their
convergence analysis.

On the applications side, reinforcement learning is popular and
(Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 2018; Bertsekas, 2019;
Powell, 2021; Meyn, 2022) provide textbook introductions, see also
(Bertsekas, 2012) for an extensive treatment on approximate dynamic
programming, the backbone of modern RL.

Simultaneous perturbation based approaches in conjunction with
reinforcement learning have been found to perform exceedingly well
on several applications. For instance, (Bhatnagar and Kumar, 2004)
presents and analyses an actor-critic algorithm with a temporal differ-
ence critic and an actor based on simultaneous perturbation gradient
estimates. Further, an application on the available bit rate (ABR) ser-
vice in asynchronous transfer mode (ATM) networks is studied. In
(Bhatnagar and Babu, 2008) and (Bhatnagar and Lakshmanan, 2016),
actor-critic style RL algorithms are developed to mimic q-learning but
where the critic is updated on a slower timescale as compared to the
actor. The algorithm in (Bhatnagar and Babu, 2008) is for the look-up
table case while the algorithm in (Bhatnagar and Lakshmanan, 2016)
caters to the case with function approximation. The actor recursion in
each case involves SPSA based gradient estimates. These algorithms
are also studied on problems of routing in communication networks.
The algorithm in (Bhatnagar and Lakshmanan, 2016) has further been
explored in (Prashanth et al., 2014) for a problem of intrusion detec-
tion in adhoc wireless sensor networks. Further, in an application on
vehicular traffic control, (Prashanth and Bhatnagar, 2012) incorporates
Q-learning with a graded feedback control where the threshold levels
are tuned using an SPSA based algorithm on a slower timescale.

For quantile estimation and CVaR estimation using stochastic ap-
proximation, see (Bardou et al., 2009). Stochastic approximation is
popular for estimating other risk measures, e.g., utility-based shortfall
risk (Hegde et al., 2021; Dunkel and Weber, 2010).



3
Gradient estimation

In this chapter, we introduce the simultaneous perturbation trick for
gradient estimation, given noisy measurements from a zeroth-order
oracle. These estimates are not unbiased, but feature a parameter that
controls the bias, usually at the cost of variance. We discuss several
popular gradient estimates in the literature, through a unified estimator.
These estimates form the basis for a stochastic gradient algorithm,
which is presented in Algorithm 1.

Algorithm 1 Zeroth-order stochastic gradient (ZSG) algorithm

Input: Initial point θ0 ∈ Rd, iteration limit m, stepsizes {ak}k≥1.
for k = 1, . . . ,m do

Form the gradient estimate ∇̂f(θk) using one or more function
measurements

Perform the following stochastic gradient descent update:
θk+1 = θk − ak∇̂f(θk).

end for
Return θm.

In the following section, we present schemes for devising ∇̂f(·) with

51
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an estimation error (bias) that can be made to vanish asymptotically.
For the sake of analyzing the bias and variance properties of the gra-

dient estimators in this chapter, we shall consider two classes of smooth
functions, as given below. For a detailed introduction to smoothness,
the reader is referred to Appendix C.

Definition 3.1. Consider a function f : Rd → R.

(i) f is L-smooth if for some constant L > 0,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

(ii) f ∈ C3 if f is three times continuously differentiable with∣∣∣∇3
i1i2i3f(θ)

∣∣∣ < α0 <∞, for i1, i2, i3 = 1, . . . , d and for all θ ∈ Rd.

Here ∇3f(θ) = ∂3f(θ)
∂θT∂θT∂θT

denotes the third derivative of f at
θ, and ∇3

i1i2i3f(θ) denotes the (i1i2i3)th entry of ∇3f(θ), for
i1, i2, i3 = 1, . . . , d.

3.1 Finite differences

As a gentle start, consider a noise-free zeroth-order oracle, as illustrated
below.

θ Noise-free oracle f(θ)

In this setting, one could form an estimate ∇̂f(θ) using d+ 1 queries
to the oracle above as follows:

∇̂if(θ) = 1
δ

(f(θ + δei)− f(θ)) , i = 1, . . . , d . (3.1)

How good an estimate is (3.1)? Assuming f ∈ C3, i.e., f is three-times
continuously differentiable, we can employ Taylor series expansion of f
as follows1:

f(θ + δei) = f(θ) + δ∇f(θ)>ei + δ2

2 e>i ∇2f(θ)ei +O(δ3),

1For the sake of simplicity, we have chosen to hide the constants through a O(δ3)
term. The latter constants can be made precise, as in Proposition 3.1 below.
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leading to the estimation error:∥∥∥∇̂f(θ)−∇f(θ)
∥∥∥
∞

= O(δ).

Using 2N queries to the oracle mentioned above, we define a two-
sided variant of the estimate in (3.2) below.

∇̂if(θ) = 1
2δ (f(θ + δei)− f(θ − δei)) , i = 1, . . . , d. (3.2)

Employing Taylor-series expansions as before, leads to the following
bound on the estimation error:∥∥∥∇̂f(θ)−∇f(θ)

∥∥∥
∞

= O(δ2).

Thus, using a two-sided estimate reduced the error to O(δ2), while the
number of sample measurements went up to 2N from d+ 1.

The two estimates presented in (3.1) and (3.2) fall under the realm
of finite difference stochastic approximation (FDSA), and such schemes
can be extended to handle noise-corrupted function observations, as we
show next. As an aside, a major disadvantage with FDSA estimates is
the high measurement cost, since O(d) calls to the oracle are needed to
form an estimate.

FDSA with noisy measurements

We consider a zeroth-order oracle, which outputs noisy observations of
the objective at any query point, as illustrated below.

θ Noisy oracle f(θ) + ξ

Zero mean

Consider the following two-sided estimate, formed using noisy function
measurements:

∇̂if(θ) = 1
2δ
{
f(θ + δei) + ξ+

i − (f(θ − δei) + ξ−i )
}
, i = 1, . . . , d.

Suppose that E
[
ξ+ − ξ−

]
= 0 and also that E

[
ξ±
]
≤ σ2 < ∞. Then,

assuming f ∈ C2, one can establish the near-unbiasedness of the estimate
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above using Taylor-series expansions as follows:

f(θ ± δei) = f(θ)± δ∇f(θ)>ei + δ2

2 e>i ∇2f(θ)ei +O(δ3).

⇒ E(∇̂if(θ)) = 1
2δ (f(θ + δei)− f(θ − δei))

⇒
∥∥∥E∇̂f(θ)−∇f(θ)

∥∥∥
∞

= O(δ2).

With 2N queries, an FDSA estimate would be O(δ2) from the true
gradient, even in the case when function measurements are noisy.

Next, we will present a series of estimates that achieve the same level
of accuracy as FDSA, but with only two measurements, irrespective of
the dimension d.

3.2 Simultaneous perturbation method

FDSA perturbs co-ordinates one-at-a-time, leading to 2N queries to
the oracle. The number of queries get reduced by randomly perturbing
all co-ordinate directions simultaneously. This is the idea behind the
SPSA scheme proposed by (Spall, 1992), which we describe below.

Let y+ = f(θ + δ∆) + ξ+ and y− = f(θ − δ∆) + ξ−, where ∆ =
(∆1, . . . ,∆d)T is a d-vector of symmetric, ±1-valued Bernoulli r.v.s, i.e.,
∆i = +1 w.p. 1/2 and −1 w.p. 1/2, for i = 1, . . . , d. Consider the
following estimate:

∇̂if(θ) =
[
y+ − y−

2δ∆i

]
, i = 1, . . . , d. (3.3)

In expectation, the estimate defined above is nearly unbiased, and this
can be argued as follows: Assuming E

[
ξ+ − ξ−

]
= 0,

E
[
∇̂if(θ)

]
= E

[
f(θ + δ∆)− f(θ − δ∆)

2δ∆i

]
. (3.4)

Here and in what follows, we assume that θ is given, and the expectation
is over other random terms.

Next, assuming f ∈ C3, and employing Taylor series expansions, we
obtain

f(θ ± δ∆) = f(θ)± δ∆T∇f(θ) + δ2

2 ∆T∇2f(θ)∆ +O(δ3). (3.5)
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From the above, it is easy to see that

f(θ + δ∆)− f(θ − δ∆)
2δ∆i

−∇if(θ) =
d∑

j=1,j 6=i

∆j

∆i
∇jf(θ)

︸ ︷︷ ︸
(I)

+O(δ2).

In expectation given θ, term (I) above is zero, since ∆l, l = 1, . . . , d are
symmetric Bernoulli ±1-valued r.v.s. Hence,

E
[
∇̂if(θ)

]
= ∇if(θ) +O(δ2).

From the above, it is easy to see that the expected value of the estimate
(3.3) converges to the true gradient ∇f(θ) in the limit as δ → 0. Thus,
if one uses a gradient estimate as in (3.3) in a stochastic approximation
algorithm, and lets δ → 0 slowly enough, the overall scheme will converge
to a local minima of the function f . This will be made precise in the
next chapter.

We demonstrated the simultaneous perturbation trick through the
SPSA scheme, which employed independent symmetric Bernoulli r.v.s
for random perturbations. However, the trick is more generally valid,
and not restricted to this choice for random perturbations. Furthermore,
this trick can be used for estimating the Hessian and not just the
gradient as we illustrate later.

In the next section, we present a unified gradient estimate that
covers several schemes in the literature.

3.2.1 A unified estimate

Let y+ = f(θ+δU)+ξ+, and y− = f(θ−δU)+ξ−. Using these function
values, we form the gradient estimate as follows:

∇̂f(θ) =
(
y+ − y−

2δ

)
V. (3.6)

The estimate defined above can be specialized to cover several popular
simultaneous perturbation-based gradient estimates, and we list some
of these below.
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• Setting U ∼ N (0, IN ), where N (0, IN ) denotes the d-dimensional
standard Gaussian vector, and V = U , we obtain the smoothed
functional scheme proposed by (Katkovnik and Kulchitsky, 1972).
The latter scheme has been refined by (Polyak and Tsybakov,
1990), and also studied by (Dippon, 2003; Bhatnagar and Borkar,
2003; Bhatnagar, 2007; Nesterov and Spokoiny, 2017).

• U ∼ Unif(SN ), i.e., U is chosen uniformly at random on the
surface of an d-dimensional unit sphere, and with V = dU , we
obtain the random direction stochastic approximation (RDSA)
scheme proposed by (Kushner and Clark, 1978), and refined by
(Prashanth et al., 2017).

• Setting Ui to be symmetric ±1-valued Bernoulli r.v.s and V = U ,
we obtain the SPSA gradient estimate, which was defined earlier
in (3.3).

• Setting Ui to be a uniformly distributed r.v. in [−η, η], and V =
3
η2Ui, leads to the 1RDSA-Unif variant of (Prashanth et al., 2017).
On the other hand, setting Ui to be an asymmetric Bernoulli r.v.,
i.e., taking values −1 and 1+ε with probabilities 1 + ε

2 + ε
and 1

2 + ε
,

respectively, and Vi = 1
1 + ε

Ui leads to the 1RDSA-Asymber
variant of (Prashanth et al., 2017). Here ε > 0 is a constant,
usually set to a small value.

We make the following assumptions for analyzing the unified esti-
mator presented above:

A3.1. Let U, V be random d-vectors satisfying E
[
V U>

]
= I, E [V ] = 0,

and E
[
‖V ‖ ‖U‖3

]
<∞.

A3.2. The noise factors ξ± in (3.6) satisfy

E[ξ+ − ξ−|U, V ] = 0, and E[(ξ+ − ξ−)2|U, V ] ≤ σ2 <∞ . (3.7)

A3.3. The objective f satisfies

sup
θ∈Rd

E[f(θ ± δU)2] ≤ B <∞ . (3.8)
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Proposition 3.1. Assume A3.1–A3.3, and also that f ∈ C3, with∣∣∣∇3
i1i2i3f(θ)

∣∣∣ < B̃ < ∞, for i1, i2, i3 = 1, . . . , d and for all θ ∈ Rd.
Then, the gradient estimate defined in (3.6) satisfies the following
bounds for any given θ:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥
∞
≤ C1δ

2, and

E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 ,

where C1 =
B̃E

[
‖V ‖ ‖U‖3

]
6 , and C2 = 4E

[
‖V ‖2

] (
σ2 +B2

)
.

Proof. Notice that

E[∇̂f(θ)] = E
[
V
f(θ + δU)− f(θ − δU)

2δ

]
,

since E
[
V

(
ξ+ − ξ−

2δ

)]
= 0 from A3.2.

Since f ∈ C3, we have the following Taylor series expansion of f
around θ:

f(θ ± δU) = f(x)± δ UT∇f(θ) + δ2

2 UT∇2f(θ)U

± δ3

6 ∇
3f(θ̃±)(U ⊗ U ⊗ U), (3.9)

where ⊗ denotes the Kronecker product and θ̃+ (resp. θ̃−) is on the line
segment between θ and (θ + δU) (resp. (θ − δU)).

Now,

V
f(θ + δU)− f(θ − δU)

2δ

= V U
T ∇f(θ) + δ2

12V (∇3f(θ̃+) +∇3f(θ̃−)(U ⊗ U ⊗ U).
(3.10)

Taking expectations of both sides above, using E [V UT] = I, |∇3f(θ̃±)| <
B̃, and |∇3f(θ̄)(U ⊗ U ⊗ U)| ≤ B̃ ‖U‖3 for any θ̄, we obtain

∥∥∥E [∇̂f(θ)
]
−∇f(θ)

∥∥∥
∞
≤ C1 δ

2 , where C1 =
B̃E

[
‖V ‖ ‖U‖3

]
6 .
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Next, we prove the second claim concerning the variance of ∇̂f(θ).
Notice that

E
∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
≤ 4E

∥∥∥∇̂f(θ)
∥∥∥2

= 4E

‖V ‖2
(ξ+ − ξ−

2δ

)2

+ 2
(
ξ+ − ξ−

2δ

)(
f(θ + δU)− f(θ − δU)

2δ

)

+
(
f(θ + δU)− f(θ − δU)

2δ

)2))

= 4E

‖V ‖2(ξ+ − ξ−

2δ

)2
+ 4E

(
‖V ‖2

(
f(θ + δU)− f(θ − δU)

2δ

)2)
(3.11)

≤ C2
δ2 ,

where C2 = 4E
[
‖V ‖2

] (
σ2 +B2

)
. The equality in (3.11) follows from

E
[
ξ+ − ξ− |U, V

]
= 0.

3.2.2 The convex case

We now analyze the bias and variance properties of the estimator
in (3.6) under a convex objective f . In this case, we do not require
higher-order smoothness, and instead it is enough to assume first-order
smoothness.

Proposition 3.2. Assume A3.1–A3.3, and also that the function
f is convex and L-smooth, as specified in 3.1. Then the gradient
estimate defined in (3.6) satisfies the following bounds for any given
θ:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ, and E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 .

Proof. For any convex function f with an L-Lipschitz gradient, for any
δ > 0 it holds that

〈∇f(θ), δu〉
2δ ≤ f(θ + δu)− f(θ)

2δ ≤〈∇f(θ), δu〉+ (L/2) ‖δu‖2

2δ .
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Using similar inequalities for f(θ − δu), we obtain

〈∇f(θ), u〉 − Lδ ‖u‖2

2 ≤ f(θ + δu)− f(θ − δu)
2δ ≤〈∇f(θ), u〉+ Lδ ‖u‖2

2 .

Letting φ(θ, δ, u) := 1
δ

(
f(θ + δu)− f(θ − δu)

2δ − 〈∇f(θ), u〉
)
, we get

|φ(θ, δ, u)| ≤L2 ‖u‖
2 .

Using E
[
V U>

]
= I and A3.2, we obtain

E[∇̂f(θ)] = E
[
V

(
f(θ + δU)− f(θ − δU)

2δ

)]
= E

[
V U>∇f(θ) + δφ(θ, δ, U)V

]
= ∇f(θ) + δφ̂(θ, δ),

where φ̂(θ, δ) satisfies
∥∥∥φ̂(θ, δ)

∥∥∥ ≤ C1 ,
L

2 E[‖V ‖ ‖U‖2]. The first claim
concerning the bias of the gradient estimate follows.

The bound on the variance of the gradient estimate in (3.6) follows
in a similar manner to the proof of Proposition 3.1.

3.3 Variants

3.3.1 One-point gradient estimate

The gradient estimate presented earlier required two function evalu-
ations. In this section, we describe a variant that requires only one
function evaluation. Let y = f(θ + δU) + ξ. Using this function value,
we form a gradient estimate as follows:

∇̂f(θ) = y

δ
V, (3.12)

where U, V are random perturbations as in the case of two-point estimate
(3.6), and ξ is a zero-mean noise r.v., i.e., satisfying E[ξ|V ] = 0.
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Proposition 3.3. Assume A3.1, A3.3 and E[ξ|V ] = 0. Further,
assume that U is symmetrically distributed, and V is an odd
function of U . Then, for f ∈ C3, the gradient estimate defined in
(3.12) satisfies∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ
2, and E

[∥∥∥∇̂f(θ)− E
[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 .

The bound on the bias above is comparable to that obtained by the
two-point estimate (3.6) was O(δ2). However, a closer inspection in the
proofs reveals that the first and second term in the Taylor expansion
(see (3.9)) cancel out in the case of the two-point estimate, while no
such cancellation occurs for the one-point case. Instead, in the latter
case, the corresponding Taylor terms turn out to be mean zero (see
(3.13) in the proof below). Hence, the two-point estimate is preferable.
Moreover, empirically the two-point estimate usually outperforms its
one-point counterpart, as noted in (Spall, 1997).

Proof. Using E [ξ|V ] = 0, we have

E[∇̂f(θ)] = E
[
V

(
f(θ + δU)

δ

)]
.

By Taylor’s expansion in (3.9), we obtain

E
[
V
f(θ + δU)

δ

]
= E

[
V
f(θ)
δ

]
+ E

[
V U

T ∇f(θ)
]

+ E
[
δ

2 V U
T∇2f(θ)U

]
+ E

[
δ2

12V∇
3f(θ̃+)(U ⊗ U ⊗ U)

]

= ∇f(θ) + E
[
δ2

12V∇
3f(θ̃+)(U ⊗ U ⊗ U)

]
. (3.13)

The final equality above follows from the facts that E [V ] = 0, E [V UT] =
I and for any i, j = 1, . . . , d, E[ViU2

j ] = 0 since V is a deterministic odd
function of U , with U having a symmetric distribution. Using the fact
that |∇3f(θ̃+)(U ⊗ U ⊗ U)| ≤ B̃ ‖U‖3, we obtain

∥∥∥E [∇̂f(θ)
]
−∇f(θ)

∥∥∥ ≤ C1 δ
2 , where C1 =

B3E
[
‖V ‖ ‖U‖3

]
6 .
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The proof of the second claim concerning the variance of the estimate
∇̂f(θ) follows using arguments similar to those used in the proof of
Proposition 3.1.

3.3.2 Deterministic perturbations

So far, we have shown that one can use random perturbations to
construct a gradient estimate with controllable bias. In this section, we
show that one can achieve similar bias control through a deterministic
perturbation sequence. To illustrate, we demonstrate (i) a permutation
matrix-based perturbation sequence in the context of an RDSA scheme;
and (ii) a Hadamard matrix-based perturbation sequence in an SPSA-
type gradient estimate.

Permutation matrices for RDSA

The analysis of the biasedness of the unified estimator in (3.6) relied
on suitable Taylor’s expansions to arrive at the following:

V

[
f(θ + δU)− f(θ − δU)

2δ

]
= V UT∇f(θ) +O(δ2).

The random perturbations U, V satisfying EV UT = IN resulted in a
nearly unbiased estimator (see Proposition 3.1). Now, if U, V are chosen
in a deterministic fashion, such thatVmUT

m sums to identity over a loop,
then ∇̂f(θ) would be nearly unbiased, in the spirit of the guarantees in
Proposition 3.1. We present below a deterministic perturbation scheme,
where we loop through the rows of a permutation matrix.

A permutation matrix is a matrix whose rows are the rows of an
identity matrix in some order. For instance, the permutation matrices
in two dimension are [

1 0
0 1

]
and

[
0 1
1 0

]
.

In three dimensions, there are 6 permutation matrices. In general, there
are d! permutation matrices in dimension d.



62 Gradient estimation

We now present an RDSA-style gradient estimate using permutation
matrix-based deterministic perturbations below.

∇̂f(θ) =
d−1∑
m=0

∆m

[
y+
m − y−m
2δm

]
. (3.14)

In the above, y+
m = f(θ + δm∆m) + ξ+

m and y−m = f(θ − δm∆m) + ξ−m,
where ξ±m is the measurement noise. Further, ∆m is the mth row of the d-
dimensional permutation matrix. Table 3.1 illustrates the perturbations
dm used in (3.14), for d = 2 and d = 3. In a nutshell, the sequence
shown in Table 3.1 loops through the rows of the identity matrix in
some order.

Table 3.1: Illustration of the permutation matrix-based deterministic perturbation
sequence construction for two-dimensional and three-dimensional settings.

(a) Case d = 2

Inner loop D1
2 D2

2
counter m

0 1 0
1 0 1

(b) Case d = 3

Inner loop D1
3 D2

3 D3
3

counter m

0 0 1 0
1 0 0 1
2 1 0 0

Hadamard matrices for SPSA

A Hadamard matrix is a square matrix with entries ±1 that satisfies
HTH = mIm, where Im denotes the m×m identity matrix. Further, a
Hadamard matrix is said to be normalized if all the elements of its first
row and column are 1. A simple and systematic way of constructing
normalized Hadamard matrices of order m = 2k is as follows:

For k = 1,

H2 =
[

1 1
1 −1

]
,

and for general k > 1,

H2k =
[
H2k−1 H2k−1

H2k−1 −H2k−1

]
.
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Let P = 2dlog2(d+1)e, where, as mentioned before, d is the param-
eter dimension. This implies P ≥ d + 1. Now construct a normal-
ized Hadamard matrix HP of order P using the above procedure. Let
h(1), . . . , h(d) be any d columns other than the first column of HP . The
first column is not considered because all elements in the first column
are 1, while all the other columns have an equal number of +1 and −1
elements. The latter property aids in canceling the bias terms. Form a
new matrix H̃P of order P × d with h(1), . . . , h(d) as its columns. Let
4̃(k), k = 1, . . . , P denote the rows of H̃P . The perturbation sequence
{4(m)} is now generated by cycling through the rows of H̃P , i.e.,

4(n) = 4̃(n mod P + 1),∀n ≥ 0.

Remark 3.1. Under assumptions similar to those used in Proposition
3.1, it can be shown that the gradient estimate formed using either per-
mutation matrices for RDSA or Hadamard matrices for SPSA satisfies
the following inequality:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ
2, and E

[∥∥∥∇̂f(θ)− E
[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 .

3.3.3 Gaussian smoothing

In this section, we analyze the estimation error of a special case of the
unified estimate with Gaussian perturbations, using the technique from
(Nesterov and Spokoiny, 2017).

Let y+ = f (θ + δ∆) + ξ+ and y = f (θ) + ξ−, where ∆ is a d-
dimensional Gaussian vector composed of standard normal r.v.s., i.e.,
∆ ∼ d (0, Id), and ξ+, ξ− are noise factors. Then, the “Gaussian smooth-
ing” gradient estimate is formed as follows:

∇̂f(θ) = ∆
[
y+ − y
δ

]
, (3.15)

where ∆ is a d-dimensional Gaussian vector composed of standard
normal r.v.s., i.e., ∆ ∼ d (0, Id).

Proposition 3.4. Assume A3.2, A3.3 and that f is L-smooth (see 3.1).
The estimate defined in (3.15) satisfies∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ, and (3.16)
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E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 . (3.17)

for some constants C1, C2 > 0.

Proof. For any x ∈ Rd, define

fδ(x) = 1
(2π) d2

∫ ∞
−∞

f(x+ δu) exp
(
−‖u‖

2

2

)
du

= 1
(2π) d2 δd

∫ ∞
−∞

f(y) exp
(
−‖y − x‖

2

2δ2

)
dy.

The function fδ denotes the smoothed version of the objective f , and is
obtained by a convolution of f with Gaussian density. Notice that

∇fδ(x) = 1
(2π) d2 δd+2

∫ ∞
−∞

f(y) exp
(
−‖y − x‖

2

2δ2

)
(y − x)dy

= 1
(2π) d2 δ

∫ ∞
−∞

f(x+ δu) exp
(
−‖u‖

2

2

)
u du

= 1
(2π) d2

∫ ∞
−∞

(
f(x+ δu)− f(x)

δ

)
exp

(
−‖u‖

2

2

)
u du,

where the final equality follows by using
∫ ∞
−∞

u exp
(
−‖u‖

2

2

)
u du = 0.

Also,

∇fδ(x) = 1
(2π) d2

∫ ∞
−∞

f(x+ δu)− f(x− δu)
δ

exp
(
−‖u‖

2

2

)
u du.

Notice that

1
(2π) d2

∫ ∞
−∞
〈∇f(x)), u〉 exp

(
−‖u‖

2

2

)
u du = ∇f(x),

since 1
(2π) d2

∫ ∞
−∞

uuT exp
(
−‖u‖

2

2

)
u du = IN . Here IN denotes the

d-dimensional identity matrix. Using the above fact, we obtain

‖∇fδ(x)−∇f(x)‖
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≤ 1
(2π) d2 δ

∫ ∞
−∞
|f(x+ δu)− f(x)− δ〈∇f(x)), u〉| ‖u‖ exp

(
−‖u‖

2

2

)
du

≤ 1
(2π) d2

δL

2

∫ ∞
−∞
‖u‖3 exp

(
−‖u‖

2

2

)
du

≤ δL(d+ 3) 3
2

2 , (3.18)

where the penultimate inequality follows by using |f(y) − f(x) −
〈∇f(x)), y − x〉| ≤ 1

2L ‖x− y‖
2, while the last inequality is a straight-

forward moment calculation for a multivariate Gaussian.
The claim in (3.16) concerning the bias of the Gaussian smoothing

estimator now follows by combining (3.18) with A3.2.
The claim in (3.17) follows in a similar manner as in the proof of

Proposition 3.1.

3.3.4 Common random numbers

Consider the classic simulation optimization setting, where the objective
is f(θ) = E(F (θ, ψ)), with ψ denoting the noise element, and F (·, ·)
the sample performance. Notice that the observation noise is ξ =
F (θ, ψ)− f(θ), and one usually assumes that ξ is zero-mean, and i.i.d.
when one obtains multiple function measurements.

In this section, we consider a special case where ψ can be kept fixed
across function measurements. For instance, one could obtain function
measurements F (θ1, ψ) and F (θ2, ψ). More precisely,

f(θ) =
∫
F (θ, ψ)Pψ(dψ) , (3.19)

where ψ ∈ R is chosen by the algorithm. To reiterate, the algorithm
can call the zeroth-order oracle by selecting both the input parameter
θ and noise element ψ. In simulation optimization problems, where the
function measurements are obtained from a computer simulation, and
the source of randomness is common random numbers, one has the
luxury of controlling the noise by initializing the seed. Thus, setting the
same seed for two different input parameters would amount to having
the same seed across simulations.
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In this specialized setting, we now construct a two-point gradient
estimate with the same noise element in both function measurements.
Let y+ = F (θ + δU, ψ), and y− = F (θ − δU, ψ). Using these function
values, we form the gradient estimate as follows:

∇̂f(θ) =
(
y+ − y−

2δ

)
V. (3.20)

We shall establish now that the additional ‘common random noise’
structure allows the algorithm to reduce the variance of the gradient
estimates, under the following additional smoothness assumption:

A3.4. The function F has a L-Lipschitz continuous gradient a.s. for
any ψ, i.e.,

‖∇F (x, ψ)−∇F (y, ψ)‖ ≤ L ‖x− y‖ a.s.

Proposition 3.5. Assume A3.1, A3.3, A3.4, and also that the func-
tion f is convex and L-smooth, as specified in 3.1. Then the gradient
estimate defined in (3.20) satisfies the following bounds for any
given θ: ∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ, and (3.21)

E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2 + C3δ

2. (3.22)

Proof. As in the proof of Proposition 3.2, for any convex function h

with an L-Lipschitz gradient, for any δ > 0, we have

〈∇h(θ), δu〉
2δ ≤ h(θ + δu)− h(θ)

2δ ≤〈∇h(θ), δu〉+ (L/2) ‖δu‖2

2δ .

Using similar inequalities for h(θ − δu), we obtain

〈∇h(θ), u〉 − Lδ ‖u‖2

2 ≤ h(θ + δu)− h(θ − δu)
2δ ≤〈∇h(θ), u〉+ Lδ ‖u‖2

2 .
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Letting φ(θ, δ, u) := 1
δ

(
h(θ + δu)− h(θ − δu)

2δ − 〈∇h(θ), u〉
)
, we get

|φ(θ, δ, u)| ≤L2 ‖u‖
2 .

Using E
[
V U>

]
= I, we obtain

E
[
V

(
h(θ + δU)− h(θ − δU)

2δ

)]
=E

[
V U>∇h(θ) + δφ(θ, δ, U)V

]
=∇h(θ) + δφ̂(θ, δ),

where φ̂(θ, δ) satisfies
∥∥∥φ̂(θ, δ)

∥∥∥ ≤ L

2 E[‖V ‖ ‖U‖2].
Applying the above expression to F (·, ψ) and using (3.20), we have

E
[
∇̂f(θ)

]
= ∇F (θ, ψ) + δφ̂(θ, δ) a.s.,

where φ̂(θ, δ) satisfies
∥∥∥φ̂(θ, δ)

∥∥∥ ≤ L

2 E[‖V ‖ ‖U‖2].
A3.4 together with dominated convergence theorem leads to E[∇F (θ, ψ)] =

∇f(θ). Using this fact, we obtain∥∥∥E [∇̂f(θ)
]
−∇f(θ)

∥∥∥ =
∥∥∥∥E [V (

f(θ + δU)− f(θ − δU)
2δ

)
− V U>∇f(θ)

]∥∥∥∥
≤ δ ‖E[V φ(θ, δ, U)]‖

≤ δL

2 E[‖V ‖ ‖U‖2],

and the claim for the bias follows by setting C1 = L

2 E[‖V ‖ ‖U‖2].

We now bound E
[∥∥∥∇̂f(θ)

∥∥∥2
]
as follows:

E
∥∥∥∇̂f(θ)

∥∥∥2
= E

∥∥∥V (δφ(θ, δ, U) + U>∇f(θ)
)∥∥∥2

≤ E
[(
‖V UT∇f(θ)‖+ δL

2 ‖V ‖ ‖U‖
2
)2]

≤ 2E
[
‖V UT∇f(θ)‖2

]
+ δ2L2

2 E
[
‖V ‖2 ‖U‖4

]
,

and the claim for the variance follows by setting C2 = 2B2
1+L

2

2 E
[
‖V ‖2 ‖U‖4

]
with B1 = sup

θ
‖∇f(θ)‖.
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3.4 Summary

Property → Bias Variance
Gradient estimate

↓

Two-point estimate (3.6), f ∈ C3 C1δ
2 C2

δ2

Two-point estimate (3.6)
C1δ

C2
δ2f convex+smooth

One-point estimate (3.12), f ∈ C3 C1δ
2 C2

δ2

One-point estimate (3.12)
C1δ

2 C2
δ2f convex+smooth

Gaussian smoothing (3.15), f ∈ C1 C1δ
C2
δ2

3.5 Bibliographic remarks

The idea of simultaneous perturbation dates back to (Katkovnik and
Kulchitsky, 1972), where the authors proposed the smoothed functional
scheme for gradient estimation. A closely related estimation scheme
is RDSA, proposed by (Kushner and Clark, 1978), where the random
perturbation are chosen uniformly on the surface of a d-dimensional
sphere. This idea is equivalent to using d-dimensional standard Gaussian
vector for the random perturbations — a choice studied in (Polyak and
Tsybakov, 1990; Dippon, 2003; Bhatnagar and Borkar, 2003; Bhatnagar,
2007; Nesterov and Spokoiny, 2017). The asymptotic convergence of a
zeroth-order algorithm with Gaussian smoothing where the gradient is
estimated using a single measurement y+ = f(θ+δ∆)+ξ+ alone is shown
in (Bhatnagar and Borkar, 2003). The same with a balanced estimator
with two measurements y+ = f(θ+ δ∆) + ξ+ and y− = f(θ− δ∆) + ξ−

is shown in (Bhatnagar, 2007). The latter reference also proposes one
and two measurement Newton algorithms where both the gradient
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and Hessian are estimated using y+ and y− respectively. Variants
of RDSA, employing uniform and asymmetric Bernoulli distributed
random perturbations, have been proposed recently in (Prashanth et al.,
2017). SPSA, proposed by (Spall, 1992), is a very popular simultaneous
perturbation method, which also exhibits the lowest asymptotic mean-
square error (cf. (Chin, 1997; Prashanth et al., 2017)). Deterministic
perturbation variants of SPSA have been proposed and analyzed in
(Bhatnagar et al., 2003), while the corresponding deterministic variation
for RDSA has been proposed recently in (Prashanth et al., 2020).
A comprehensive text-book reference on simultaneous perturbation
methods is (Bhatnagar et al., 2013). The latter reference contains a
rigorous treatment of SPSA/SF methods, and includes both first as
well as second-order schemes.



4
Asymptotic analysis of stochastic gradient

algorithms

Consider the following stochastic gradient algorithm for solving θ∗ =
arg min
θ∈Θ

f(θ), given noisy sample access to f :

θn+1 = θn − a(n)∇̂f(θn), n ≥ 0. (4.1)

In Chapter 3, we learned how to form ∇̂f(θn) from function samples
so that ∇̂f(θn) ≈ ∇f(θn). Recall that the latter estimation relied on
the idea of simultaneous perturbation. The question of the error in
the simultaneous perturbation-based estimate was also handled in the
earlier chapter.

In this chapter, we shall be concerned with whether θn governed by
(4.1) converges to a local optimum θ∗, when the underlying gradient
estimates are biased. We shall also address the associated convergence
rate question.

The update in (4.1) is equivalent to

θn+1 = θn − a(n)
(
∇f(θn) + βn + ηn

)
, (4.2)

where ηn = ∇̂f(θn)−E(∇̂f(θn) | Fn) and βn = E(∇̂f(θn) | Fn)−∇f(θn)
is the error in the gradient estimate. Recall that the latter is of the

70
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Algorithm Gradient
Oracle Environment

θ, δ

∇̂f(θ)

f

Figure 4.1: The interaction of the algorithms with a stochastic zeroth-order oracle
that provides a gradient at the input point θ, with perturbation constant δ.

order = O(δ2). Since the sensitivity parameter δ > 0 is held fixed in the
algorithms, there exists ε > 0 such that βn ∈ Bε(0) (the closed ball of
radius ε centred at the origin) for all n ≥ 0. In the above, Fn keeps a
record of observations until time n. For instance, in the case of SPSA,
one could let Fn = σ(θm,m ≤ n,∆m,m < n), n ≥ 1, and F0 = σ(θ0) as
the sequence of sigma algebras generated by the associated quantities.
This choice of Fn would ensure ∆n is independent of Fn, for all n.

Map of the results Table 4.1 provides a summary of the main con-
vergence results for the stochastic gradient algorithm 4.1 with gradient
estimates constructed using measurements from a zeroth-order oracle.
The analysis of the previous chapter can be encapsulated into a biased
gradient oracle, as illustrated in Figure 4.1. For a given input parame-
ter θ and perturbation constant δ, one could use the schemes outlined in
the previous chapter to obtain a gradient estimate ∇̂f(θ) that satisfies∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ
2, and E

[∥∥∥∇̂f(θ)− E
[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 ,

(4.3)

for given θ and some constants C1 and C2.
We consider two broad cases for analysis. First, in each iteration

of the stochastic gradient algorithm (4.1), the gradient estimates are
obtained at input parameter θn and perturbation constant δn. The
sequence {δn} is assumed to vanish asymptotically. This setting allows
analysis using the ODE approach for stochastic approximation, and is
the content of Section 4.1. Second, in each iteration of (4.1), we use the
input parameter θn in conjunction with a time-invariant perturbation
constant δ. The analysis in this setting is more sophisticated as compared
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Table 4.1: Summary of the convergence results for the algorithm governed by (4.1)

Result Perturbation Main Remark
type constant result

Asymptotic diminishing Theorem 4.1 Analysis via
convergence ODE limit

Asymptotic constant Theorem 4.9 Analysis via
convergence DI limit

Non-asymptotic constant Theorem 5.3 Bound on
bound iterate sequence

to the vanishing δn case, and involves the theory of differential inclusions
(DIs). Section 4.3 provides the DI analysis.

While this chapter focuses on the asymptotic convergence analysis,
in the next chapter, we provide non-asymptotic bounds for the iterate
governed by (4.1).

4.1 Asymptotic convergence: An ODE approach

4.1.1 Stochastic gradient algorithm using unbiased gradient infor-
mation

To solve (1.1), a stochastic gradient algorithm would update as follows:

θn+1 = θn − a(n)∇̂f(θn). (4.4)

In the above, ∇̂f(θn) is an estimate of the gradient ∇f(θn), and {a(n)}
are (pre-determined) step-sizes satisfying standard stochastic approxi-
mation conditions (see A4.3 below).

In a zeroth-order setting, the gradient information is not directly
available, and instead, the optimization algorithm has oracle access to
noise-corrupted function measurements. In the next section, we present
the simultaneous perturbation trick for estimating gradients from zeroth-
order information. Such estimates are not unbiased, but feature a
parameter that can reduce the bias at the cost of variance. Before getting
to gradient estimation, we shall cover a simpler setting where unbiased
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gradient information is indeed available, i.e., E(∇̂f(θn)) = ∇f(θn). In
this case, the algorithm in (4.4) becomes an instance of the seminal
stochastic approximation scheme proposed by Robbins and Monro in
1951. The latter algorithm was proposed to find the zeroes of a function,
and in the case of (4.4), the function of interest is ∇f .

The algorithm in (4.4) can be shown to converge to local optima
of f , and we make this claim precise, by starting with the necessary
assumptions below.

A4.1. ∇f is a Lipschitz continuous Rd-valued function.

A4.2. ∇̂f(θn) is an unbiased estimate of the gradient ∇f(θn), i.e.,
E(∇̂f(θn) | Fn) = ∇f(θn), where Fn = σ(θm,m ≤ n) denotes the
underlying sigma-field. Further, there exists σ > 0 such that

E
[∥∥∥∇̂f(θn)− E

[
∇̂f(θn)

]∥∥∥2
]
≤ σ2 <∞. (4.5)

A4.3. The step-sizes satisfy
∑
n

a(n) =∞ and
∑
n

a(n)2 <∞.

A4.4. The iterates {θn, n ≥ 0} are stable, i.e., sup
n
‖θn‖ <∞, a.s.

Theorem 4.1. Assume A4.1–A4.4. Let H̄ denote the largest in-
variant set contained in {θ | ∇f(θ) = 0}. Then, the iterates θn,
updated according to (4.4), satisfies

θn → H̄ a.s. as n→∞.

We now discuss the assumptions made to arrive at the result above.
First, the continuity requirement in A4.1 is standard in the analysis of
gradient-based algorithms. Second, the unbiasedness condition in A4.2
is not satisfied in a zeroth-order optimization setting, where the gradient
information is directly unavailable, and instead, one needs to infer this
information through measurements of the objective function at any
query point. In the following section, we shall discuss the simultaneous
perturbation trick, leading to ‘nearly-unbiased’ gradient estimates, in
place of A4.2. Third, the condition on step-sizes in A4.3 are standard
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requirements in stochastic approximation, and the reader is referred
to the next chapter for a brief motivation (or Chapter 2 of (Borkar,
2022) for a detailed description). Fourth, the stability requirement
in A4.4, while hard to ensure directly, is common to the analysis of
stochastic approximation algorithms. A typical workaround is to employ
a projection operator that keeps the iterate bounded, i.e., use the
following update rule in place of (4.4):

θn+1 = Π
(
θn − a(n)∇̂f(θn)

)
, (4.6)

where Π is a projection operator that keeps the iterate bounded within
a compact and convex set, say Θ ⊂ Rd. For instance, a computationally

inexpensive projection onto Θ =
d∏
i=1

[θimin, θ
i
max] can be realized by

setting Πi(θ) = min(max(θimin, θ
i), θimax), i ∈ {1 . . . d}. If the projected

region Θ contains all points where the gradient of the objective f
vanishes, then θn updated according to (4.6) would converge to such a
point. In the complementary case, the iterate θn might get stuck at the
boundary of Θ. To avoid the latter situation, one could grow the region
of projection as suggested in (Chen et al., 1987), or perform projection
infrequently as in (Dalal et al., 2018). In (Yaji and Bhatnagar, 2019),
the iterate sequence is reset to a compact set at increasingly sparse
instants (in case it goes out of that set) provided the mean field has
a globally attracting set. Such a scheme is shown to remain stable in
(Yaji and Bhatnagar, 2019) and is convergent with the number of resets
remaining finite.

The focus of this book is gradient estimation in a zeroth-order set-
ting, and for the analysis, we assume that the iterates are stable. As
discussed above, one could employ a projection operator, to workaround
the stability issue — a topic that is not dealt in detail in this book.
Also, independent of projection, certain verifiable sufficient conditions
for stability of stochastic approximations in the literature, cf. (Borkar
and Meyn, 2000) and (Abounadi et al., 2002) for two such conditions,
and (Ramaswamy and Bhatnagar, 2016) and (Ramaswamy and Bhat-
nagar, 2021) for such conditions in the context of set-valued stochastic
approximation.



4.1. Asymptotic convergence: An ODE approach 75

Convergence analysis

In this section, we provide a convergence result for a stochastic gradient
algorithm with possibly biased gradient estimates. We apply this result
to prove Theorem 4.1 for the case when unbiased gradient information
is available. Subsequently, we analyze the stochastic gradient algorithm
with biased gradient information, and use the aforementioned result
again to establish asymptotic convergence.

Consider a general stochastic gradient scheme as described in (1.3),
i.e., involving the update rule below and under assumptions A2.1–A2.5.

θn+1 = θn + a(n)(−∇f(θn) + βn + ηn). (4.7)

The ODE associated with this scheme would be

θ̇ = h(θ) = −∇f(θ). (4.8)

For this ODE, V (θ) = f(θ) serves as a Lyapunov function. Further,
∇V (θ)Th(θ) ≤ 0, ∀θ. In this setting, we recall the following result, see
Theorem 2 – Corollary 2 of (Lasalle, 1966).

Lemma 4.2. Any trajectory θ(·) of (4.8) must converge to the largest
invariant set that is a subset of M = {θ | ∇f(θ)Th(θ) = 0}.

Let H 4= {θ | ∇f(θ) = 0} denote the set of equilibrium points of
(4.8). The following immediately holds:

Corollary 4.3. The set M in Lemma 4.2 is the same as H.

Proof. Notice that M = {θ | ∇f(θ)Th(θ) = 0} with h(θ) = −∇f(θ).
Thus, M = {θ | − ‖ ∇f(θ) ‖2= 0} where ‖ · ‖ denotes the Euclidean
norm. The claim follows.

In the setting of gradient based algorithms such as (1.3), we now have
the following result that is easily obtained by combining Theorem 2.3
and Lemma 4.2.

Theorem 4.4. Under A2.1–A2.5, {θn} given by (4.7) satisfies θn →
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Figure 4.2: Two graphs illustrating the types of convergence for a stochastic gradient
(SG) algorithm. In the left graph, an SG algorithm for minimization would converge
to one of the two local minima or the local maximum indicated by the filled (red)
circles, where which one it reaches depends on the starting point and the noise. In
the right graph, the SG algorithm could converge to the saddle point indicated by
the filled (red) circle or would eventually bounce between points in the circled (in
red) interval unless the noise goes to zero. As long as the gradient estimate remains
appropriately noisy, the SA algorithm would eventually move away from the local
maximum in the left graph and away from the saddle point in the right graph.

H̄, where H̄ denotes the largest invariant set contained in H.

In the case when the equilibrium points contained in H̄ are isolated,
we have the following result, see Corollary 3.3 of (Benaïm, 1996).

Corollary 4.5. Let the set H above comprise of isolated equilibrium
points. Then, under conditions of Theorem 4.4, {θn} given by (4.7)
satisfies θn → θ∗ for some θ∗ ∈ H̄.

Corollary 4.5 is useful in most practical situations where the equi-
librium points of the ODE (4.8) are isolated.

Theorem 4.4 will be used in the analysis of algorithms that we shall
present in later chapters. For this we shall assume that δ → 0 as n→∞.
We shall also subsequently consider the case where the sensitivity
parameter δ is held fixed to a small positive value and provide an
asymptotic analysis where we show that the limiting dynamics of the
recursion tracks a differential inclusion instead of an ODE.

If the set H specified in Theorem 4.4 consists of a single point, then
the convergence would be to that point. Otherwise, the meaning of
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convergence to a set is depicted by two graphs in Figure 4.2. If all the
elements in the set are disconnected, then convergence would be to a
single point in the set, with the specific point to which the algorithm
converges depending on the initial condition, the step-size sequence, and
the noise, as illustrated in the left graph of Figure 4.2, which contains
two local minima and one local maximum. If some of the points are
connected, then the algorithm could “bounce” between such points and
not converge to a single point, as illustrated in in the right graph of
Figure 4.2, which contains a flat local minimal region and a saddle point.
“Unstable” points such as local maxima (in minimization problems) and
saddle points can be avoided by ensuring that the gradient estimate is
suitably noisy, to be described in more detail now.

Since the ODE tracked by the iteration (4.7) is θ̇ = −∇f(θ), we
know that its stationary points will be local maxima or minima, saddle
points, or points of inflection. If these points are isolated, then the
algorithm (4.7) will a.s. converge to a sample path-dependent stationary
point. Under additional assumptions, one can ensure convergence to a
local minimum, i.e., avoid local maxima and saddle points. One such
assumption is that the stationary points are hyperbolic, i.e., the Hessian
∇2f does not have eigenvalues on the imaginary axis. Then locally, it
has a ‘stable manifold’ of dimension equal to the number of eigenvalues
in the left half plane and an unstable manifold with the complementary
dimension. A trajectory on the former converges to the stationary point
along the stable manifold, whereas one on the latter moves away from
it on the unstable manifold. A trajectory initiated anywhere else also
eventually moves away. Thus, if there is at least one unstable eigenvalue,
the trajectories move away from the stationary point except on the
stable manifold, a set of zero Lebesgue measure. Hence, if the noise is
omnidirectional, i.e., rich in all directions in a certain precise sense, the
iterations will be pushed away from the stable manifold often enough
for the iterates to move away from the stationary point for good, a.s.
Then the iterates will a.s. converge to a local minimum, where there
are no unstable directions. In case the conditions on noise cannot be
verified for the problem at hand, one can always add extraneous i.i.d.
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zero mean noise, i.e., an SA update iteration of the form

θn+1 = θn − an(∇̂f(θn) + ϕn), (4.9)

where ϕn is extraneous noise added to ensure that the algorithm avoids
saddle points/local maxima. A simple choice is to sample ϕn from the
d-dimensional unit sphere uniformly. In practice, it may not be necessary
to add such a noise factor extraneously, since the algorithm has an
inherent noise component in the gradient estimates.

Proof of Theorem 4.1

For proving Theorem 4.1, we shall invoke Theorem 4.4.

Proof of Theorem 4.1. The update in (4.4) is equivalent to

θn+1 = θn − a(n)
(
∇f(θn) + ηn

)
, (4.10)

where ηn = ∇̂f(θn)− E(∇̂f(θn) | Fn) is a martingale difference term.
The equivalent update rule above used the fact that E(∇̂f(θn) | Fn) =
∇f(θn), which holds by assumption A4.2.

The mean ODE underlying (4.1) is

θ̇ = −∇f(θ), (4.11)

with limit set H =
{
θ : ∇f(θ)

)
= 0

}
.

To apply Theorem 4.4, we verify a few conditions below.

1. A4.1 implies A2.1.

2. Since βn = 0, ∀n, A2.2 is trivially satisfied.

3. A4.3 implies A2.3.

4. To verify A2.4, we first recall a martingale inequality attributed
to Doob (also given as (2.1.7) on pp. 27 of (Kushner and Clark,
1978)):

P
(

sup
m≥0
‖Wm‖ ≥ ε

)
≤ 1
ε2

lim
m→∞

E ‖Wm‖2 . (4.12)
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Applying the inequality above to Wn ,
n−1∑
i=0

a(i)ηi, n ≥ 1, we

obtain

P

(
sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi
∥∥∥∥∥ ≥ ε

)
≤ 1
ε2
E
∥∥∥∥∥
∞∑
i=n

a(i)ηi
∥∥∥∥∥

2

= 1
ε2

∞∑
i=n

a(i)2E ‖ηi‖2 .

(4.13)

The last equality above follows by observing that, for m < n,
E(ηmηn) = E(ηmE(ηn | Fn)) = 0.
Now, using the square-summability of the stepsize in A4.3 and
(4.5) in A4.2, we have

P

(
sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi
∥∥∥∥∥ ≥ ε

)
≤ 1
ε2

∞∑
i=n

a(i)2E ‖ηi‖2 ≤
σ2

ε2
lim
n→∞

∞∑
i=n

a(i)2

→ 0 as n→∞.

Thus, θn converges a.s. to the set H̄ by an application of Theorem
4.4.

4.1.2 Stochastic gradient algorithm using biased gradient informa-
tion

Let Fn = σ(θ1, . . . , θn) denote the sigma field underlying the following
stochastic gradient algorithm:

θn+1 = θn − a(n)∇̂f(θn), (4.14)

where ∇̂f(θn) is formed using the unified estimate from the previous
chapter, which is recalled below.

∇̂f(θn) =
(
y+
n − y−n

2δn

)
V, (4.15)

where y+
n = f(θn + δnU) + ξ+

n , and y−n = f(θn − δnU) + ξ−n . The
reader is referred to Chapter 3 for a variety of choices for the random
perturbations U, V .

For the analysis of this algorithm, we require the following assump-
tions in addition to A4.4 listed earlier:
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A4.5.

∀n ≥ 1,
∥∥∥E [∇̂f(θn)

]
−∇f(θn)

∥∥∥ ≤ C1δ
2
n, and

E
[∥∥∥∇̂f(θn)− E

[
∇̂f(θn)

]∥∥∥2
]
≤ C2
δ2
n

,

for some constants C1 and C2.

A4.6. The noise factors ξ± in (4.22) satisfy

E[ξ+
n − ξ−n | Fn] = 0, and E[(ξ+

n − ξ−)2| Fn] ≤ σ2 <∞ , ∀n ≥ 1.
(4.16)

A4.7. The objective function f : Rd → R satisfies

sup
θ∈Rd

E[f(θ ± δn∆(n))2] ≤ B <∞ . (4.17)

A4.8. The step-sizes a(n) and perturbation constants δn are posi-
tive, for all n and satisfy

a(n), δn → 0 as n→∞,
∑
n

a(n) =∞ and
∑
n

(
a(n)
δn

)2
<∞.

Theorem 4.6. Assume A4.5–A4.8, A4.4, and that f ∈ C3, the
set of all three times continuously differentiable functions. Let H̄
denote the largest invariant set contained in {θ | ∇f(θ) = 0}. Then,
the iterates θn, updated according to (4.14), satisfy

θn → H̄ a.s. as n→∞.

Proof. We first rewrite the update rule (4.14) as follows:

θn+1 = θn − a(n)(∇f(θn) + ηn + βn), (4.18)

where ηn = ∇̂f(θn)− E(∇̂f(θn) | Fn) is a martingale difference term,
and βn = E(∇̂f(θn) | Fn)−∇f(θn) is the bias in the gradient estimate.

Convergence of (4.14) can be inferred from Theorem 4.4, provided
we verify the necessary assumptions, and we do this verification below.

• f ∈ C3 implies A2.1.
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• From A4.5, we have βn = O(δ2
n). In conjunction with A4.8, we

have βn → 0, verifying A2.2.

• Applying Doob’s martingale inequality Wn :=
n−1∑
i=0

a(i)ηi, n ≥ 1,

we obtain

P
(

sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi
∥∥∥∥∥ ≥ ε

)
≤ 1
ε2
E
∥∥∥∥∥
∞∑
i=n

a(i)ηi
∥∥∥∥∥

2

= 1
ε2

∞∑
i=n

a(i)2E ‖ηi‖2 .

(4.19)

The last equality above follows by observing that, for m < n,
E(ηmηn) = E(ηmE(ηn | Fn)) = 0. This verifies A2.4.

Using A4.7, it can be shown that

E ‖ηn‖2 ≤
C

δ2
n

, for some C <∞. (4.20)

We shall establish this inequality in the next chapter for a more
general gradient estimator that includes the SPSA scheme in
(1.7). Now, substituting the bound obtained in (??) into (4.19),
we obtain

lim
n→∞

P

(
sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi
∥∥∥∥∥ ≥ ε

)
≤ C

ε2
lim
n→∞

∞∑
i=n

a(i)2

δ2
i

= 0.

The equality above follows from A4.8, as a consequence of
∑
n

(
a(n)
δn

)2
<

∞.

The main claim now follows by an application of Theorem 4.4.

4.2 Escaping saddle points

So far, we have provided theoretical guarantees that establish conver-
gence to a stationary point of the objective function f . However, this
result is not sufficient in a non-convex optimization setting since local
maxima and saddle points are also stationary points in addition to local
minima. We shall refer to such undesirable stationary points collectively
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as saddle points, as in the recent literature (Jin et al., 2017; Ge et al.,
2015; Jin et al., 2021).

It is desirable to escape such saddle points and converge to a local
minimum. A usual trick to achieve this objective is to add extraneous
noise so that the algorithm does not converge to an unstable equilibrium,
as shown in (Jin et al., 2017; Ge et al., 2015; Jin et al., 2021). In
particular, such a scheme, referred to as perturbed gradient descent,
involves the following update iteration:

θn+1 = θn − a(n)
(
∇̂f(θn) + ζn

)
, (4.21)

where ζn is extraneous noise that is injected into the SG algorithm,
and is usually sampled from a zero-mean multivariate Gaussian vector
with covariance matrix σ2I. Further, we shall use the unified gradient
estimate described in Chapter 3. For the sake of readabilitiy, we recall
this estimator below.

∇̂f(θn) =
(
y+
n − y−n

2δn

)
Vn, (4.22)

where y+ = f(θn+ δnUn) + ξ+
n , and y−n = f(θn− δnUn) + ξ−n . For Un, Vn

satisfying certain conditions, it was shown in Chapter 3 that the bias
in ∇̂f(θ) is bounded above by c1δ

2 for some constant c1.
Under certain conditions on the measurement noise {ξ±n }, one can

avoid injecting noise artificially, and instead directly establish conver-
gence to local minima, owing to the noise in the gradient estimator. The
additional assumption on measurement noise is made precise below.

A4.9. ∃ c3, c4 > 0 such that c3 ≤ Ek|ξ+
k − ξ

−
k | and |ξ

+
k − ξ

−
k | ≤ c4, ∀k.

The assumption above ensures that the noise in function measure-
ments is rich in all directions.

Theorem 4.7 (Avoidance of traps). Suppose the conditions of Proposi-
tion 3.1 and A4.9 hold. Further, assume ‖Vk‖ ≤ B0 a.s. for all k and
|f(θ)| ≤ B1, ‖∇f(θ)‖ ≤ B2 for all θ. Set a(k) = c5

kα
and δk = c6

kφ
, for

some constants c5, c6 > 0 and α ∈
(1

2 , 1
]
, α > φ. Then, {θk} governed

by (4.1), converges to the set of local minima a.s.
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Proof. We first rewrite the update rule (4.1) as follows:

θk+1 = θk − a(k)∇̂f(θk)
=θk − a(k)∇f(θk)− ψk, (4.23)

where ψk = a(k)
[
βk + ξ+

k − ξk
δk

Vk

]
and

βk =
(
f(θk + δkUk)− f(θn − δkUk)

2δk

)
Vk −∇f(θk). From the analysis

in Chapters 3 and 4, we know that βk = O(δ2
k).

The convergence of (4.23) to a local minimum can be inferred
from Theorem 1 of (Pemantle, 1990) provided that conditions 5–7 of
(Pemantle, 1990) are satisfied. These conditions, when applied to (4.23)
are as follows:

(i) c5
kα
≤ a(k) ≤ c6

kα
for some constants c5, c6 > 0 and α ∈ (1

2 , 1];

(ii) Ek
[
(ψk · θ)+

]
≥ c7/k

α for some c7 > 0 and every unit vector
θ. Here (a · b) denotes the dot product between a and b, and
(a)+ = max(a, 0);

(iii) ‖ψk‖ ≤ c8/k
α for some c8 > 0.

We will now show that (i)-(iii) hold here. It is easy to see that a(k)
defined in the theorem statement satisfies condition (i).

We now show that condition (ii) holds. Consider the unit vector ϑ
with the ith entry as 1. Letting V i

k denote the ith entry of the vector
Vk, we have

Ek[(ψk · ϑ)+] = Ek[(a(k)(ξ+
k − ξ

−
k )V i

k )+ + (a(k)βk)+]
(b)
≥ Ek

[
a(k)(ξ+

k − ξ
−
k )V i

k + a(k)|(ξ+
k − ξk)V i

k |
2

]
(c)= Ek

[
a(k)|ξ+

k − ξk| |V i
k |

2

]
(d)
≥
c5c3 min

i=1...,N
E|V i

k |

2kα .
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In the above, we used the fact that max(x, y) = x+ y + |x− y|
2 to infer

the equality in (b). To infer the equality in (c), we used Ek[(ξ+
k −ξk)V i

k ] =
0, which holds since Ek[ξ+

k −ξk] = 0 and Vk is independent of Fk. Finally,
A4.9 allows us to infer (d). Thus, condition (ii) holds.

We now turn to verifying condition (iii). Notice that

‖ψk‖ ≤
a(k)
δk
‖(ξ+

k − ξk)Vk‖+ a(k)|βk| ≤
c5B0
c6kα−φ

+ 2c5B1B0
c6kα−φ

+ c5B2
c6kα

,

where we used the following facts:
(a) ‖(ξ+

k −ξk)‖ ≤ c4 from A4.9; (b) ‖Vk‖ ≤ B0 and |f(θ)| ≤ B1, ‖∇f(θ)‖ ≤
B2 by assumptions in the theorem statement; and (c) a(k) = c5

kα
and

δk = c6
kφ

, with α− φ > 0. Thus, condition (iii) holds.
Hence, from Theorem 1 of (Pemantle, 1990), we conclude that (4.23)

converges to the set of local minima a.s.

4.3 Asymptotic convergence: A differential inclusions approach

4.3.1 Assumptions

We make the following assumptions:

A4.10. f : Rd → R is continuously differentiable. Furthermore,
‖ ∇f(θ) ‖≤ K̃(1+ ‖ θ ‖) for all θ ∈ Rd, for some K̃ > 0.

A4.11. {ηn} is a square-integrable martingale difference sequence
w.r.t. the filtration {Fn}, where Fn = σ(θm,m ≤ n, ηm,m <

n), n ≥ 0. Further,

E[‖ ηn ‖2| Fn] ≤ K1(1+ ‖ θn ‖2),

for some constant K1 > 0.

A4.12. a(n) > 0, ∀n. Further,
∑
n

a(n) =∞ and
∑
n

a(n)2 <∞.

A4.13. sup
n
‖θn‖ <∞ w.p. 1.
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Assumption A4.10 requires that the function f is continuously
differentiable and that ∇f(θ) satisfies an upper bound that grows
linearly with θ. A sufficient condition for the latter to hold is that ∇f
is a Lipschitz continuous function of θ. This is because in such a case

‖ ∇f(θ1)−∇f(θ2) ‖≤ Q ‖ θ1 − θ2 ‖,

for some constant Q > 0 and for any θ1, θ2 ∈ Rd. Then by letting θ1 = θ

and θ2 = 0, we get

‖ ∇f(θ) ‖ − ‖ ∇f(0) ‖≤‖ ∇f(θ)−∇f(0) ‖≤ Q ‖ θ ‖,

implying ‖ ∇f(θ) ‖≤ K̃(1+ ‖ θ ‖) with K̃ = max(Q, ‖ ∇f(0)).
Assumption A4.11 is on the noise sequence {ηn}. From the manner

in which it is defined, viz., ηn = ∇̂f(θn) − E(∇̂f(θn) | Fn) and the
various forms of the gradient estimators ∇̂f(θn) discussed previously
and the assumptions on the measurement noise there, it can be easily
seen that this condition will be satisfied.

Assumption A4.12 is on the step-size sequence and is a standard
requirement in stochastic approximation schemes. The condition on
non-summability of the step-size is needed to track the asymptotic
behaviour of the limiting differential equation or inclusion as the case
may be. The second condition ensures, in particular, that the errors
due to noise asymptotically vanish.

Finally, assumption A4.13 is necessary to establish convergence
of gradient-descent scheme but is a non-trivial requirement. Certain
sufficient conditions for stability of stochastic approximation schemes
that rely mainly on the underlying ODE and a certain scaling limit of the
same are given in (Borkar and Meyn, 1999). For the case of stochastic
recursive inclusions (SRI), i.e., stochastic approximations with set-valued
maps, similar conditions have recently been provided in (Ramaswamy
and Bhatnagar, 2016; Ramaswamy and Bhatnagar, 2018). In particular,
(Ramaswamy and Bhatnagar, 2018) considers a gradient recursion
with errors in the setting of SRI and provides sufficient conditions for
stability of the scheme. We present these conditions from (Ramaswamy
and Bhatnagar, 2018) in the subsection following the convergence proof.
Prior work, for instance, (Benaïm, 1996; Kushner and Clark, 1978;
Kushner and Yin, 2003) show convergence of stochastic approximation
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assuming stability of the stochastic iterates. Further, (Benaïm et al.,
2005) proves the almost sure convergence of SRI again assuming stability
of the iterates. As mentioned earlier, if one is unable to ensure stability
of the stochastic iterates, a common approach is to project these to a
large enough compact set that would ensure boundedness of the iterates.
This however comes at the cost of introducing spurious fixed points on
the project set boundary to which the recursion might converge as well,
see (Kushner and Clark, 1978; Kushner and Yin, 2003) for detailed
analyses of projected stochastic approximations.

4.3.2 Proof of Convergence

Let G(θ) = ∇f(θ) +Bε(0).

Lemma 4.8. G is a Marchaud map.

Proof. Note that, for any θ ∈ Rd, G(θ) is a closed ball in Rd of radius ε
centred at ∇f(θ). Thus, it is clearly convex and compact. Now for any
y ∈ G(θ),

‖ y ‖ ≤ ‖ ∇f(θ) ‖ + ‖ y −∇f(θ) ‖
≤ K̃(1+ ‖ θ ‖) + ε

≤ K̄(1+ ‖ θ ‖),

where K̄ = K̃+ ε. The second inequality above follows from the smooth-
ness assumption A4.10. Since y above is arbitrary, it follows that

sup
y∈G(θ)

‖ y ‖≤ K̄(1+ ‖ θ ‖).

Thus G(θ) is pointwise bounded.
Finally, consider a sequence θn, n ≥ 0 of parameters and another

sequence yn, n ≥ 0 of points such that yn ∈ G(θn), ∀n. Further, let
θn → θ and yn → y as n→∞. Now given δ > 0 small, let N be large
enough so that ‖ yn− y ‖< δ/2 and similarly ‖ ∇f(θn)−∇f(θ) ‖< δ/2,
respectively, ∀n > N . Then,

‖ y −∇f(θ) ‖ ≤ ‖ y − yn ‖ + ‖ yn −∇f(θn) ‖
+ ‖ ∇f(θn)−∇f(θ) ‖
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≤ ε+ δ.

Since δ > 0 is arbitrary, let δ → 0. It then follows that ‖ y−∇f(θ) ‖≤ ε,
implying that y ∈ G(θ). Thus G is also upper-semicontinuous and the
claim follows.

Consider now the Differential Inclusion (DI):

θ̇(t) ∈ −G(θ(t)). (4.24)

Here −G(θ(t)) is used to denote the set {−g | g ∈ G(θ(t))}. The next
result follows directly from (Benaïm et al., 2005).

Theorem 4.9. The iterates (4.2) converge to a closed connected inter-
nally chain transitive and invariant set of the DI (4.24).

Proof. The claim follows from Theorem 3.6 and Lemma 3.8 of (Benaïm
et al., 2005).

Consider also the associated ODE that would result in the case
when ε = 0:

θ̇t = −∇f(θt). (4.25)

This will be the case when either the information on the gradient ∇f(θ)
is fully known for all θ and a (true) gradient scheme with noise is used
or else the sensitivity parameter δ is replaced by a slowly decreasing
δn → 0. In the latter case, the square summability requirement of
the step-size sequence {a(n)} will need to be considerably tightened.
More specifically, the condition

∑
n

a(n)2 <∞ in A4.12 will need to

be replaced by the condition
∑
n

(
a(n)
δn

)2
<∞ in A4.8. The latter has

the effect of significantly constraining the learning rates in the update
recursion.

LetM denote the minimum set of f and suppose the regular values
of f , i.e., θ for which ∇f(θ) 6= 0 are dense in Rd, then the chain recurrent
set of f is a subset of it’s minimum set, see Proposition 4 of Hurley
(Hurley, 1995). As shown earlier, the gradient descent scheme without
errors (i.e., with ε = 0), will converge toM almost surely.
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We now state Theorem 3.1 of (Benaïm et al., 2012) adapted to the
setting considered here..

Theorem 4.10. Given δ > 0, ∃ε(δ) > 0 such that the chain recurrent
set of (4.24) is within the δ-open neighborhood of the chain recurrent
set of (4.25) for all ε ≤ ε(δ).

It follows as a consequence of Theorem 4.9 and Theorem 4.10 that
(4.2) with ε < ε(δ) (cf. Theorem 4.10) converges almost surely to
N δ(M).

4.3.3 A Set of Stability Conditions

We now present a set of conditions from (Ramaswamy and Bhatnagar,
2016; Ramaswamy and Bhatnagar, 2018) that ensure that the stochastic
recursive inclusion (4.2) remains stable, i.e., that sup

n
‖ θn ‖< ∞ a.s.,

that was the last assumption for our analysis of the recursion (4.2). The
conditions that we present are a generalization of stability conditions
for stochastic approximation presented in (Borkar and Meyn, 1999).

Recall from Lemma 4.8 that G is a Marchaud map. For each integer
c ≥ 1, letGc(θ) := {y/c | y ∈ G(cθ)}. LetG∞(θ) := co 〈Limsupc→∞Gc(θ)〉,
where Limsupxn→xJ(xn) = {y ∈ Rd | lim inf

xn→x
d(y, J(xn)) = 0}, see

Definition A.7. Given A ⊆ Rd, the convex closure of A, denoted by
co〈A〉, is the closure of the convex hull of A. It is worth noting that
Limsupc→∞Gc(θ) is non-empty for every θ ∈ Rd. It is also shown in
Lemma 1 of (Ramaswamy and Bhatnagar, 2018) that G∞ is Marchaud.
Thus, from (Aubin and Cellina, 1984), the DI θ̇(t) ∈ −G∞(θ(t)) has at
least one solution that is absolutely continuous.

We make the following additional assumptions:

A4.14. θ̇(t) ∈ −G∞(x(t)) has an attractor set A such that A ⊆
Ba(0) for some a > 0 and Ba(0) is a fundamental neighborhood of
A.

Since A ⊆ Ba(0) is compact, we have that sup
θ∈A
‖θ‖ < a.
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A4.15. Let cn ≥ 1 be an increasing sequence of integers such that
cn ↑ ∞ as n→∞. Further, let θn → θ and yn → y as n →∞,
such that yn ∈ Gcn(θn), ∀n, then y ∈ G∞(θ).

It can be shown that the existence of a global Lyapunov function for
θ̇(t) ∈ −G∞(θ(t)) is sufficient to guarantee that A4.14 holds. Further,
-A4.15 is satisfied when ∇f is Lipschitz continuous.

Theorem 4.11. Under A4.10–A4.12 and A4.14-A4.15, the stochas-
tic update sequence given by (4.2) remains stable, i.e., satisfies
sup
n
‖ θn ‖<∞.

A detailed proof of this result is given in Theorem 1 of (Ramaswamy
and Bhatnagar, 2018). What is important to note here as also with
the original result of (Borkar and Meyn, 1999) (that was for the case
of stochastic updates involving single-valued functions as opposed to
set-valued maps as considered above), both the additional assumptions
A4.14 and A4.15 involve only deterministic systems, more precisely
scaled Differential Inclusions. Asymptotic stability properties of these
systems and in particular the limiting system are enough to guarantee
stability of the original stochastic recursions.

4.4 Bibliographic remarks

Avoidance of traps for a general stochastic approximation algorithm has
received a lot of research attention, cf. (Pemantle, 1990; Brandiere and
Duflo, 1996; Borkar, 2003; Barakat et al., 2021; Gadat and Gavra, 2022).
In Borkar, 2003, an estimate for the lock-in probability, i.e., probability
of convergence to an attractor given that the iterate-sequence is in
its domain of attraction after a sufficiently long time is obtained and
this is then used to argue an avoidance of traps result. In the case
when the iterate-sequence has Markov noise in addition, Karmakar
and Bhatnagar, 2021 derive a lock-in probability lower bound while
such bounds in the case of stochastic recursive inclusions (involving
set-valued maps) are obtained in Yaji and Bhatnagar, 2019.
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Our treatment in Section 4.2 leading to the traps avoidance claim
in Theorem 4.7 for a SG algorithm with the unified gradient estimate
is an adaptation of the corresponding result in (Mondal et al., 2024).



5
Non-asymptotic analysis of stochastic gradient

algorithms

We consider a SG algorithm for solving (1.1), with an update iteration
is of the form:

θn+1 = θn − a(n)∇̂f(θn), n ≥ 0. (5.1)

We analyze the algorithm above with inputs from either an unbiased
gradient oracle or a biased one, i.e., corresponding the cases where
E
[
∇̂f(θ) | θ

]
= ∇f(θ) and E

[
∇̂f(θ) | θ

]
= ∇f(θ) + O(δ2), with δ

denoting the perturbation constant (see Chapter 3). The analysis in
the former case servers as a useful contrast to the biased case, since
the proof technique is similar, while there is a loss in convergence rate
when one moves from an unbiased to biased gradient oracle.

We consider an SG algorithm that runs for N iterations, and outputs
a (possibly random) point θR, that could be chosen based on the
iterates θ1, . . . , θN . For a general SG algorithm, we consider different
performance metrics based on the nature of the underlying objective.
More precisely, we consider the following cases:
(i) convex; (ii) strongly convex; and (ii) non-convex.
In case (i), we provide bounds on the optimization error, i.e.,
E (f(θR)− f(θ∗)), where θ∗ is a minimum of f , while we establish
bounds on the parameter error E ‖θR − θ∗‖2. On the other hand, in

91
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case (iii), i.e., when the objective is non-convex, it is difficult to bound
the optimization/parameter errors. A popular alternative is to establish
local convergence. i.e., to a point where the gradient of the objective is
small (cf. (Ghadimi and Lan, 2013; Bottou et al., 2018)). The following
definition makes the optimization objectives apparent in all the cases
studied in this chapter.

Definition 5.1. Let θR ∈ Rd be the output of the RSG algorithm
and ε > 0 be a target accuracy, then:

1. If f is non-convex, θR is called an ε-stationary point of (1.1),
if E ‖∇f (θR)‖2 ≤ ε;

2. If f is convex, θR is called an ε-optimal point of (1.1), if
E[f (θR)]− f(θ∗) ≤ ε, where θ∗ is a minimizer of f .

3. If f is convex, θR is called an ε-optimal point of (1.1), if
E
[
‖θR − θ∗‖2

]
≤ ε, where θ∗ is the unique minimizer of f .

The SG algorithms are judged using the iteration complexity, which
is defined below.

Definition 5.2. The iteration complexity of an algorithm A is the num-
ber of iterations of A before finding an ε-stationary (resp. ε-optimal)
point for a non-convex (resp. convex/strongly-convex) objective func-
tion.

For a gradient descent type algorithm, results from deterministic
optimization lead to complexity bounds listed in Table 5.1, cf. (Wright
and Recht, 2022, Chapter 3). The bounds in Table 5.1 are useful to
compare against the corresponding cases in the stochastic case that
we consider in this chapter. Moreover, as we shall see later, the case
of biased gradient oracle results in bounds that are weaker than the
unbiased counterpart.

For the bounds in this chapter, we consider a variant of SG algo-
rithm, namely randomized stochastic gradient, which was proposed in
(Ghadimi and Lan, 2013). This is a well-known scheme that provides a
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Function Type Condition Iteration Complexity

Non-convex ||∇f(θ∗)|| ≤ ε n ≥ 2L
ε2

[f(θ0)− f(θ∗)]

Convex ||f(θ)− f(θ∗)|| ≤ ε n ≥ L

2ε ||θ0 − θ∗||2

Strongly Convex ||f(θ)− f(θ∗)|| ≤ ε n ≥ L

m
log

(
f(θ0)− f(θ∗)

ε

)

Table 5.1: Summary of iteration complexities of a gradient descent algorithm
for deterministic smooth optimization. Here iteration complexity is the number of
iterations n required to satisfy the condition specified in the second column. Here θ∗
denotes an optimum of f , θ0 is the starting point of the gradient descent algorithm,
m is the strong-convexity parameter, and L is the smoothness constant.

non-asymptotic bound on a random iterate visited by a SG algorithm.
More precisely, suppose {θ1, . . . , θm} be the iterates visited along a
sample path of a SG algorithm that is run for m iterations. Then,
the RSG algorithm would return an iterate θR uniformly at random
from {θ1, . . . , θm}. The RSG scheme for picking the aforementioned
random iterate resembles the well-known Polyak-Ruppert iterate aver-
aging scheme (Polyak and Juditsky, 1992; Ruppert, 1985) for stochastic
approximation. The latter scheme performs averaging of the all the
iterates {θi, i = 1, . . . ,m}, while RSG achieves same effect, except
that the averaging happens in expectation. Algorithm 2 presents the
pseudocode of RSG algorithm.

In this chapter, we provide non-asymptotic bounds for Algorithm 2
with unbiased and biased gradient information, respectively, for three dif-
ferent assumptions on the underlying objective, namely convex, strongly
convex and non-convex. In a zeroth-order setting, the RSG algorithm
is provided gradient estimates following the simultaneous perturbation
method described in Chapter 3.
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Algorithm 2 RSG algorithm
Input: Initial point θ1 ∈ Rd, iteration limit m, stepsizes {ak}k≥1 and
probability mass function PR(·) supported on {1, . . . ,m}.
Let R be a random variable with probability mass function PR.
for k = 1, . . . , R do

Perform the following stochastic gradient descent update:
θk+1 = θk − ak∇̂f(θk).
end for
Return θR.

5.1 The non-convex case

5.1.1 RSG with an unbiased gradient oracle

As a gentle start, first, we provide bounds for the simple “unbiased
gradient” model, and subsequently analyze the other challenging model
involving biased gradients.

In this model, we assume access to a stochastic first-order oracle,
which for a given θk outputs a random estimate ∇̂f(θk) of the gradient
of f . We assume that the gradient estimate ∇̂f(θk) satisfies the following
assumption:

A5.1. Let Fk = σ(θi, i ≤ k). Recall Ek denotes the expectation
w.r.t. Fk. For any k ≥ 1, we have

1. Ek
[
∇̂f(θk)

]
= ∇f (θk) ,

2. Ek
[∥∥∥∇̂f(θk)−∇f (θk)

∥∥∥2
]
≤ σ2, for some parameter σ ≥ 0.

From the above, it is apparent that ∇̂f(θk) is an unbiased estimate of
∇f(θk) with bounded variance.

The results provides a bound on the gradient norm afterm iterations
of RSG. As mentioned earlier, under a non-convex objective, bounding
the optimization error, i.e., f(θm) − f(θ∗) is difficult, where θ∗ is a
local optima. However, a popular alternative is to show that the RSG
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algorithm converges to a point, where the gradient of the objective is
small (quantified by a bound on the squared norm of the gradient) (cf.
(Ghadimi and Lan, 2013; Bottou et al., 2018)).

Theorem 5.1. (Unbiased gradients: Non-convex case) Suppose
f is L-smooth and satisfies A5.1. Suppose that the RSG algorithm is
run with the stepsize sequence set as

ak = min

{ 1
L
,
c√
m

}
, ∀k ≥ 1, (5.2)

for some constant c > 0. Then, for any m ≥ 1, we have

E
[
‖∇f (θR)‖2

]
≤ 2LDf

m
+ 1√

m

[2Df

c
+ Lσ2c

]
,

where R is uniformly distributed over {1, . . . ,m}, θ∗ is an optimal
solution to (1.1). and

Df = f(θ1)− f(θ∗). (5.3)

In the proposition below, we prove a general result that holds for
any choice of the non-increasing stepsize sequence. Subsequently, we
specialize to the case of constant stepsize, to prove Theorem 5.1.

Proposition 5.1. Assume that the objective function f is L-smooth
(as defined in 3.1) and assumption A5.1 holds. Suppose that the RSG
algorithm is run with a non-increasing stepsize sequence satisfying
0 < ak ≤ 1/L,∀k ≥ 1 and with the probability mass function

PR(k) := Prob{R = k} = ak∑m
k=1 ak

, k = 1, . . . ,m, (5.4)

then, for any m ≥ 1, we have

E
[
‖∇f (θR)‖2

]
≤ 1∑m

k=1 ak

[
2Df

(2− La1) + Lσ2
m∑
k=1

a2
k

(2− Lak)

]
, (5.5)

where Df is as defined in (5.14).

Proof. Since f is L-smooth, we have

f (θk+1) ≤ f (θk) + 〈∇f (θk) , θk+1 − θk〉+ L

2 ‖θk+1 − θk‖2
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= f (θk)− ak
〈
∇f (θk) , ∇̂f(θk)

〉
+ L

2 a
2
k

∥∥∥∇̂f(θk)
∥∥∥2

Using Ek
[
∇̂f(θk)

]
= ∇f (θk) , and the following inequality1:

Ek
[∥∥∥∇̂f(θk)

∥∥∥2
]
≤
∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ σ2,

we obtain

Ek[f (θk+1)] ≤ f (θk)− ak ‖∇f (θk)‖2 + L

2 a
2
k

[
‖∇f (θk)‖2 + σ2

]
= f (θk)−

(
ak −

L

2 a
2
k

)
‖∇f (θk)‖2 + L

2 a
2
kσ

2 (5.6)

Re-arranging the terms, we obtain(
ak −

L

2 a
2
k

)
‖∇f (θk)‖2 ≤ f (θk)− Ek[f (θk+1)] + L

2 a
2
kσ

2

ak ‖∇f (θk)‖2 ≤
2 [f (θk)− Ek[f (θk+1)]]

(2− Lak)
+ La2

kσ
2

(2− Lak)

Now summing up the above inequality from k = 1 to m, we obtain
m∑
k=1

ak ‖∇f (θk)‖2 ≤ 2
m∑
k=1

[f (θk)− Ek[f (θk+1)]]
(2− Lak)

+ Lσ2
m∑
k=1

a2
k

(2− Lak)

Taking total expectations on both sides of above equation, we obtain
m∑
k=1

akE ‖∇f (θk)‖2

≤ 2
m∑
k=1

[E [f (θk)]− E [f (θk+1)]]
(2− Lak)

+ Lσ2
m∑
k=1

a2
k

(2− Lak)

= 2
[

f (θ1)
(2− La1) −

m∑
k=2

( 1
(2− Lak−1) −

1
(2− Lak)

)
E [f (θk)]−

E [f (θm+1)]
(2− Lam)

]

+ Lσ2
m∑
k=1

a2
k

(2− Lak)

1When ‖ · ‖ is defined from an inner product, we have E
[
‖X − E [X]‖2] =

E
[
‖X‖2]− ‖E [X]‖2.
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Notice that since stepsizes {ak}k≥1 are non-increasing, we have( 1
(2− Lak−1) −

1
(2− Lak)

)
≥ 0 and using the fact that E [f (θk)] ≥

f(θ∗), we obtain
m∑
k=1

akE ‖∇f (θk)‖2

≤ 2
[

f(θ1)
(2− La1) − f(θ∗)

m∑
k=2

( 1
(2− Lak−1) −

1
(2− Lak)

)
− f(θ∗)

(2− Lam)

]

+ Lσ2
m∑
k=1

a2
k

(2− Lak)

= 2 (f(θ1)− f(θ∗))
(2− La1) + Lσ2

m∑
k=1

a2
k

(2− Lak)
.

It follows from the definition of PR in (5.4) that,

E
[
‖∇f (θR)‖2

]
=
∑m
k=1 akE ‖∇f (θk)‖2∑m

k=1 ak
.

Thus, we conclude

E
[
‖∇f (θR)‖2

]
≤ 1∑m

k=1 ak

[
2 (f(θ1)− f(θ∗))

(2− La1) + Lσ2
m∑
k=1

a2
k

(2− Lak)

]
.

Proof of Theorem 5.1

Proof. Notice that for constant stepsizes i.e., ak = a,∀k ≥ 1, we have

E
[
‖∇f (θR)‖2

]
= 1
m
E
[
‖∇f (θR)‖2

]
. (5.7)

Combining the above fact with (5.5), we obtain

E
[
‖∇f (θR)‖2

]
≤ 1
ma

[
2Df

(2− La) + Lσ2m
a2

(2− La)

]

≤ 1
ma

[
2Df + Lσ2ma2

]
= 2Df

ma
+ Lσ2a



98 Non-asymptotic analysis of stochastic gradient algorithms

≤ 2Df

m
max

{
L,

√
m

c

}
+ Lσ2 c√

m

≤ 2LDf

m
+ 2Df

c
√
m

+ Lσ2 c√
m

= 2LDf

m
+ 1√

m

[2Df

c
+ Lσ2c

]
.

The claim follows.

Now, we analyze the convergence of the RSG algorithm under
the condition that the step-size in (??) is diminishing. Specifically,
we assume that the stepsizes {ak}k≥1 satisfy the following standard
stochastic approximation conditions:

∞∑
k=1

ak =∞,
∞∑
k=1

a2
k <∞. (5.8)

Theorem 5.2. (Unbiased gradients, Diminishing Stepsizes) Sup-
pose f is L-smooth and A5.1 holds. Suppose that the RSG algorithm is
run with the probability mass function as defined in (5.4), and stepsize
sequence satisfying (5.8), then, we have

E
[
‖∇f (θR)‖2

]
m→∞−−−−→ 0. (5.9)

Proof. Recall that from (5.5), we have

E
[
‖∇f (θR)‖2

]
≤ 1∑m

k=1 ak

[
2Df

(2− La1) + Lσ2
m∑
k=1

a2
k

(2− Lak)

]
.

The second condition in (5.8) implies that the terms in square
bracket on the RHS of above equation converges to a finite limit when
m increases. Then, (5.9) follows since the first condition in (5.8) ensures

that
m∑
k=1

ak →∞ as m→∞.

5.1.2 RSG with a biased gradient oracle

We make the following assumptions for the non-asymptotic analysis of
RSG algorithm in the zeroth-order setting:
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A5.2. There exists a constant B > 0 such that ‖∇f(x)‖1 ≤ B, ∀x ∈ RN .

A5.3. The gradient estimate ∇̂f(θk) satisfies the following inequalities
for all k ≥ 1: ∥∥∥Ek [∇̂f(θk)

]
−∇f (θk)

∥∥∥
∞
≤ c1δ

2, (5.10)

and

Ek
[∥∥∥∇̂f(θk)

∥∥∥2
]
≤
∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ c2
δ2 . (5.11)

In the above, Ek is shorthand for E(· | Fk), with Fk denoting the
sigma-field σ (θi, i < n).

As mentioned before, in the non-convex case, the gradient norm is a
standard benchmark for quantifying the convergence rate of stochastic
gradient algorithms. The main result concerning RSG’s non-asymptotic
performance is presented below.

Theorem 5.3.
Suppose the objective function f is L-smooth (as defined in 3.1), and
assumptions A5.2–A5.3 hold. Suppose that the RSG algorithm is run
with the stepsize ak = a and perturbation constant δk = δ for each
k = 1, . . . ,m, where

a = min

{ 1
L
,

1
m2/3

}
, δ = 1

m1/6 , ∀k ≥ 1. (5.12)

Then, choosing θR uniformly at random from {θ1, . . . , θm}, we have

E ‖∇f (θR)‖2 ≤ 2L(f(θ1)− f(θ∗))
m

+ K1
m1/3 , (5.13)

where K1 = 2Dfd
4/3 + 4Bc1

d5/3 + Lc2
1

d11/3m
+ Lc2d

1/3, constants c1, c2 are
defined in A5.3, B is as defined in A5.2,

Df = f(θ1)− f(θ∗), (5.14)

and θ∗ is a global optima of f .

From the bound in the result above, it is easy to see that an order
O
( 1
ε3

)
iterations of the RSG algorithm are enough to find a point θR

that satisfies E ‖∇f (θR)‖2 ≤ ε.
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Proof. Since f is L-smooth, we have

f (θk+1) ≤ f (θk) + 〈∇f (θk) , θk+1 − θk〉+ L

2 ‖θk+1 − θk‖2

≤ f (θk)− a
〈
∇f (θk) , ∇̂f(θk)

〉
+ L

2 a
2
∥∥∥∇̂f(θk)

∥∥∥2
. (5.15)

Taking expectations with respect to the sigma field Fk on both sides of
(5.15), and using (5.10) and (5.11) from A5.3, we obtain

Ek [f (θk+1)]

≤ Ek [f (θk)]− a
〈
∇f (θk) ,∇f (θk) + c1δ

21d×1
〉

+ L

2 a
2
[∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ c2
δ2

]
≤ f (θk)− a ‖∇f (θk)‖2 + c1δ

2aEk‖∇f (θk) ‖1

+ L

2 a
2
[
‖∇f (θk)‖2 + 2c1δ

2Ek‖∇f (θk) ‖1 + dc2
1δ

4 + c2
δ2

]
(5.16)

≤ f (θk)−
(
a− L

2 a
2
)
‖∇f (θk)‖2 + c1δ

2B
(
a+ La2

)
(5.17)

+ L

2 a
2
[
dc2

1δ
4 + c2

δ2

]
,

where we have used the fact that −‖y‖1 ≤
N∑
i=1

yi for any vector N -vector

y, in arriving at the inequality (5.16). The last inequality follows from
the fact that ‖∇f (θk) ‖1 ≤ B by assumption A5.2. Re-arranging the
terms, we obtain

a ‖∇f (θk)‖2 ≤
2

(2− La)

[
f (θk)− Ekf (θk+1)

+ c1δ
2
(
a+ La2

)
B

]
+ La2

(2− La)

[
dc2

1δ
4 + c2

δ2

]
.

Now, summing up the inequality above for k = 1 to m, and taking
expectations, we obtain

m∑
k=1

aEm ‖∇f (θk)‖2

≤ 2
m∑
k=1

(Emf (θk)− Emf (θk+1))
(2− La) + 2

m∑
k=1

c1δ
2B

(
a+ La2

2− La

)
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+ L
m∑
k=1

a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]

= 2
[

f (θ1)
(2− La1) −

Em [f (θm+1)]
(2− Lam)

]
+ 2

m∑
k=1

c1δ
2B

(
a+ La2

2− La

)
+ L

m∑
k=1

a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]
.

Using Em [f (θk)] ≥ f(θ∗), we obtain

m∑
k=1

aEm ‖∇f (θk)‖2 ≤
2 (f(θ1)− f(θ∗))

(2− La1) + 2
m∑
k=1

c1δ
2B

(
a+ La2

2− La

)

+ L
m∑
k=1

a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]
.

Using the fact that θR is picked uniformly at random from {θ1, . . . , θm},
we obtain

E
[
‖∇f (θR)‖2

]
≤ 1
ma

[
2Df

(2− La1) + 2B
m∑
k=1

c1δ
2
(
a+ La2

2− La

)

+L
m∑
k=1

a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]]
. (5.18)

Next, we simplify the bound obtained above by substituting the step-size
and perturbation constant δ values specified in (5.12) as follows:

E
[
‖∇f (θR)‖2

]
≤ 1
ma

[
2Df + 4maBc1δ

2 + Lma2
[
dc2

1δ
4 + c2

δ2

]]
(5.19)

≤ 2Df

m
max

{
L,m2/3

}
+ 4B

(
c1
m1/3

)
+ L

[
dc2

1
m2/3 + d5/3c2

m−1/3

]
1

(d2m)2/3 .

(5.20)

In the above, the inequality (5.19) follows by using the fact that a ≤ 1/L,
while the inequality (5.20) uses the choice of δ in (5.12). The main claim
follows follows by rearranging terms in (5.20).
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5.2 The convex case

We now study the non-asymptotic performance of the RSG algorithm
presented earlier, assuming that the objective is convex and smooth. The
main result that provides a non-asymptotic bound for RSG algorithm
with gradient estimates satisfying A5.3 is given below.

Theorem 5.4.
Suppose the objective function f is L-smooth (as defined in 3.1), and
convex. Assume A5.3 holds. Suppose that the RSG algorithm is run for
m iterations with stepsize a, perturbation constant δ set as defined in
(5.12). Let θR be chosen uniformly at random from {θ1, . . . , θm}. Then,
for any m ≥ 1, we have

E [f (θR)]− f(θ∗) ≤ LD2

m
+ K1
m1/3 ,

where K2 = D2 + 4
√
dDc1δ

2 + dc2
1δ

4

m
+ c2, constants c1 and c2 are

specified in A5.3, and

D = ‖θ1 − θ∗‖, (5.21)

with θ∗ denoting a global optima of f .

Remark 5.1. From the result above, it is apparent that an O
( 1
ε3

)
num-

ber of iterations are necessary to find a point that satisfies E [f (θR)]−
f(θ∗) ≤ ε. Moreover, this rate is not improvable in a minimax sense for
a gradient-based algorithm with inputs from a biased gradient oracle,
which we formalize in the next section.

Remark 5.2. For the special case of noise originating from a common
random numbers sequence, it is possible to obtain an improved bound of
the order O

( 1√
m

)
. This improved is due to the fact that the gradient

estimate variance does not blow up as the perturbation constant δ goes
to zero, see Proposition 3.5. The proof of this improved bound follows
arguments similar to those employed in the proof of Theorem 5.4. We
omit the details.
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Proof. Let ∆k = ∇̂f(θk)−∇f(θk) and ωk = ‖θk − θ∗‖ ,∀k ≥ 1 . Then
for any k = 1, . . . ,m, we have

ω2
k+1 = ‖θk+1 − θ∗‖2

= ‖θk − a∇̂f(θk)− θ∗‖2

= ω2
k − 2a

〈
∇̂f(θk), θk − θ∗

〉
+ a2

∥∥∥∇̂f(θk)
∥∥∥2
. (5.22)

Taking expectations with respect to the sigma field Fk on both sides
of (5.22), and using (5.10), (5.11), we obtain

E[ω2
k+1] ≤ E[ω2

k]− 2a 〈∇f(θk), θk − θ∗〉 − 2aE [〈∆k, θk − θ∗〉]

+ a2
[ ∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ c2
δ2

]
≤ E[ω2

k]− 2a 〈∇f (θk) , θk − θ∗〉+ 2ac1δ
2‖θk − θ∗‖1

+ a2
[
‖∇f (θk) ‖2 + 2

√
dc1δ

2‖∇f (θk) ‖+ dc2
1δ

4 + c2
δ2

]
,

(5.23)

where the last inequality follows from the fact that −
N∑
i=1

θi ≤ ‖X‖1 for

any vector X. Now, using the fact that f is convex, we have

‖∇f (θk)‖2 ≤ L 〈∇f (θk) , θk − θ∗〉 .

Further, since f is L-smooth, ‖∇f(θk)‖ ≤ L‖θk − θ∗‖. Plugging these
inequalities in (5.23), we obtain

E[ω2
k+1] ≤ E[ω2

k]− 2a 〈∇f (θk) , θk − θ∗〉+ 2ac1δ
2‖θk − θ∗‖1

+ a2
[
L 〈∇f (θk) , θk − θ∗〉+ 2

√
dc1δ

2L‖θk − θ∗‖

+ dc2
1δ

4 + c2
δ2

]
≤ E[ω2

k]− (2ak − La2) [f (θk)− f(θ∗)]

+ 2
√
dωkc1δ

2a+ La2) + a2
[
dc2

1δ
4 + c2

δ2

]
,

where the last inequality follows from the fact that f(·) is convex along
with ‖X‖1 ≤

√
d‖X‖ for any vector X. Re-arranging the terms, we
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obtain

a [f (θk)− f(θ∗)]

≤ 1
(2− La)

[
ω2
k − E[ω2

k+1] + 2
√
dωc1δ

2(a+ La2) + a2
(
dc2

1δ
4 + c2

δ2

)]
.

Now summing up the inequality above from k = 1 to m and taking
expectations, we obtain

m∑
k=1

aEm [f (θk)− f(θ∗)] ≤
m∑
k=1

Em[ω2
k]− Em[ω2

k+1]
(2− La)

+ 2
√
d

m∑
k=1

Em [ωk] c1δ
2a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)

= ω2
1

(2− La) −
Em

[
ω2
m+1

]
(2− La)

+ 2
√
d

m∑
k=1

Em [ωk] c1δ
2 (a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)

≤ D2

(2− La) + 2
√
dD

m∑
k=1

c1δ
2 (a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)
where the last inequality follows by using (5.21), i.e., Em [ωk] ≤ D.
Combining the above result with the fact that θR is picked uniformly
at random from {θ1, . . . , θm}, we obtain

E [f (θR)]− f(θ∗)

≤ 1
ma

[
D2

(2− La) + 2
√
dD

m∑
k=1

c1δ
2 (a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)]
, (5.24)
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Using (5.12) in (5.24), we obtain

E [f (θR)]− f(θ∗)

≤ 1
ma

[
D2

(2− La) + 2
√
dD

m∑
k=1

c1δ
2a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)]

≤ 1
ma

[
D2 + 4

√
dDmac1δ

2 +ma2
(
dc2

1δ
4 + c2

δ2

)]
, (5.25)

where the final inequality follows by using the fact that a ≤ 1/L. The
main claim follows by using the definition of a, δ given in (5.12) followed
by simple algebraic manipulations.

5.3 The strongly-convex case

In this section, we present non-asymptotic analysis for the SG algorithm
(5.1) under a strongly convex objective, which is made precise in the
definition below.

Definition 5.3. A continuously differentiable function f is µ-strongly
convex if the following condition holds for any θ, θ′:

f(θ′) ≥ f(θ) +∇f(θ)T (θ′ − θ) + µ

2
∥∥θ′ − θ∥∥2

.

For a brief introduction to strong-convexity, the reader is referred
to Appendix C.

As in the previous sections, we consider unbiased as well as biased
gradient information. We begin with the unbiased gradient case in the
next section.

5.3.1 SG with unbiased gradient information

We consider the following update iteration:

θk+1 = θk − a(k)∇̂f(θk). (5.26)

We first state and prove a result for the case of a constant step size.
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Theorem 5.5. Let f be a µ-strongly convex function. Assume A5.1.
Then, the SG algorithm governed by (5.26) and with a(k) = a s.t.
0 < aL < 1, satisfies

E[f(θn)− f(θ∗)] ≤ aLσ2

2µ + (1− aµ)n−1
(
f(θ1)− f(θ∗)− aLσ2

2µ

)
.

(5.27)

Proof. From the initial passage in the proof of Theorem 5.1, we have

Ek[f(θk+1)]− f(θk) ≤ −a(k)(1− 1
2a(k)L)‖∇f(θk)‖22 + 1

2a(k)2Lσ2.

Since a(k) = a and 0 < aL < 1, we have

Ek[f(θk+1)]− f(θk) ≤ −
1
2a‖∇f(θk)‖22 + 1

2a
2Lσ2. (5.28)

Since f is µ-strongly convex, the PL-condition holds, i.e.,

f(θ)− f(θ∗) ≤ 1
2µ‖∇f(θ)‖22, ∀θ.

Using PL-condition in (5.28), we obtain

Ek[f(θk+1)]− f(θk) ≤ −µa(f(θk)− f(θ∗) + 1
2a

2Lσ2. (5.29)

Subtracting f(θ∗) on both sides and re-arranging, we obtain

Ek[f(θk+1)− f(θ∗)] ≤ (1− aµ)[f(θk)− f(θ∗)] + 1
2a

2Lσ2. (5.30)

Taking expectations followed by straightforward simplifications, we
obtain

E[f(θk+1)− f(θ∗)]− aLσ2

2µ

≤ (1− aµ)E[f(θk)− f(θ∗)] + a2Lσ2

2 − aLσ2

2µ

= (1− aµ)
(
E[f(θk)− f(θ∗)]− aLσ2

2µ

)
. (5.31)
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Since aµ < µ

L
< 1, a repeated application of the above inequality leads

to the following bound:

E[f(θn)− f(θ∗)] ≤ aLσ2

2µ + (1− aµ)n−1
(
f(θ1)− f(θ∗)− aLσ2

2µ

)
.

(5.32)
The claim follows.

Remark 5.3. Taking limits as k →∞ in (5.27), we obtain

E[f(θk)− f(θ∗)]→ aLσ2

2µ as k →∞. (5.33)

The result above implies that a constant stepsize SG algorithm does
not converge to the optima, and instead gets to within a ball around
the optima.

Next, we consider the case of a diminishing stepsize.

Theorem 5.6. Let f be a µ-strongly convex function. Assume A5.1.
Then, the SG algorithm governed by (5.26) and with a(k) = c

k + 1
s.t. 1

µ
< c ≤ L, satisfies

E[f(θn)− f(θ∗)] ≤ 1
n+ 1 max

{
c2Lσ2

2(cm− 1) , 2 (f(θ1)− f(θ∗))
}
.

(5.34)

Proof. We prove by induction. The base case holds trivially. Assuming
the claim holds for n, we show that it holds for n+ 1.

From (5.6), we have

Ek[f(θk+1)]− f(θk)] ≤ −a(k)(1− 1
2a(k)L)‖∇f(θk)‖22 + 1

2a(k)2Lσ2

≤ −a(k)‖∇f(θk)‖22 + 1
2a(k)2Lσ2

(Since a(k)L ≤ 1)

≤ −a(k)µ (f(θk)− f(θ∗)) + 1
2a(k)2Lσ2

(PL-condition)



108 Non-asymptotic analysis of stochastic gradient algorithms

Thus,

E[f(θk+1)]− f(θ∗)] ≤ (1− a(k)µ)E[f(θk)− f(θ∗)] + 1
2a(k)2Lσ2.

Using the induction hypothesis, the form of the stepsize a(k) and letting

K = max
{

c2Lσ2

2(cm− 1) , 2 (f(θ1)− f(θ∗))
}
, we obtain

E[f(θn+1)]− f(θ∗)] ≤
(

1− cm

n+ 1

)
K

n+ 1 + c2Lσ2

2(n+ 1)2

= Kn

(n+ 1)2 −
(cm− 1)K

(n+ 1)2 ) + c2Lσ2

2(n+ 1)2

≤ K

n+ 2 ,

where the final inequality used the following fact:

−(cm− 1)K
(n+ 1)2 ) + c2Lσ2

2(n+ 1)2 ≤ 0.

The inequality above holds by the definition of K, and simple algebra
to infer Kn

(n+ 1)2 ≤
K

n+ 2.
The claim follows.

Remark 5.4. In contrast to the constant stepsize case handled pre-
viously, with a diminishing stepsize, we have a bound that vanishes
as n → ∞. However, the stepsize choice requires the knowledge of
the strong convexity parameter µ, while the constant stepsize case in
Theorem 5.5 did not assume such information.

5.3.2 SG with biased gradient information

As before, we consider the update iteration in (5.26). Unlike the previous
section, where we assumed unbiased gradient estimates (i.e., the condi-
tion A5.1 holds), here the estimate ∇̂f(θn) is a biased approximation
to the gradient of the objective function f at θn.

The biased gradient estimate can be decomposed as follows:

∇̂f(θn) = ∇f(θn) + βn + ηn, where (5.35)
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βn = E(∇̂f(θn) | Fn)−∇f(θn),
ηn = ∇̂f(θn)− E(∇̂f(θn) | Fn),

where Fn is an increasing sequence of σ-fields generated by θi, i ≤ n,
for all n. In the above, βn is the bias in the gradient estimate and η(n)
is a martingale difference.

Using a simultaneous perturbation-based gradient estimate implies
βn = O(δ2

n), where δn is the perturbation constant used in forming the
estimate (see Chapter 3 for several examples). While the bias goes down
as δ2

n, the variance of the gradient estimate scales inversely with δ2
n.

This has been formalized earlier in assumptions A5.2–A5.3.
We now present a non-asymptotic bound in expectation for the SG

algorithm (5.26) with inputs from a biased gradient oracle that satisfies
the aforementioned assumptions.

Proposition 5.2. Suppose the objective function f is L-smooth (as
defined in 3.1), and assumptions A5.2–A5.3 hold. Then, we have

E ‖θn+1 − θ∗‖2 ≤ 2 exp(−2µΓ(n)) ‖θ0 − θ∗‖2︸ ︷︷ ︸
initial error

+ 2
n∑
k=1

a2
k exp(−2µ(Γ(n)− Γk))c2

1δ
4
k︸ ︷︷ ︸

bias error

+

n∑
k=1

a2
k exp(−2µ(Γ(n)− Γk))c2δ

−2
k︸ ︷︷ ︸

sampling error

, (5.36)

where Γ(k) :=
k∑
i=1

ai.

Proof. Let zn = θn − θ∗ denote the error at time instant n of the
algorithm (5.26). Using ∇f(θ∗) = 0, we have(∫ 1

0
∇2f(θ∗ + λ(θn − θ∗))dλ

)
zn = ∇f(θn).

Using the fact above, we arrive at a recursion for zn from (5.35). Letting
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Jn :=
∫ 1

0
∇2f(θ∗ + λ(θn − θ∗)dλ, we have

zn+1 =(I − a(n)Jn)zn − a(n) (βn + η(n))

=Πnz0 −
n∑
k=1

a(k)ΠnΠ−1
k (βk + η(k)),

where Πn :=
n∏
k=1

(I − a(k)Jk).

By Jensen’s inequality, we obtain

(En ‖zn+1‖)2 ≤ En(〈zn, zn〉)

= En

‖Πnz0‖2 +
∥∥∥∥∥
n∑
k=1

a(k)ΠnΠ−1
k βk

∥∥∥∥∥
2

+
∥∥∥∥∥
n∑
k=1

a(k)ΠnΠ−1
k η(k)

∥∥∥∥∥
2

(5.37)

−
〈

Πnz0,
n∑
k=1

a(k)ΠnΠ−1
k βk

〉
−
〈

Πnz0,
n∑
k=1

a(k)ΠnΠ−1
k η(k)

〉

−
〈

n∑
k=1

a(k)ΠnΠ−1
k βk,

n∑
k=1

a(k)ΠnΠ−1
k η(k)

〉)

≤ 2 ‖Πnz0‖2 + 2
n∑
k=1

a(k)2
∥∥∥ΠnΠ−1

k

∥∥∥2
c2

1δ
4
k

+
n∑
k=1

a(k)2
∥∥∥ΠnΠ−1

k

∥∥∥2
E ‖η(k)‖2 (5.38)

For the last inequality, we have used the following facts: (i) η(k) is
a martingale difference in order to the last two two cross terms; (ii)
βk ≤ c1δ

2
k from A5.3; and (iii) Cauchy-Schwarz inequality for the first

cross term.
Now, we bound each of the square term in (5.38) separately. Since the

objective is strongly convex, we have that ‖I − a(n)Jn‖ ≤ exp(−µa(n)).
Hence,

∥∥∥ΠnΠ−1
k

∥∥∥
2

=

∥∥∥∥∥∥
n∏

j=k+1
(I − ajJj)

∥∥∥∥∥∥
2
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≤
n∏

j=k+1
‖(1− ajµ)I − aj(Jj − µI)‖2

≤
n∏

j=k+1
‖(1− ajµ)I‖2 ≤

n∏
j=k+1

(1− ajµ)

≤ exp (−µ(Γ(n)− Γ(k))) . (5.39)

From A5.3, we can infer that the second moment of the martingale
difference is bounded above by c2/δ

2
k. The main claim now follows by

plugging the bound on ηn and (5.39) into (5.38).

By specializing the result in the proposition above, we derive a
non-asymptotic bound of the order O(1/

√
n).

Theorem 5.7. (Biased gradients and strongly convex objec-
tive) Let a(k) = c/k and δk = δ0/k

δ. Then,

E ‖θn − θ∗‖ ≤
√

2 ‖θ0 − θ∗‖
nµc

+
√

2cc1δ
2
0√

2µc− 4δ − 1
n−

1
2−2δ

+
√
c2c

δ0
√

2µc+ 2δ − 1
nδ−

1
2 .

Remark 5.5. Choosing δ = 0, one can recover the optimal rate of the
order O

(
n−1/2

)
for simultaneous perturbation schemes. Contrast this

with the O
(
n−1/3

)
obtained for the non-convex and convex cases in

the previous sections.

Proof. Bounding a sum by an integral, we obtain

exp(−µΓ(n)) ≤ exp(−µc lnn) ≤ n−µc.

Plugging a(k) = c/k and δk = δ0/k
δ into the bias error term in

(5.36), we obtain
n∑
k=1

a2(k) exp(−2µ(γ(n)− γk))c2
1δ

4
k ≤

n∑
k=1

c2

k2n
−2µck2µcc2

1
δ4

0
n4δ

≤c2n−2µcc2
1δ

4
0

n∑
k=1

k2µc−4δ−2
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≤ c2c2
1δ

4
0

(2µc− 4δ − 1)n
−1−4δ.

Along similar lines, the sampling error term in (5.36) can be upper-
bounded as follows:

n∑
k=1

a2(k) exp(−2µ(Γ(n)− Γk))
c2
δ2
k

≤ c2c2
δ2

0(2µc− 4δ − 1)n
−1+2δ.

5.4 Minimax lower bound

In the analysis so far, we have observed that the convergence proofs
rely on two properties of the gradient estimates formed using the
simultaneous perturbation method, namely the bias and variance bounds
in (4.3). Moreover, using such gradient estimates, we obtained a non-
asymptotic bound of the order O(1/m1/3) in the previous section. We
now establish that this bound is not improvable in a minimax sense for
any algorithm that is fed inputs from a biased gradient oracle, which is
formalized below.

(O1) Biased gradient oracle
Input: θ ∈ RN , perturbation constant δ > 0.
Output: a gradient estimate ∇̂f(θ) ∈ RN that satisfies

(a) ‖Eξ
[
∇̂f(θ)

]
−∇f (θ) ‖ ≤ C1δ

2,

(b) Eξ
∥∥∥∇̂f(θ)− Eξ

[
∇̂f(θ)

]∥∥∥2
≤ C2
δ2 ,

for some constants C1, C2 > 0.

For the lower bound, we consider a setting where an optimization
algorithm is required to select a point θ̂m ∈ K after querying the oracle
(O1) m times. The algorithm’s performance is quantified using the
optimization error, defined as

∆m = E
[
f(θ̂m)

]
− inf
θ∈K

f(θ), (5.40)
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where K ⊂ RN is a convex body, i.e., a nonempty closed convex set
with a non-empty interior, and f is the objective function that is convex
and L-smooth. We use F to denote the the set of convex and L-smooth
functions with domain including K.

The worst-case error is defined as follows

∆AF ,m(C1, C2) = sup
f∈F

sup
γ∈Γ1(f,C1,C2)

∆Am(f, γ) , (5.41)

where ∆Am(f, γ) is the optimization error that A suffers after m rounds
of interaction with f through an oracle γ, and Γ1(f, C1, C2) denotes the
set of (O1) oracles with constants C1, C2 satisfying the requirements
(O1)a–(O1)b.

The minimax error is defined as

∆∗F ,n(C1, C2) = inf
A

∆AF ,n(C1, C2),

where A ranges through all algorithms that interact with f through an
oracle.

The main result that establishes a minimax lower bound is stated
below.

Theorem 5.8. Let m > 0 be an integer, p, q > 0, C1, C2 > 0, K ⊂ RN

convex, closed, with [+1,−1]N ⊂ K. Then, for any algorithm that
observes m random elements from a (O1) oracle, the minimax error
satisfies the following bound:

∆∗F ,m(C1, C2) ≥ K1
√
N C

2
3
1 C

1
3
2 m
− 1

3 ,

where K1 is a universal constant.

Proof. First, we establish the lower bound for the one-dimensional case
with F denoting the set of L smooth and convex functions with domain
K that includes [−1, 1], and L ≥ 1/2. For brevity, let ∆∗m denote the
minimax error ∆∗m(F , c1, c2). Throughout the proof, a N -dimensional
normal distribution with mean µ and covariance matrix Σ is denoted
by N(µ,Σ).

We begin by defining two functions f+, f− ∈ F with associated
biased gradient oracles γ+, γ− such that the expected error of any
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deterministic algorithm can be bounded from below for the case when the
environment is chosen uniformly at random from {(f+, γ+), (f−, γ−)}.
By Yao’s principle (Yao, 1977), the same lower bound applies to the
minimax error ∆∗m even when randomized algorithms are also allowed.

We consider the class of biased gradient oracles the construct a a
random gradient estimate, when given input (θ, δ), as follows:

∇̂f(θ, δ) = γ(θ, δ) + ξ (5.42)

with some map γ : K × [0, 1) → R, where ξ is a zero-mean normal
random variable with variance C2δ

−2, satisfying (O1)b. The map γ

which will be chosen such that the bias requirement in (O1)a is satisfied.
Next, we define the two target functions and their associated oracles2.

For v ∈ {±1}, let

fv(θ) := ε (θ − v) + 2ε2 ln
(
1 + e−

θ−v
ε

)
, x ∈ K . (5.43)

The idea underlying these functions is that they approximate ε|θ − v|,
but with a prescribed smoothness. The first and second derivatives of
fv are

f ′v(θ) = ε
1− e− θ−vε
1 + e−

θ−v
ε

, and f ′′v (θ) = 2e− θ−vε(
1 + e−

θ−v
ε

)2 .

From the above calculation, it is easy to see that 0 ≤ f ′′(θ) ≤ 1/2. Thus,
fv is 1

2-smooth, and so fv ∈ F .
For fv, v ∈ {−1,+1}, the gradient oracle we consider is defined as

γv(θ, δ) = γv(θ, δ) + ξδ,

with ξδ ∼ N(0, C2
δ2 ) selected independently for every query, where γv

is a biased estimate of the gradient f ′v. We define the “bias” in γv to
move the gradients closer to each other: The idea is to shift f ′+ and f ′−
towards each other, with the shift depending on the allowed bias C1δ

2.
In particular, since f ′+ ≤ f ′−, f ′+ is shifted up, while f ′− is shifted down.

2With a slight abuse of notation, we will use interchangeably the subscripts +
(−) and +1 (−1) for any quantities corresponding to these two environments, e.g.,
f+ and f+1 (respectively, f− and f−1).
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However, the shifted up version of f ′+ is clipped for positive x so that it
never goes above the shifted down version of f ′−. By moving the curves
towards each other, algorithms which rely on the obtained oracles will
have an increasingly harder time (depending on the size of the shift) to
distinguish whether the function optimized is f+ or f−. Since

0 ≤ f ′−(θ)− f ′+(θ) ≤ sup
x
f ′−(θ)− inf

x
f ′+(θ) = 2ε ,

we don’t allow shifts larger than ε, leading to the following formal
definitions:

γ+(θ, δ) =f
′
+(θ) + min(ε, C1δ

2) , if x < 0 ;
min

{
f ′+(θ) + min(ε, C1δ

2), f ′−(θ)−min(ε, C1δ
2)
}
, else ,

(5.44)

and

γ−(θ, δ) =f
′
−(θ)−min(ε, C1δ

2) , if x > 0 ;
max

{
f ′−(θ)−min(ε, C1δ

2), f ′+(θ) + min(ε, C1δ
2)
}
, else .

(5.45)

We claim that the oracle γv based on these functions satisfies the
conditions imposed in (O1). The variance condition (O1)b is trivially
satisfied. To see that the bias is C1δ

2, notice that γv(θ, δ) = −γ−v(−x, δ)
and f ′v(θ) = −f ′−v(−x). Thus, |γ+(θ, δ)−f ′+(θ)| = |γ−(−x, δ)−f ′−(−x)|,
hence it suffices to consider v = +1. The bias condition trivially holds
for x < 0. For x ≥ 0, using that f ′+(θ) ≤ f ′−(θ), we get

f ′+(θ)−min(ε, C1δ
2) ≤ γ+(θ, δ) ≤ f ′+(θ) + min(ε, C1δ

2),

showing |γ+(θ, δ)− f ′+(θ)| ≤ C1δ
2. Thus, γv is indeed a biased gradient

oracle with the required properties.
To bound the performance of any algorithm in minimizing fv, v ∈

{±1}, notice that fv is minimized at θ∗v = v, with fv(v) = 2ε2 ln 2. Next
we show that if θ has the opposite sign of v, the difference fv(θ)−fv(θ∗v)
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is “large”. This will mean that if the algorithm cannot distinguish
between v = +1 and v = −1, it necessarily chooses a highly suboptimal
point for either of these cases.

Since vfv is decreasing on {θ : θv ≤ 0}, we have

Mv := min
x:xv≤0

fv(θ)− fv(v) = fv(0)− fv(v) = ε

(
−v + 2ε ln 1 + e

v
ε

2

)
.

Let h(v) = −v + 2ε ln 1 + e
v
ε

2 . Simple algebra shows that h is an even
function, that is, h(v) = h(−v). Indeed,

h(v) = −v + 2 ε ln
(
e
v
ε

1 + e−
v
ε

2

)
= −v + 2 ε v

ε
+ 2 ε ln 1 + e−

v
ε

2 = h(−v) .

Specifically, h(1) = h(−1) and thus

M+ = M− = ε

(
−1 + 2ε ln 1 + e

1
ε

2

)
.

From the foregoing, when θv ≤ 0 and ε < 1
4 ln 2, we have

fv(θ)− fv(θ∗v) ≥ ε
(
−1 + 2ε ln 1 + e

1
ε

2

)
>
ε

2 .

Hence,

fv(θ)− fv(θ∗v) ≥
ε

2I {θv < 0} . (5.46)

Given the above definitions and (5.46), by Yao’s principle, the minimax
error (5.41) is lower bounded by

∆∗m ≥ inf
A

E[fV (X̂m)− inf
x∈X

fV (θ)] ≥ inf
A

ε

2 P(X̂mV < 0) , (5.47)

where V ∈ {±1} is a random variable, X̂m is the estimate of the
algorithm after n queries to the oracle γV for fV , the infimum is taken
over all deterministic algorithms, and the expectation is taken with
respect to the randomness in V and the oracle. More precisely, the
distribution above is defined as follows:
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Consider a fixed biased gradient oracle γ satisfying (5.42) and a
deterministic algorithm A. Let θAt (respectively, δAt ) denote the map
from the algorithm’s past observations that picks the point (respectively,
accuracy parameter δ), which are sent to the oracle in round t. Define
the probability space (Ω,B, PA,γ) with Ω = Rn×{−1, 1}, its associated
Borel sigma algebra B, where the probability measure PA,γ takes the
form PA,γ := pA,γN(λ×m), where λ is the Lebesgue measure on Rn,
m is the counting measure on {±1} and pA,γ is the density function
defined by

pA,γ(g1:n, v) = 1
2

(
pA,γ(gm | g1:m−1) · . . . · pA,γ(gm−1 | g1:m−2) · . . . · pA,γ(g1)

)
= 1

2

(
pN
(
gm − γ(θAm(g1:m−1), δAm(g1:m−1)), c2(δAm(g1:m−1))

)
· . . . ·

pN
(
g1 − γ(θA1 , δA1 ), c2(δA1 )

))
,

where v ∈ {−1, 1} and pN (·, σ2) is the density function of a N(0, σ2)
random variable. Then the expectation in (5.47) is defined w.r.t. the
distribution P := 1

2
(
PA,γ+I {v = +1}+ PA,γ−I {v = −1}

)
and V : Ω→

{±1} is defined by V (g1:n, v) = v.3 Define P+(·) := P(· | V = 1),
P−(·) := P(· | V = −1). From (5.47), we obtain

∆∗m ≥ inf
A

ε

4
(
P+(X̂m < 0) + P−(X̂m > 0)

)
, (5.48)

≥ inf
A

ε

4 (1− ‖P+ − P−‖TV) , (5.49)

≥ inf
A

ε

4

(
1−

(1
2Dkl (P+||P−)

) 1
2
)
, (5.50)

where (5.48) uses the definitions of P+ and P−, ‖·‖TV denotes the total
variation distance, (5.49) follows from its definition, while (5.50) follows
from Pinsker’s inequality. It remains to upper bound Dkl (P+||P−).

3Here, we are slightly abusing the notation as P depends onA, but the dependence
is suppressed. In what follows, we will define several other distributions derived from
P, which will all depend on A, but for brevity this dependence will also be suppressed.
The point where the dependence on A is eliminated will be called to the reader’s
attention.
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Define Gt to be the tth observation of A. Thus, Gt : Ω→ R, with
Gt(g1:n, v) = gt. Let P t+(g1, . . . , gt) denote the joint distribution of
G1, . . . , Gt conditioned on V = +1. Let P t+(· | g1, . . . , gt−1) denote the
distribution of Gt conditional on V = +1 and G1 = g1, . . . , Gt−1 = gt−1.
Define P t−j(· | g1, . . . , gt−1) in a similar fashion. Then, by the chain rule
for KL-divergences, we have

Dkl (P+||P−) =
m∑
t=1

∫
Rt−1

Dkl
(
P t+(· | g1:t−1)||P t−(· | g1:t−1)

)
NP t+(g1:t−1).

(5.51)
By the oracle’s definition on V = +1 we have
Gt ∼ N(γ+(θAt (G1:t−1), δAt (G1:t−1)), c2(δAt (G1:t−1))), i.e., P t+(· | g1:t−1)
is the normal distribution with mean γ+(θAt (G1:t−1), δAt (G1:t−1)) and
variance c2(δAt (G1:t−1)). Using the shorthands θAt := xAt (g1:t−1), δAt :=
δAt (g1:t−1), we have

Dkl
(
P t+(· | g1:t−1)||P t−(· | g1:t−1)

)
= (γ+(θAt , δAt )− γ−(θAt , δAt ))2

2c2(δAt )
,

as the KL-divergence between normal distributions N(µ1, σ
2) and N(µ2, σ

2)

is equal to (µ1 − µ2)2

2σ2 .
It remains to upper bound the numerator. For (θ, δ) ∈ R × (0, 1],

first note that
γ+(θ, δ) ≤ γ−(θ, δ). Hence,

|γ+(θ, δ)− γ−(θ, δ)| = γ−(θ, δ)− γ+(θ, δ)
< sup

x
γ−(θ, δ)− inf

x
γ+(θ, δ)

= lim
x→∞

γ−(θ, δ)− lim
x→−∞

γ+(θ, δ)

= ε− ε ∧ C1δ
2 − (−ε+ ε ∧ C1δ

2)
= 2ε− 2ε ∧ C1δ

2

≤ 2(ε− C1δ
2)+ , (5.52)

where (u)+ = max(u, 0) is the positive part of u.
From the above, using the abbreviations θAt = xAt (g1:t−1) and δAt =

δAt (g1:t−1) (effectively fixing g1:t−1 for this step),

Dkl
(
P t+(· | g1:t−1)||P t−(· | g1:t−1)

)
<

2{(ε− C1(δAt )2)+}2 (δAt )2

C2
(5.53)
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≤ sup
δ>0

2{(ε− C1δ
2)+}2 δ2

C2
, (5.54)

where inequality (5.53) follows from (5.52). Notice that the right-hand
side of the above inequality does not depend on the algorithm anymore.

Now, observe that sup
δ>0
{(ε−C1δ

2)+}2δ2 = sup
(ε/C1)1/p≥δ>0

(ε−C1δ
2)2δ2.

From this observation, we obtain

δ∗ =
( 2ε

6C1

)1/2
. (5.55)

Note that C1δ
2
∗ ≤ ε, hence max

δ>0
{(ε − C1δ

2)+}2δ2 = (ε − C1δ
2
∗)2δ2

∗.
Plugging (5.54) into (5.51) and using this last observation we obtain

Dkl (P+||P−) ≤ 2m
C2

(ε− C1δ
2
∗)2 δ2

∗ . (5.56)

Note that the above bound holds uniformly over all algorithms A.
Substituting the above bound into (5.50), we obtain

∆∗m ≥
ε

4

(
1−
√
m

(ε− C1δ
2
∗)δ∗√

C2

)
= ε

4
(
1−
√
mK1ε

3
2
)
, (5.57)

where K1 = 4
6
√
C2

( 2
6C1

) 1
2
.

By choosing ε =
( 2

5
√
mK1

) 2
3
, we see that

∆∗m ≥
9
20

( 1
25

)1/3
C

1/3
1 C

1/3
2 m−1/3 . (5.58)

Generalization to N dimensions: To prove the N -dimensional result,
we introduce a new device which allows us to relate the minimax error of
the N -dimensional problem to that of the 1-dimensional problem. The
main idea is to use separable N -dimensional functions and oracles and
show that if there exists an algorithm with a small loss for a rich set of
separable functions and oracles, then there exists good one-dimensional
algorithms for the one-dimensional components of the functions and
oracles.
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This device works as follows: First we define one-dimensional func-
tions. For 1 ≤ i ≤ N , let Ki ⊂ R be nonempty sets, and for each
vi ∈ V := {±1}, let f (i)

v : Ki → R. Let K = ×Ni=1Ki and for v =
(v1, . . . , vd) ∈ V N , let fv : K → R be defined by

fv(θ) =
N∑
i=1

f (i)
vi (θi), θ ∈ K . (5.59)

Without the loss of generality, we assume that inf
θi∈Ki

f (i)
vi (θi) = 0, and

hence inf
x∈×Ni=1Ki

fv(θ) = 0, so that the optimization error of the algorithm

producing X̂n ∈ K as the output is f (i)
v (X̂n,i) and fv(X̂n), respectively.

We also define a N -dimensional separable oracle γv as follows: The oracle
is obtained from “composing” the N one-dimensional oracles, (γ(i)

vi )i. In
particular, the ith component of the response of γv given the history
of queries (θt, δt, . . . , θ1, δ1) ∈ (K × [0, 1))t is defined as the response
of γ(i)

vi given the history of queries (θt,i, δt, . . . , θ1,i, δ1) ∈ (Ki × [0, 1))t.
This definition is so far unclear about the randomization of the oracles.
In fact, it turns out that the one-dimensional oracles can even use
the same randomization (i.e., their output can depend on the same
single uniformly distributed random variable U), but they could also
use separate randomization: our argument will not depend on this. Let
Γ(i)(f (i)

vi , c1, c2) denote a non-empty set of biased gradient oracles for
objective function f (i)

vi : Ki → R, and let us denote by Γsep(fv, c1, c2)
the set of separable oracles for the function fv defined above. We

also define Fsep = {f : f(θ) =
N∑
i=1

f (i)
vi (θi), x ∈ K, vi ∈ Vi}, the set

of componentwise separable functions. Note that when ‖·‖ = ‖·‖2 is
used in the definition of type-I oracles then Γsep(fv, C1/

√
N,C2/N) ⊂

Γ(fv, C1, C2).
Let an algorithm A interact with an oracle γ. We will denote the

distribution of the output X̂n of A at the end of n rounds by FA,γ (we
fix n, hence the dependence of F on n is omitted). Thus, the expected
optimization error of A on a function f with zero optimal value is

LA(f, γ) =
∫
f(θ)FA,γ(Nx) .
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Note that this definition applies both in the one and the N -dimensional
cases. For v ∈ V N , we introduce the abbreviation

LA(v) = LA(fv, γv) .

We also define

L̃Ai (v) =
∫
f (i)
vi (θi)FA,γv(Nx)

so that

LA(v) =
N∑
i=1

L̃Ai (v) .

Also, for vi ∈ V and a one-dimensional algorithm A, we let

LAi (vi) = LA(f (i)
vi , γ

(i)
vi ) .

Note that while the domain of L̃Ai is V N , the domain of LAi is V ,
while both express an expected error measured against f (i)

vi . In fact, L̃Ai
depends on v because the algorithm A uses the N -dimensional oracle
γv, which depends on v (and not only on vi) and thus algorithm A
could use information returned by γ(j)

vj , j 6= i. In a way our proof shows
that using this information cannot help a N -dimensional algorithm on
a separable problem, a claim that we find rather intuitive, and which
we now formally state (see (Hu et al., 2016) for a detailed proof).

Lemma 5.9. Let (fv)v∈V N , fv ∈ Fsep,
(γv)v∈V N , γv ∈ Γsep(fv, c1, c2) be separable for some arbitrary functions
c1, c2, and let A be any N -dimensional algorithm. Then there exist N
one-dimensional algorithms, A∗i , 1 ≤ i ≤ N (using only one-dimensional
oracles), such that

max
v∈V

LA(v) ≥ max
v1∈V1

L
A∗1
1 (v1) + · · ·+ max

vd∈Vd
L
A∗d
d (vd) . (5.60)

Now, let

F (i) = {fvi : vi ∈ V }, i = 1, . . . , N .

The next result follows easily from the previous lemma:
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Lemma 5.10. Let ‖·‖ = ‖·‖2 in the definition of the type-I oracles.
Then, we have that

∆∗Fsep,n(c1, c2) ≥
N∑
i=1

∆∗F(i),n(c1/
√
N, c2/N) .

Let K ⊂ RN , such that ×iKi ⊂ K, {±1} ⊂ Ki ⊂ R, FN = FL,0(K),
where recall that L ≥ 1/2. For any 1 ≤ i ≤ N , θi ∈ Ki,

f (i)
vi (θi) := ε (θi − vi) + 2ε2 ln

(
1 + e−

θi−vi
ε

)
. (5.61)

i.e., f (i)
vi is like in the one-dimensional lower bound proof (cf. equa-

tion 5.43). Note that fv ∈ FN since fv is separable, so its Hessian is diago-

nal and from our earlier calculation we know that 0 ≤ ∂2

∂θ2
i

f (i)
vi (θi) ≤ 1/2.

Let ∆(N)∗
m denote the minimax error ∆∗FN ,n

(
C1δ

2,
C2
δ2

)
for the N -

dimensional family of functions FN . Let F (i) = {f (i)
−1, f

(i)
+1}. As it was

noted above, fv ∈ FN for any v ∈ {±1}N . Hence, by Lemma 5.10,

∆(N)∗
m ≥

N∑
i=1

∆∗F(i),m

(
C1√
N
δ2,

C2
N
δ−2

)
. (5.62)

Plugging the lower bound derived in (5.58) for the one-dimensional
setting into the bound in (5.62), we obtain a

√
N -times bigger lower

bound for the N -dimensional case. In particular, we obtain

∆(N)∗
m ≥ 9

10

(
C1C2

25

)1/3√
Nm−1/3.

5.5 Bibliographic remarks

The presentation of non-asymptotic upper as well as lower bounds is
based on recent research on analysis of SG algorithms in a zeroth-order
setting. In the following, we provide some references section-wise.

5.1,5.2 RSG algorithm was proposed and analyzed in (Ghadimi and
Lan, 2013). We follow this reference for the unbiased gradient
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information, while specialize the results in Bhavsar and Prashanth,
2022 for the biased case. A special case worth considering is
f(θ) = Eζ(F (θ, ζ)), where ζ denotes the noise element. One can
obtain an improved rate of O(1/

√
m) when F is assumed to be

L-smooth. This implies f is L-smooth, but the converse is not true.
Recall that in the latter case, we could obtain O(1/m1/3) bound.
For the convex case, one could employ a geometric step-size rule
to derive a O (1/m) bound for the optimization error in the zeroth-
order setting. The reader is referred to Section IV of (Bhavsar
and Prashanth, 2022) for the details. The approach adopted in
the aforementioned reference in arriving at a last iterate bound is
inspired from (Jain et al., 2021).

5.3 For the strongly-convex case, we have used the analysis in the
survey article (Bottou et al., 2018). This applies to the unbiased
gradient information case, while the biased case requires careful
handling of the bias-variance trade-off parameter. For the bound
on SG with biased gradient information, we rely on the proof
technique from (Frikha and Menozzi, 2012), and do the necessary
modifications to handle the bias in gradient estimates.

5.4 The presentation of the lower bound is based on the results in (Hu
et al., 2016).



6
Hessian estimation

Recall that a stochastic Newton algorithm would update as follows:

θn+1 = θn − an
(
Hn

)−1
∇̂f(θn), (6.1)

where ∇̂f(θn) and Hn denote the gradient and Hessian estimates,
respectively. The topic of gradient estimation was handled in Chapter 3,
while this chapter focuses on Hessian estimation. In the next chapter, we
shall perform a convergence analysis of (1.13), where we use zeroth-order
estimates of both the gradient and the Hessian.

The Hessian estimate Hn is usually arrived at by explicit averaging

of previously obtained estimates, i.e.,
n∑
k=1

Ĥk, with Ĥn denoting the

Hessian estimate formed using a certain number of function measure-
ments in iteration n of (6.1). Alternatively, one can employ stochastic
approximation with a more general stepsize to arrive at an average of
Ĥk, k = 1, . . . , n implicitly. The focus of this chapter is to form Ĥk,
using function measurements. For simplicity, we drop the dependence
on the iteration number k. The convergence analysis of (6.1) in the
next chapter would make the Hessian estimate iteration-dependent.

124
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Algorithm Hessian
Estimator Environment

θ, δ

Ĥ

f

Figure 6.1: The interaction of a second-order stochastic gradient algorithm with
an estimator that estimates the Hessian at the input point θ, with perturbation
constant δ.

6.1 The estimation problem

As illustrated in Figure 6.1, the second-order algorithm would ask for
Hessian estimates (in addition to gradient estimates — a topic that is
already covered) in each update iteration. For simplicity, henceforth we
drop the dependence on the iteration number n of (1.13) and instead,
consider the problem of obtaining an estimate Ĥ of the Hessian at a
given point θ ∈ Rd, using multiple function measurements.

We first describe the classic FDSA scheme, which was proposed
by Fabian, 1971. This scheme requires O(N2) function observations
to estimate the Hessian. Subsequently, we introduce the simultaneous
perturbation trick to Hessian estimation and describe the following well-
known variants that require a constant number of function observations,
irrespective of the dimension d:

SPSA: We consider two variants (both balanced) that require four and
three function measurements, respectively;

SF: We present two variants that require one and two function mea-
surements, respectively. Both methods are based on the idea of
Gaussian smoothed functional, which was considered earlier in
Chapter 3 in the context of gradient estimation;

RDSA: A scheme that requires function measurements.
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6.2 FDSA for Hessian estimation

Consider a scalar variable θ. A finite difference approximation of the
first derivative for this simple case of a scalar parameter θ is:

df(θ)
dθ

≈
(
f(θ + δ)− f(θ − δ)

2δ

)
. (6.2)

Assuming the objective is smooth, and employing Taylor series expan-
sions of f(θ + δ) and f(θ − δ) around θ, we obtain:

f(θ ± δ) = f(θ)± δ df(θ)
dθ

+ δ2

2
d2f(θ)
dθ2 +O(δ3),

Thus, f(θ + δ)− f(θ − δ)
2δ = df(θ)

dθ
+O(δ2).

From the above, it is easy to see that the estimate (6.2) converges to
the true gradient df(θ)

dθ
in the limit as δ → 0.

This idea can be extended to estimate the second derivative by
applying a finite difference approximation to the derivative in (6.2) as
follows:
d2f(θ)
dθ2 ≈(
f(θ + δ + δ)− f(θ + δ − δ)

2δ

)
−
(
f(θ − δ + δ)− f(θ − δ − δ)

2δ

)
2δ

(6.3)

As before, using Taylor series expansions, it can shown that the RHS
above is a good approximation to the second derivative.

For the case of a vector parameter, one needs to perturb each co-
ordinate separately, leading to the following scheme for estimating the
Hessian ∇2f(θ): For any i, j ∈ {1, . . . , d},

∇2
ijf(θ) ≈ 1

4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)

− (f(θ − δei + δej)− f(θ − δei − δej))
)
. (6.4)

Such an approach requires 4N2 number of function measurements
to form the Hessian estimate. In the next section, we overcome this
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limitation by employing the simultaneous perturbation trick. Before
that, we extend the estimate in (6.4) to the noisy case as follows: Suppose
we have the following function measurements: For any i, j ∈ {1, . . . , d},

y1 = f(θ + δei + δej) + ξ1ij , y2 = f(θ + δei − δej) + ξ2ij , (6.5)
y3 = f(θ − δei + δej) + ξ3ij and y4 = f(θ − δei − δej) + ξ4ij . (6.6)

Using these function measurements, we form the Hessian estimate Ĥ
as follows:

Ĥij =
(
y1 − y2 − y3 + y4

4δ2

)
, ∀i, j (6.7)

We analyze the bias of the estimator defined above, under the following
assumptions:

A6.1. f is four-times differentiable1 with
∣∣∣∇4

i1,i2,i3,i4f(θ)
∣∣∣ < ∞, for

i1, i2, i3, i4 = 1, . . . , N and for all θ ∈ Rd.

A6.2. E [ξkij | θ] = 0 for k = 1, . . . , 4, i, j = 1, . . . , N .

The four-times continuously differentiability assumption on f in A6.1
allows Taylor series expansions, while A6.2 ensures the noise factors
ξi, i = 1, . . . , 4 vanish in the bias analysis. Under A6.1–A6.2, we have

E[Ĥij | θ] = 1
4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)

− (f(θ − δei + δej)− f(θ − δei − δej))
)

= ∇2
ijf(θ) +O(δ2).

The final equality can be arrived at using Taylor series expansions
followed by straightforward simplifications.

1Here ∇4f(θ) = ∂4f(θ)
∂θT∂θT∂θT∂θT

denotes the fourth derivative of f at θ and
∇4
i1,i2,i3,i4f(θ) denotes the (i1, i2, i3, i4)th entry of∇4f(θ), for i1, i2, i3, i4 = 1, . . . , N .
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6.3 SPSA for Hessian estimation

6.3.1 Four measurements Hessian estimator

In this section, we present the Hessian estimation scheme from (Spall,
2000). Let ∆ be a d-vector of symmetric, ±1-valued Bernoulli r.v.s, as
in the case of first-order SPSA (see Section 3.2). Suppose G(θ± δ∆) are
approximations to the gradient of f at θ ± δ∆. Then, the simultaneous
perturbation trick suggests the following Hessian estimate:

Ĥ = ∆−1G(θ + δ∆)−G(θ − δ∆)
4δ , (6.8)

where ∆−1 = (1/∆1, . . . , 1/∆N )T .
What remains to be specified is the specification of the gradient

estimates for input parameters θ + δ∆. For forming this estimate, we
use the simultaneous perturbation trick again, i.e.,

G(θ ± δ∆) = ∆̂−1 y(θ ± δ∆ + δ∆̂)− y(θ ± δ∆)
δ

,

where ∆̂ are another independent set of perturbations having same
distribution as ∆,

y(θ + δ∆ + δ∆̂) = f(θ + δ∆ + δ∆̂) + ξ1,

y(θ − δ∆ + δ∆̂) = f(θ − δ∆ + δ∆̂) + ξ2,

y(θ + δ∆) = f(θ + δ∆) + ξ3, and y(θ − δ∆) = f(θ − δ∆) + ξ4.

For the bias bound of the Hessian estimator defined in (6.8), we
require the following assumption on the noise elements.

A6.3. Given θ, {ξk, k = 1, . . . , 4} is independent of ∆. In addition,
E [ξk| θ] = 0 for k = 1, . . . , 4.

Lemma 6.1. Assume A6.1 and A6.3. Then, for any i, j ∈ {1, . . . , N},
we have ∣∣∣E [Ĥij

∣∣∣ θ]−∇2
i,jf(θ)

∣∣∣ = O(δ2),

where Ĥij and ∇2
ijf(·) denote the (i, j)th entry in the Hessian estimate

Ĥ and the true Hessian ∇2f(·), respectively.
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Proof. Using A6.2, we have

E
[
Ĥij

∣∣∣ θ] = E

[ [
f(θ + δ∆ + δ∆̂)− f(θ + δ∆)

2δ∆iδ∆̂j

]

−
[
f(θ − δ∆ + δ∆̂)− f(θ − δ∆)

2δ∆iδ∆̂j

]∣∣∣∣∣ θ
]
. (6.9)

Since f satisfies A6.1, we employ Taylor series expansions to obtain

f(θ ± δ∆ + δ∆̂) = f(θ ± δ∆) + δ
N∑
k=1

∆̂k∇kf(θ ± δ∆)

+ 1
2δ

2
N∑
k=1

N∑
l=1

∆̂k∇2
k,lf(θ ± δ∆)∆̂l +O(δ3).

Using (6.9) and the expansion above, we have

E
[
Ĥij

∣∣∣ θ] =

E

[
∇if(θ + δ∆)−∇if(θ − δ∆)

2δ∆j
+
∑
k 6=i

∆̂k

∆̂i

∇kf(θ + δ∆)−∇kf(θ − δ∆)
2δ∆j

+ δ
N∑
k=1

N∑
l=1

∆̂k(∇2
k,lf(θ + δ∆)−∇2

k,lf(θ − δ∆))∆̂l

4δ∆j∆̂i

+O(δ2) | θ
]
(6.10)

Expanding ∇if(θ ± δ∆) around ∇if(θ), we obtain

∇if(θ + δ∆)−∇if(θ − δ∆)
2δ∆j

= ∇2
i,jf(θ) +

∑
l 6=j

∆l

∆j
∇2
i,jf(θ) +O(δ3).

The second term on the RHS of (6.10) can be simplified in an analogous
fashion.

The third term on the RHS of of (6.10) can be simplified as follows:

δ
N∑
k=1

N∑
l=1

∆̂k(∇2
k,lf(θ + δ∆)−∇2

k,lf(θ − δ∆))∆̂l

4δ∆j∆̂i

= δ
N∑
k=1

N∑
l=1

N∑
m=1

∆̂k∆(m)∇3
k,l,mf(θ)∆̂l

2∆̂i∆j

+O(δ2).
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In the above, we used the following equality:

∇2
k,lf(θ + δ∆)−∇2

k,lf(θ − δ∆)
4δ∆j

=
N∑
m=1

∆(m)∇3
k,l,mf(θ)

2∆j
+O(δ2)

Using the simplified forms for each of the terms on the RHS of (6.10),
we have

E
[
Ĥij

∣∣∣ θ] = E

[
∇2
i,jf(θ) +

∑
l 6=i

∆l

∆i
∇2
i,lf(θ) +

∑
k 6=j

∆̂k

∆̂j

∇2
k,if(θ)

+
∑
k 6=i

∑
l 6=i

∆̂k

∆̂i

∆l

∆j
∇2
k,lf(θ) + δ

N∑
k,l,m=1

∆̂k∆(m)∇3
k,l,mf(θ)∆̂l

2∆̂i∆j

+O(δ2) | θ
]

= ∇2
i,jf(θ) +

∑
l 6=j

E

[
∆l

∆j
| θ
]
∇2
i,lf(θ) +

∑
k 6=i

E

[
∆̂k

∆̂i

| θ
]
∇2
k,if(θ)

+
∑
k 6=i

∑
l 6=j

E

[
∆̂k

∆̂i

∆l

∆j

∣∣∣∣∣ θ
]
∇2
k,lf(θ)

+ δ
N∑
k=1

N∑
l=1

N∑
m=1

E

[
∆̂k∆̂l∆(m)

2∆̂j∆i

∣∣∣∣∣ θ
]
∇3
k,l,mf(θ) +O(δ2).

Since ∆, ∆̂ are independent vectors of zero mean, symmetric Bernoulli
r.v.s, each term involving an expectation on the RHS above vanishes.
The claim follows.

6.3.2 Three measurements Hessian estimator

We now present a variation to 2SPSA, where the number of function
measurements requires for forming the Hessian estimate is brought down
to three. This scheme was proposed by Bhatnagar and Prashanth, 2015b,
and can be motivated by using the following balanced approximation
to the second derivative in the case of a scalar parameter:

d2f(θ)
dθ2 ≈

(
f(θ + δ)− f(θ)

δ

)
−
(
f(θ)− f(θ − δ)

δ

)
δ

=
(
f(θ + δ) + f(θ − δ)− 2f(θ)

δ2

)
. (6.11)
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The extension to a vector parameter is performed by using the following
function measurements:

y+ = f(θ+δ∆+δ∆̂)+ξ+, y− = f(θ−δ∆−δ∆̂)+ξ−, and y = f(θ)+ξ.

Using y± and y, together with two random perturbation vectors ∆ and
∆̂ (as in the previous section), the Hessian estimate Ĥ is formed as
follows:

Ĥij =
(
y+ + y− − 2y
δ2∆i∆̂j

)
, ∀i, j. (6.12)

For the noise elements to vanish in the bias analysis of the estimator
above, we make the following assumption.

A6.4. Given θ, {ξ, ξ+, ξ−} is independent of ∆, ∆̂. In addition,
E
[
ξ+ + ξ− − 2ξ

∣∣∣ θ] = 0.

Lemma 6.2. Assume A6.1 and A6.4. Then, for any i, j ∈ {1, . . . , N},
we have ∣∣∣E [Ĥij | θ

]
−∇2

i,jf(θ)
∣∣∣ = O(δ2) a.s.

Proof. We first consider the case when i, j ∈ {1, . . . , N}, i 6= j. Let

f̂(θ,∆, ∆̂) = f(θ + δ∆ + δ∆̂) + f(θ − δ∆− δ∆̂)− 2f(θ).

Then, using suitable Taylor’s expansions, we obtain

f̂(θ,∆, ∆̂)
δ24i4̂j

= (∆ + ∆̂)T∇2f(θ)(∆ + ∆̂)
4i4̂j

+O(δ2)

=
N∑
l=1

N∑
m=1

∆l∇2
lmf(θ)∆m

∆i∆̂j

+ 2
N∑
l=1

N∑
m=1

∆l∇2
lmf(θ)∆̂m

∆i∆̂j

+
N∑
l=1

N∑
m=1

∆̂l∇2
lmf(θ)∆̂m

∆i∆̂j

+O(δ2).

It is now easy to see that

E

[
N∑
l=1

N∑
m=1

∆l∇2
lmf(θ)∆m

∆i∆̂j

| θ
]

= E

[
N∑
l=1

N∑
m=1

∆̂l∇2
lmf(θ)∆̂m

∆i∆̂j

| θ
]

= 0 a.s.



132 Hessian estimation

and E
[
N∑
l=1

N∑
m=1

∆l∇2
lmf(θ)∆̂m

∆i∆̂j

| θ
]

= ∇2
i,jf(θ) a.s.

Thus,

E
[
f̂(θ,∆, ∆̂)
δ24i4̂j

| θ
]

= 2∇2
i,jf(θ) +O(δ2).

The case when i = j, i, j ∈ {1, . . . , N} follows in a similar manner. The
claim follows after observing that

E
[
Ĥij

∣∣∣ θ] = E
[
f̂(θ,∆, ∆̂)
δ24i4̂j

| θ
]
.

The equality above holds since the noise elements ξ±, ξ satisfy A6.9.

6.4 Gaussian smoothed functional for Hessian estimation

We now present a couple of Hessian estimation procedures from (Bhat-
nagar, 2007) that are based on Gaussian smoothing.

6.4.1 One-Measurement SF (1SF) Estimator

We begin with a one-measurement Hessian estimator D2
δ,1f(θ) that

uses one function measurement with the same perturbed parameter as
the one-measurement gradient SF procedure. We shall later provide a
two-sided Hessian estimator as well that estimates both the Hessian
and the gradient using two function measurements.

A6.5. The function f : Rd → R is two-times continuously differentiable
with a bounded third derivative.

As with gradient SF, we begin by taking a convolution of the objec-
tive function Hessian with a multi-variate Gaussian density functional.
Through a double integration by parts argument, the same is seen to be
a convolution of the objective function with a scaled Gaussian density
functional. Let

D2
δ,1f(θ) =

∫
Gδ(θ −∆′)∇2

∆′f(∆′)d∆′, (6.13)
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denote the convolution of the Hessian ∇2
∆′f(∆′) with the d-dimensional

multivariate normal p.d.f.

Gδ(θ −∆′) = 1
(2π)d/2δd

exp
(
−1

2

d∑
i=1

(θi −∆′i)2

δ2

)
,

where θ,∆′ ∈ Rd.

A6.6. Given θ, ξ+ is independent of ∆. Further, E
[
ξ+
∣∣∣ θ] = 0.

Let y+ = f(θ + δ∆) + ξ+ denote a noisy function measurement,
where ξ+ denotes the measurement noise. The 1SF Hessian estimator
is then the following:

Ĥ(θ) = (∆∆T − I)
δ2 y+. (6.14)

The reason for having this form for the Hessian estimator will become
evident in what follows.

Proposition 6.1 (Stein’s Lemma for Hessian Estimation).

D2
δ,1f(θ) = 1

δ2E
[
(∆∆T − I)f(θ + δ∆)

]
,

where the expectation above is taken w.r.t. the d-dimensional multi-
variate normal p.d.f. G(∆) corresponding to the random vector of d
independent N(0, 1)–distributed random variables.

Proof. Upon integrating by parts, one obtains

D2
δ,1f(θ) =

∫
∇θGδ(θ −∆′)∇∆′f(∆′)d∆′ (6.15)

Now
∇θGδ(θ −∆′) = −(θ −∆′)

δ2 Gδ(θ −∆′).

Upon substituting the above in (6.15) and performing integration-by-
parts, we obtain

D2
δ,1f(θ) = − 1

δ2

∫
∇θ((θ −∆′)Gδ(θ −∆′))f(∆′)d∆′.
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A change of variables then gives

D2
δ,1f(θ) = − 1

δ2

∫
∇∆′(∆′Gδ(∆′))f(θ −∆′)d∆′. (6.16)

We now evaluate ∇∆′(∆′Gδ(∆′)) = ∇∆′((∆′1Gδ(∆′), . . ., ∆′NGδ(∆′)).
Note that

∇∆′(∆′Gδ(∆′)) =
∇∆′1(∆′1Gδ(∆′)) ∇∆′2(∆′1Gδ(∆′)) · · · ∇∆′

d
(∆′1Gδ(∆′))

∇∆′1(∆′2Gδ(∆′)) ∇∆′2(∆′2Gδ(∆′)) · · · ∇∆′
d
(∆′2Gδ(∆′))

· · · · · · · · · · · ·
∇∆′1(∆′dGδ(∆′)) ∇∆′2(∆′dGδ(∆′)) · · · ∇∆′

d
(∆′dGδ(∆′))



=



(
1− ∆′21

δ2

)
−∆′1∆′2

δ2 · · · −∆′1∆′d
δ2

−∆′2∆′1
δ2

(
1− ∆′22

δ2

)
· · · −∆′2∆′d

δ2

· · · · · · · · · · · ·

−∆′d∆′1
δ2 −∆′d∆′2

δ2 · · ·
(

1− ∆′2d
δ2

)


Gδ(∆′)

=
(
I − ∆′∆′T

δ2

)
Gδ(∆′)

4= Ȟ(∆′)Gδ(∆′).

From (6.16), we have

D2
δ,1f(θ) = − 1

δ2

∫
Ȟ(∆′)Gδ(∆′)f(θ −∆′)d∆′.

Let ∆ 4= ∆′/δ. Then d∆′ = δdd∆. From (6.16), we then obtain

D2
δ,1f(θ) = 1

δ2

∫
Ī(∆)

(
1

(2π)d/2
exp(−1

2

d∑
i=1

(∆i)2)
)
f(θ − δ∆)d∆,

(6.17)
where

Ī(∆) 4= (∆∆T − I). (6.18)
Note that ∆i, i = 1, . . . , d are independent N(0, 1) distributed random
variables. Now since ∆ and −∆ have the same distribution, one obtains

D2
δ,1f(θ) = 1

δ2E
[
(∆∆T − I)f(θ + δ∆)

]
.

The claim follows.



6.4. Gaussian smoothed functional for Hessian estimation 135

Proposition 6.2. Under Assumptions A6.5-A6.6, we have that

‖ E[Ĥ(θ)|θ]−∇2f(θ) ‖≤ O(δ)→ 0, as δ → 0.

Proof. From the definition of Ĥ(θ),

E[Ĥ(θ)|θ)] = 1
δ2E[Ī(∆)(f(θ + δ∆) + ξ+)|θ]

= D2
δ,1f(θ) + 1

δ2E[(I −∆∆T )ξ+|θ].

The second term on the RHS equals zero in the light of Assumption A6.6.
Now, from Proposition 6.1, we have that

D2
δ,1f(θ) = E

[ 1
δ2 Ī(∆)f(θ + δ∆) | θ

]
,

where ∆ = (∆1, . . . ,∆d)T is a vector of independent N(0, 1) random
variates and the expectation is taken w.r.t. the density of ∆. Using a
Taylor series expansion of f(θ + δ∆) around θ, one obtains

D2
δ,1f(θ) = E

[ 1
δ2 Ī(∆)(f(θ) + δ∆T∇f(θ)

+δ2

2 ∆T∇2f(θ)∆ + o(δ2) | θ
]

= 1
δ2E[Ī(∆)f(θ) | θ] + 1

δ
E[Ī(∆)∆T∇f(θ) | θ]

+1
2E[Ī(∆)∆T∇2f(θ)∆ | θ] +O(δ).

(6.19)

Now observe that E[Ī(∆)] = 0 (the matrix of all zero elements) with
E[H̄(∆)]. Hence the first term on the RHS of (6.19) equals zero. Now
consider the second term on the RHS of (6.19). Note that

E[Ī(∆)∆T∇f(θ) | θ] =

E


(∆2

1 − 1)∆T∇f(θ) ∆1∆2∆T∇f(θ) · · · ∆1∆N∆T∇f(θ)
∆2∆1∆T∇f(θ) (∆2

2 − 1)∆T∇f(θ) · · · ∆2∆N∆T∇f(θ)
· · · · · · · · · · · ·

∆N∆1∆T∇f(θ) ∆N∆2∆T∇f(θ) · · · (∆2
N − 1)∆T∇f(θ)

| θ

 .
(6.20)

One can verify that expectation of each term (conditioned on θ) within
the matrix above equals zero since E[∆i] = E[∆3

i ] = 0 and E[∆2
i ] = 1,
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∀i = 1, . . . , d. Also, ∆i is independent of ∆j for all i 6= j. Hence the
second term on the RHS of (6.19) equals zero as well. Consider now the
third term on the RHS of (6.19). Note that

1
2E[H̄(∆)∆T∇2f(θ)∆ | θ] =

1
2E



(∆2
1 − 1)

N∑
i,j=1
∇ijf(θ)∆i∆j · · · ∆1∆N

N∑
i,j=1
∇ijf(θ)∆i∆j

∆2∆1

N∑
i,j=1
∇ijf(θ)∆i∆j · · · ∆2∆N

N∑
i,j=1
∇ijf(θ)∆i∆j

· · · · · · · · ·

∆N∆1

N∑
i,j=1
∇ijf(θ)∆i∆j · · · (∆2

N − 1)
N∑

i,j=1
∇ijf(θ)∆i∆j

| θ


. (6.21)

Consider now the term corresponding to the first row and first column
above. Note that

E[(∆2
1 − 1)

N∑
i,j=1
∇ijf(θ)∆i∆j | θ]

= E[∆2
1

N∑
i,j=1
∇ijf(θ)∆i∆j | θ]− E[

N∑
i,j=1
∇ijf(θ)∆i∆j | θ].

(6.22)

The first term on the RHS of (6.22) equals

E[∆4
1∇11f(θ) | θ] + E[

∑
i=j,i6=1

∆2
1∆2

i∇ijf(θ) | θ]

+E[
∑

i 6=j,i6=1
∆2

1∆i∆j∇ijf(θ) | θ] = 3∇11f(θ) +
∑

i=j,i6=1
∇ijf(θ),

since E[∆4
1] = 3. The second term on RHS of (6.22) equals −

N∑
i=1
∇iif(θ).

Adding the above two terms, one obtains

E[(∆2
1 − 1)

N∑
i,j=1
∇ijf(θ)∆i∆j | θ] = 2∇11f(θ).

Consider now the term in the first row and second column of the matrix
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in (6.21). Note that

E[∆1∆2

N∑
i,j=1
∇ijf(θ)∆i∆j | θ]

= 2E[∆2
1∆2

2∇12f(θ) | θ] + E[
∑

(i,j) 6∈{(1,2),(2,1)}
∆1∆2∆i∆j∇ijf(θ) | θ]

= 2∇12f(θ).

Proceeding in a similar manner, it is easy to verify that the (i, j)th term
(i, j ∈ {1, . . . , N}) in the matrix in (6.21) equals 2∇ijf(θ). Substituting
the above back in (6.21), one obtains

1
2E[Ī(∆)∆T∇2f(θ)∆] = ∇2f(θ).

Thus, (6.19) now becomes

D2
δ,1f(θ) = ∇2f(θ) +O(δ).

The claim follows.

6.4.2 Two-measurement SF (2SF) estimator

We now present the balanced form of the Hessian estimator from Bhat-
nagar, 2007 that requires only two function measurements. Let

D2
δ,2f(θ) = E

[ 1
2δ2 Ī(∆)(f(θ + δ∆) + f(θ − δ∆)) | θ

]
.

We now present the balanced form of the Hessian estimator based
on two function measurements. Let y+ = f(θ + δ∆) + ξ+ and y− =
f(θ+ δ∆) + ξ−, respectively, where ξ+ and ξ− denote the measurement
noise in y+ and y−. The 2SF Hessian estimator is then the following:

Ĥ(θ) = (∆∆T − I)
2δ2 (y+ + y−). (6.23)

A6.7. The function f : Rd → R is three-times continuously differen-
tiable with a bounded fourth derivative.

A6.8. Given θ, ξ+ and ξ− are independent of ∆ and they are also
independent of each other. Further, E

[
ξ+
∣∣∣ θ] = E

[
ξ−
∣∣ θ] = 0.
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Proposition 6.3. Under Assumptions A6.7-A6.8, we have that

‖ E[Ĥ(θ)|θ]−∇2f(θ) ‖≤ O(δ2)→ 0 as δ → 0.

Proof. From (6.23), note that

E[Ĥ(θ)|θ)] = 1
2δ2E[Ī(∆)((f(θ + δ∆) + ξ+) + (f(θ − δ∆) + ξ−)|θ]

= D2
δ,2f(θ) + 1

2δ2E[(I −∆∆T )(ξ+ + ξ−)|θ].

The second term on the RHS equals zero in the light of Assumption A6.8.
We now consider the first term on the RHS aboive. Using Taylor

series expansions of f(θ + δ∆) and f(θ − δ∆) around θ, one obtains

f(θ+δ∆) = f(θ)+δ∆T∇f(θ)+ δ2

2 ∆T∇2f(θ)∆+ δ3

6 ∇
3f(θ)(∆⊗∆⊗∆)+O(δ4)

f(θ−δ∆) = f(θ)−δ∆T∇f(θ)+δ2

2 ∆T∇2f(θ)∆−δ
3

6 ∇
3f(θ)(∆⊗∆⊗∆)+O(δ4).

From the foregoing, one obtains

D2
δ,2f(θ) = E

[ 1
2δ2 Ī(∆)

(
2f(θ) + δ2∆T∇2f(θ)∆ +O(δ4)

)
| θ
]
.

It has been shown in the proof of Proposition 6.2 that E[Ī(∆)f(θ) |
θ] = 0 and 1

2E[Ī(∆)∆T∇2f(θ)∆ | θ] = ∇2J(θ), respectively. We thus
have

D2
δ,2f(θ) = ∇2f(θ) +O(δ2).

The claim follows.

6.5 RDSA for Hessian estimation

In this section, the random perturbations are chosen using an asymmet-
ric Bernoulli distribution. More precisely, we choose ∆i, i = 1, . . . , N ,
i.i.d. as follows:

∆i =


−1 w.p. (1 + ε)

(2 + ε) ,

1 + ε w.p. 1
(2 + ε) ,

(6.24)
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where ε > 0 is a constant that can be chosen to be arbitrarily small.
Note that, for any i = 1, . . . , N , E∆i = 0, E(∆i)2 = 1 + ε and E(∆i)4 =
(1 + ε)(1 + (1 + ε)3)

(2 + ε) . Henceforth, we will use τ to denote E(∆i)4.
Suppose we have the following function measurements:

y+ = f(θ + δ∆) + ξ+, y− = f(θ − δ∆) + ξ−, and y = f(θ) + ξ.

We would like to obtain an Hessian estimate Ĥ that is not too far
from the true Hessian ∇2f(θ). Suppose we use the three measurements,
together with a matrix M (to be specified later) to form Ĥ as follows:

Ĥ = M

(
y+ + y− − 2y

δ2

)
(6.25)

= M

[(
f(θ + δ∆) + f(θ − δ∆)− 2f(θ)

δ2

)
+
(
ξ+ + ξ− − 2ξ

δ2

)]

= M

(
∆T∇2f(θ)∆ +O(δ2) +

(
ξ+ + ξ− − 2ξ

δ2

))
. (6.26)

Taking expectations on both sides above, we observe that the last term
in (6.26) vanishes, while the first and second term remain. However,
we do not have the true Hessian in the first term and it would be nice
to recover ∇2f(θ) from this term via a suitable matrix M and the
following definition for M achieves this goal:

M =



1
κ

(
(∆1)2− (1 + ε)

)
· · · 1

2(1 + ε)2 ∆1∆d

1
2(1 + ε)2 ∆2∆1 · · · 1

2(1 + ε)2 ∆2∆d

· · · · · · · · ·
1

2(1 + ε)2 ∆d∆1 · · · 1
κ

(
(∆d)2 − (1 + ε)

)


, (6.27)

where κ = τ

(
1− (1 + ε)2

τ

)
and τ = E(∆i)4 = (1 + ε)(1 + (1 + ε)3)

(2 + ε) ,

for any i = 1, . . . , N .
While the definition of M above looks complicated, the motivation

behind such a definition can be seen through the following calculation
that established that the first term, i.e., M

(
∆T∇2f(θ)∆

)
in (6.26)

turns out to be the true Hessian evaluated at θ.
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As before, we make the following assumption to ensure noise elements
vanish in the analysis of the RDSA Hessian estimator (6.25).

A6.9. Given θ, {ξ, ξ+, ξ−} is independent of ∆. In addition,
E
[
ξ+ + ξ− − 2ξ

∣∣∣ θ] = 0.

Lemma 6.3. (Bias in Hessian estimate) Assume A6.1 and A6.9.
Then, Ĥ defined according to (6.27) satisfies the following bound for
any i, j = 1, . . . , N ,∣∣∣E [Ĥ(i, j)

∣∣∣ θ]−∇2
ijf(θ)

∣∣∣ = O(δ2). (6.28)

From the above lemma, it is evident that the bias in the Hessian
estimate above is of the same order as that of the estimators in the
previous sections.

Proof. By a Taylor’s series expansion, we obtain

f(θ ± δ∆) = f(θ)± δ∆T∇f(θ) + δ2

2 ∆T∇2f(θ)∆

± δ3

6 ∇
3f(θ)(∆⊗∆⊗∆) + δ4

24∇
4f(θ̃+)(∆⊗∆⊗∆⊗∆).

Hence,

f(θ + δ∆) + f(θ − δ∆)− 2f(θ)
δ2

=∆T∇2f(θ)∆ +O(δ2)

=
d∑
i=1

d∑
j=1

∆i∆j∇2
ijf(θ) +O(δ2)

=
d∑
i=1

(∆i)2∇2
iif(θ) + 2

d−1∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ) +O(δ2).

Now, taking the conditional expectation of the Hessian estimate Ĥ and
observing that E[ξ+ + ξ−− 2ξ | θ] = 0 by A6.9, we obtain the following:

E[Ĥ | θ] =E
[
M

(
d−1∑
i=1

(∆i)2∇2
iif(θ)
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+2
d∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ) +O(δ2)

∣∣∣∣∣∣ θ
 . (6.29)

Note that the O(δ2) term inside the conditional expectation above
remains O(δ2) even after the multiplication with M . We analyse the
diagonal and off-diagonal terms in the multiplication of the matrix M
with the scalar above, ignoring the O(δ2) term.

Diagonal terms in (6.29):

Recall that τ denotes the fourth moment E(∆i)4, for any i = 1, . . . , N .
Consider the lth diagonal term inside the conditional expectation in
(6.29):

1
τ(1− (1+ε)2

τ )
E
((

(∆l)2 − (1 + ε)
)( N∑

i=1
(∆i)2∇2

iif(θ)

+2
N−1∑
i=1

N∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ


= 1
τ(1− (1+ε)2

τ )
E
(

(∆l)2
N∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)

− (1 + ε)
τ(1− (1+ε)2

τ )
E
(

N∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)

(6.30)

From the distributions of ∆i,∆j and the fact that ∆i is independent of

∆j for i < j, it is easy to see that E

(dln)2
N−1∑
i=1

N∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ
 =

0 and E

N−1∑
i=1

N∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ
 = 0. Thus, the conditional expec-

tations of the second and fourth terms on the RHS of (6.30) are both
zero.

The first term on the RHS of (6.30) be simplified as follows:

1
τ(1− (1+ε)2

τ )
E
(

(∆l)2
N∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)
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= 1
τ(1− (1+ε)2

τ )
E
(

(∆l)4∇2
llf(θ) +

N∑
i=1,i 6=l

(∆l)2(∆i)2∇2
iif(θ)

)

= 1
(1− (1+ε)2

τ )

∇2
llf(θ) + (1 + ε)2

τ

N∑
i=1,i 6=l

∇2
iif(θ)

 . (6.31)

For the second equality above, we have used the fact that E[(∆l)4] = τ

and E[(∆l)2(∆i)2] = E[(∆l)2]E[(∆i)2] = (1 + ε)2, ∀l 6= i.
The second term in (6.30) with the conditional expectation and

without the negative sign can be simplified as follows:

(1 + ε)
τ(1− (1+ε)2

τ )
E
(

N∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)

= (1 + ε)
τ(1− (1+ε)2

τ )

N∑
i=1

E
[
(∆i)2

]
∇2
iif(θ)

= (1 + ε)2

τ(1− (1+ε)2

τ )

N∑
i=1
∇2
iif(θ). (6.32)

Combining (6.31) and (6.32), the correctness of the Hessian estimate
follows for the diagonal terms.

Off-diagonal terms in (6.29)

Consider the (k, l)th term in (6.29), with k < l. We obtain

1
2(1 + ε)2E

∆k∆l

 N∑
i=1

(∆i)2∇2
iif(θ) + 2

N−1∑
i=1

N∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ


= 1
2(1 + ε)2

N∑
i=1

E
(
∆k∆l(∆i)2

)
∇2
iif(θ)

+ 1
(1 + ε)2

N−1∑
i=1

N∑
j=i+1

E (∆k∆l∆i∆j)∇2
ijf(θ) (6.33)

=∇2
klf(θ).

Note that the first term on the RHS of (6.33) equals zero since k 6= l.
The claim follows.
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6.6 Summary

Property → # measurements Bias
Hessian estimate

↓

FDSA (6.7) 4N2 O(δ2)

SPSA (6.8) and 4
O(δ2)its variant (6.12) 3

SF (6.14) 1 O(δ)
and its variant (6.23) 2 O(δ2)

RDSA (6.25) 3 O(δ2)

6.7 Bibliographic remarks

In (Fabian, 1971), the author analyzes a finite differences Hessian
estimation scheme withO(N2) function measurements. In an importance
advance, the author in (Spall, 2000) brings the idea of simultaneous
perturbation for Hessian estimation, using random perturbations similar
to those employed in SPSA. The advantage with this scheme is the
drastic reduction in the number of function measurements to four,
irrespective of the dimension. Subsequent advances that we presented
in Sections 6.3.2, 6.5 are based on (Bhatnagar and Prashanth, 2015b)
and (Prashanth et al., 2017), respectively.

Gaussian smoothed functional — an idea explored in Chapter 3
for estimating gradients, can be extended to estimate the Hessian as
well. In Section 6.4.1 and 6.4.2, we presented two Gaussian SF schemes
for Hessian estimation, and these are adapted from (Bhatnagar, 2007).
Proposition 6.1 is extracted from the proof of the bias of 1SF estimation
in (Bhatnagar, 2007), and this result has also been separately shown in
later works, cf. (Erdogdu, 2016; Balasubramanian and Ghadimi, 2022).
These works provide the connection of the result in Proposition 6.1 to
the classic Stein’s identity, which includes a first as well as second-order
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variant, see (Stein, 1972; Stein, 1981) and also (Balasubramanian and
Ghadimi, 2022, Theorem 1.2). Proposition 6.1 is central to the analysis
of SF1 as well as SF2 estimators, in particular, to provide bounds of
O(δ) and O(δ2) on the bias of these estimators, respectively.



7
Asymptotic analysis of stochastic Newton

algorithms

To be updated.
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8
Applications to reinforcement learning

8.1 REINFORCE with an SPSA Gradient Estimate

8.1.1 The Basic Setting

By a Markov decision process, we mean a controlled stochastic process
{Xn} whose evolution is governed by an associated control-valued
sequence {Zn}. It is assumed that Xn, n ≥ 0 take values in a set S
called the state-space. Let A(s) denote the set of feasible actions in
state s ∈ S and A 4= ∪s∈SA(s) denote the set of all actions. When the
state is say s and a feasible action a is chosen, the next state seen is s′

with a probability p(s′|s, a) 4= P (Sn+1 = s′ | Sn = s,An = a), ∀n. We
assume these probabilities do not depend on n. Such a process satisfies
the controlled Markov property, i.e.,

P (Xn+1 = s′ | Xn, Zn, . . . , X0, Z0) = p(s′ | Xn, Zn) a.s.

By an admissible policy or simply a policy, we mean a sequence of
functions π = {µ0, µ1, µ2, . . .} with each µi : S → A, i ≥ 0, such that
µi(s) ∈ A(s), ∀s ∈ S. The policy π is a decision rule which specifies
that if at instant k, the state is i, then the action chosen under π would
be µk(i).

146
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A stationary policy π is one for which µk = µl
4= µ, ∀k, l = 0, 1, . . ..

In other words, under a stationary policy, the function that decides the
action-choice in a given state does not depend on time n. Many times,
instead of calling π = {µ, µ, µ, . . .} a stationary policy, we simply refer
to the function µ as the stationary policy.

Associated with any transition to a state s′ from a state s under
action a, is a ‘single-stage’ cost g(s, a, s′) where g : S × A × S → R
is called the cost function. The goal of the decision maker is to select
actions ak, k ≥ 0 in response to the system states sk, k ≥ 0 so as to
minimize a long-term cost objective. We assume here that the number
of states and actions is finite. In particular, we let 1, . . . , p denote the
set of non-terminal or regular states and t be the terminal state. Thus,
S = {1, 2, . . . , p, t} denotes the state space here.

In this chapter, we are concerned with the stochastic shortest path
problem, see Bertsekas, 2012, where under any policy there is a positive
probability of hitting the goal or terminal state in at most p steps
starting from any initial state, that would in turn signify that the
problem would terminate in a finite though random amount of time.

Under a given policy π, define

Vπ(s) = Eπ

[
T∑
k=0

g(sk, µk(sk), sk+1) | s0 = s

]
,

where 0 < T <∞ is a finite random time at which the process enters the
terminal state. Here Eπ[·] indicates that all actions are chosen according
to policy π depending on the system state. We assume that there is no
action that is feasible in the terminal state t and thus once the process
reaches t, it terminates.

Let Π denote the set of all admissible policies. The goal here is to
find the optimal value function V ∗(i), i ∈ S where

V ∗(i) = min
π∈Π

Vπ(i) = Vπ∗(i), i ∈ S.

Here π∗ denotes the optimal policy, i.e., the one that minimizes Vπ(i)
over all policies π. A related goal here would be to find the policy π∗.
It turns out that in these problems, there exist stationary policies that
are optimal. Thus, it is sufficient to search for an optimal policy within
the class of stationary policies.
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A stationary policy µ is called a proper policy if

p̂µ
4= max
s=1,...,p

P (Xp 6= t | X0 = s, µ) < 1.

In other words, regardless of the initial state i, there is a positive
probability of termination after at most p stages when using a proper
policy.

Assuming that all stationary policies are proper, the optimal value
function satisfies the Bellman equation

V ∗(s) = min
a∈A(s)

p∑
j=1

p(j | s, a)(g(s, a, j) + V ∗(j)), (8.1)

s = 1, . . . , p. It can be shown, see Bertsekas, 2012, that an optimal
stationary proper policy exists.

An admissible policy (and so also a stationary policy) can be ran-
domized as well. A randomized admissible policy or simply a random-
ized policy is a sequence of distributions ψ = {φ0, φ1, . . .} with each
φi : S → P (A). In other words, given a state s, a randomized policy
would provide a distribution φi(s) = (φi(s, a), a ∈ A(s)) for the action
to be chosen in the ith stage. A stationary randomized policy is one
for which φj = φk

4= φ, ∀j, k = 0, 1, . . .. In this case, we simply call φ to
be a stationary randomized policy. By the foregoing, since an optimal
stationary proper policy exists, an optimal stationary randomized policy
that is also proper would exist as well.

8.1.2 The Reinforcement Learning Problem

We consider now the case where we do not assume any knowledge
of the system model, i.e., the transition probabilities p(s′ | s, a), and
in their place, we assume that we have access to data (either real or
simulated). The data that is available is over trajectories of states,
actions, single-stage costs and next states until termination.

We assume that trajectories of states and actions are available either
as real data or from a simulation device. Let Gk denote the sum of
costs until termination on a trajectory starting from instant k. In other

words, Gk =
T−1∑
j=k

gk where gk ≡ g(sk, ak, sk+1). Note that if all actions
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are chosen according to a policy φ, then the value function (under φ)
would be

Vφ(s) = Eφ[Gk | Sk = s]. (8.2)

We consider here a class of stationary randomized policies that are
parameterized by a parameter θ = (θ1, . . . , θd)T ∈ C ⊂ Rd where C
is a compact and convex subset of Rd. We shall denote such a policy
φθ
4= (φθ(s), s ∈ S), where for any s ∈ S, φθ(s) = (φθ(s, a), a ∈ A(s)) is

a distribution over A(s) when θ is the given parameter. We make the
following assumption:

A8.1. All stationary randomized policies φθ parameterized by θ ∈ C
are proper.

The REINFORCE algorithm of Sutton and Barto, 2018 is a Monte-
Carlo procedure based on the policy gradient method. The original
algorithm uses a procedure for estimating the performance gradient
that is based on an interchange of the gradient and expectation operators.
We apply here a two-simulation but one-sided SPSA-based procedure
for estimating the performance gradient that does not require the
aforementioned interchange of operators. As discussed previously, this
procedure will however require two system simulations. We explain the
algorithm in more detail below.

Let Γ : Rd → C denote a projection operator that projects any x =
(x1, . . . , xd)T ∈ Rd to its nearest point in C. Thus, if x ∈ C, then Γ(x) ∈
C as well. For ease of exposition, let’s assume that C is a d-dimensional

rectangle having the form C =
d∏
i=1

[ai,min, ai,max], where −∞ < ai,min <

ai,max < ∞, ∀i = 1, . . . , d. A convenient way to identify Γ(x) is ac-
cording to Γ(x) = (Γ1(x1), . . . ,ΓN (xN ))T , where the individual oper-
ators Γi : R → R are specified by Γi(xi) = min(ai,max,max(ai,min, x)),
i = 1, . . . , d. Also, let C(C) denote the space of all continuous functions
from C to Rd.

Let θ(n) and Γ(θ(n) + δ∆(n)), n ≥ 0 be two parameter sequences
where θ(n) = (θ1(n), . . . , θd(n))T ∈ Rd, δ > 0 is a small constant and
∆(n) = (∆1(n), . . . ,∆d(n))T , n ≥ 0, and where ∆i(n), i = 1, . . . , d, n ≥
0 are independent random variables distributed according to ∆i(n) = ±1
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w.p. 1/2. The updates θ(n) of the parameter θ are obtained using an
algorithm that will be explained below. It is easy to see that Γ(θ(n) +
δ∆(n)) ∈ C,∀n. Moreover, θ(n) ∈ C,∀n from the algorithm below.

Algorithm (8.3) below is used to update the parameter θ ∈ C ⊂ Rd.
For a given n ≥ 0, let χn and χn+ respectively denote the state-
action trajectories χn = {sn0 , an0 , sn1 , an1 , . . . , snT−1, a

n
T−1, s

n
T } and χn+ =

{sn+
0 , an+

0 , sn+
1 , an+

1 , . . . , sn+
T+−1, a

n+
T+−1, s

n+
T+}, respectively, where χn is

governed by the parameter θ(n) and χn+ is governed by θ(n) + δ∆(n).
The instant T (resp. T+) denotes the termination instant in the tra-
jectory χn (resp. χn+). Note that the various actions in the trajectory
χn are chosen according to the policy φθ(n) (depending on the states
visited in the trajectory). Similarly, the actions in the trajectory χn+

are chosen according to the policy φΓ(θ(n)+δ∆(n)). The initial states in
the two trajectories are kept the same, i.e., sn = sn+, and sampled from
a given initial distribution ν = (ν(i), i ∈ S) over states.

Let Gn =
T−1∑
k=0

gnk and Gn+ =
T+−1∑
k=0

gn+
k denote the sums of costs until

termination on the two trajectories that are governed with parameters
θ(n) and θ(n) + δ∆(n), respectively, where gnk ≡ g(snk , ank , snk+1) and
gn+
k ≡ g(sn+

k , an+
k , sn+

k+1).
The update rule that we consider here is the following: For n ≥

0, i = 1, . . . , d,

θi(n+ 1) = Γi
(
θi(n)− a(n)

(
Gn+ −Gn

δ∆i(n)

))
. (8.3)

We assume here that {a(n)} satisfy the following assumption:

A8.2. The step-size sequence {a(n)} satisfies a(n) > 0, ∀n. Further,∑
n

a(n) =∞,
∑
n

a(n)2 <∞.

As soon as a parameter update is available, two trajectories – gov-
erned by the nominal and perturbed parameters respectively are gener-
ated with the initial state in the perturbed trajectory the same as that
in the nominal trajectory and with the initial state sampled according
to a given distribution ν.
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8.1.3 Convergence Analysis

We begin by rewriting the algorithm (8.3) as follows:

θi(n+ 1) = Γi
(
θi(n)− a(n)E

[
Gn+ −Gn

δ∆i(n) | Fn

]
+M i

n+1

)
, (8.4)

where

M i
n+1 = Gn+ −Gn

δ∆i(n) − E
[
Gn+ −Gn

δ∆i(n) | Fn

]
.

Here, we let Fn
4= σ(θ(m),m ≤ n,∆(m), χm, χm+,m < n), n ≥ 1

be a sequence of increasing sigma fields and with F0 = σ(θ(0)). Let
Mn = (M1

n, . . . ,M
d
n)T , n ≥ 0. Here we let ‖ · ‖ denote the Euclidean

norm.

Lemma 8.1. (Mn,Fn), n ≥ 0 is a martingale difference sequence.

Proof. Notice that

Mn = G(n−1)+ −G(n−1)

δ∆i(n− 1) − E
[
G(n−1)+ −G(n−1)

δ∆i(n) | Fn−1

]
.

The first term on the RHS above is clearly measurable Fn while the
second term is measurable Fn−1 and hence measurable Fn as well.
Further, from Assumption A8.1, each Mn is integrable. Finally, it is
easy to verify that

E[Mn+1 | Fn] = 0.

The claim follows.

In the following, for simplicity, we denote Vφθ(s) as Vθ(s) itself for
any θ ∈ C. If φθ is a twice continuously differentiable function of θ,
it can be shown that Vθ(s) is also a twice continuously differentiable
function of θ for any state s.

Proposition 8.1. We have

E

[
Gn+ −Gn

δ∆i(n) | Fn

]
=
∑
s∈S

ν(s)∇iVθ(n)(s) + o(δ) a.s.
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Proof. Note that

E

[
Gn+ −Gn

δ∆i(n) | Fn

]
= E

[
E

[
Gn+ −Gn

δ∆i(n) | Gn

]
| Fn

]
,

where Gn
4= σ(θ(m),∆(m),m ≤ n, χm, χm+,m < n), n ≥ 1 be a se-

quence of increasing sigma fields with G0 = σ(θ(0),∆(0)). It is clear
that Fn ⊂ Gn, ∀n ≥ 0. Now,

E

[
Gn+ −Gn

δ∆i(n) | Gn

]
= 1
δ∆i(n)

(
E[Gn+ | Gn]− E[Gn | Gn]

)
.

Let sn0 = sn+
0 = s denote the initial state in both the trajectories χn

and χn+, respectively. Recall that the initial state s is chosen randomly
from the distribution ν. Thus,

E[Gn | Gn] =
∑
s

ν(s)E[Gn | sn0 = s, φθ(n)] =
∑
s

ν(s)Vθ(n)(s).

Similarly,

E[Gn+ | Gn] =
∑
s

ν(s)E[Gn+ | sn+
0 = s, φθ(n)+δ∆(n)] =

∑
s

ν(s)Vθ(n)+δ∆(n)(s).

Thus,

E

[
Gn+ −Gn

δ∆i(n) | Gn

]
=
∑
s

ν(s)
(
Vθ(n)+δ∆(n)(s)− Vθ(n)(s)

δ∆i(n)

)
a.s.

Thus,

E

[
Gn+ −Gn

δ∆i(n) | Fn

]
=
∑
s

ν(s)E
[
Vθ(n)+δ∆(n)(s)− Vθ(n)(s)

δ∆i(n) | Fn

]
.

Using a Taylor’s expansion of Vθ(n)+δ∆(n)(s) around θ(n) gives us

Vθ(n)+δ∆(n)(sn) = Vθ(n)(sn) + δ∆(n)T∇Vθ(n)(sn)

+δ2

2 ∆(n)T∇2Vθ(n)(sn)∆(n) + o(δ2).

Thus,
Vθ(n)+δ∆(n)(sn)− Vθ(n)(sn)

δ∆i(n) = ∇iVθ(n)(sn) +
∑
k 6=i

∆k(n)
∆i(n)∇kVθ(n)(sn)
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+δ

2

d∑
j,k=1

∆j(n)∇2
j,kVθ(n)(sn)∆k(n)

∆i(n) + o(δ). (8.5)

Now,

E

[(
Vθ(n)+δ∆(n)(sn)− Vθ(n)(sn)

δ∆i(n)

)
| Fn

]
= ∇iVθ(n)(sn) + o(δ). (8.6)

This follows from the following two observations:

1. The second term on the RHS of (8.5) gives us

E

∑
k 6=i

∆k(n)
∆i(n)∇kVθ(n)(sn) | Fn

 = E

∑
k 6=i

∆k(n)
∆i(n)

∇kVθ(n)(sn) = 0,

from the properties of the sequence ∆l(n), l = 1, . . . , d.

2. The third term on the RHS of (8.5) gives us

δ

2E

 d∑
j,k=1

∆j(n)∇2
j,kVθ(n)∆k(n)
∆i(n) | Fn


= δ

2

d∑
j,k=1

E

[∆j(n)∆k(n)
∆i(n)

]
∇2
j,kVθ(n)(sn) = 0.

This can be seen by analysing all the cases in the summation: (i)
j 6= k 6= i, (ii) j 6= k = i, (iii) j = i 6= k, (iv) j = k 6= i, and (v)
j = k = i, respectively, using again the properties of the sequence
∆l(n), l = 1, . . . , d.

The claim follows.

In the light of (8.6), we can rewrite (8.3) as follows:

θ(n+ 1) = Γ(θ(n)− a(n)(
∑
s

∇Vθ(n)(s) + η(n) + β(n))), (8.7)

where η(n) = Mn+1 =
(
G+
n −Gn
δ∆i(n)

)
− E

[(
G+
n −Gn
δ∆i(n)

)
| Fn

]
and β(n) =

(β1(n), . . . , βd(n)) with βi(n) = E

[(
G+
n −Gn
δ∆i(n)

)
| Fn

]
−
∑
s

ν(s)∇iVθ(n)(s).
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From Proposition 8.1, it can be seen that β(n) = o(δ). It is now easy to
see that (8.7) has the same form as (4.2).

Lemma 8.2. The function ∇vθ(s) is Lipschitz continuous in θ. Further,
∃ a constant K1 > 0 such that ‖ ∇vθ(s) ‖≤ K1(1+ ‖ θ ‖).

Proof. It can be shown (see for instance Chapter 13 of Sutton and
Barto, 2018 that vθ(s) is differentiable in θ and satisfies

∇vθ(s) =
∑
y∈S

∞∑
l=0

P kθ (s, y)
∑

a∈A(y)
∇φθ(a | y)qθ(y, a),

where P kθ (s, y) is the probability of going from state s to state y in k
steps under policy φθ and qθ(y, a) = Eθ[Gn | Sn = y,An = a] is the
value of the state-action tuple (y, a) when actions in states subsequent
to state y follow the policy φθ. It can also be shown as in Theorem 3
of Furmston et al., 2016 that ∇2vθ(s) exists and is continuous. Since
θ takes values in C, a compact set, it follows that ∇2vθ(s) is bounded
and thus ∇vθ(s) is Lipschitz continuous.

Finally, let Ls1 denote the Lipschitz constant for the function ∇vθ(s).
Then, for a given θ0 ∈ C,

‖ ∇vθ(s) ‖ − ‖ ∇vθ0(s) ‖≤‖ ∇vθ(s)−∇vθ0(s) ‖

≤ Ls1 ‖ θ − θ0 ‖

≤ Ls1 ‖ θ ‖ +Ls1 ‖ θ0 ‖,

where Ls1 > 0 is the Lipschitz constant of ∇vθ(s). Thus,

‖ ∇vθ(s) ‖≤‖ ∇vθ0(s) ‖ +Ls1 ‖ θ0 ‖ +Ls1 ‖ θ ‖ .

Let Ks
4=‖ ∇vθ0(s) ‖ +Ls1 ‖ θ0 ‖. Let K1

4= max(Ks, L
s
1, s ∈ S). Since

|S| <∞, K1 <∞. Thus, ‖ ∇vθ(s) ‖≤ K1(1+ ‖ θ ‖).

Lemma 8.3. The martingale sequence (Mn,Fn), n ≥ 0) satisfies

E[‖Mn+1 ‖2| Fn] ≤ L̂(1+ ‖ θ(n) ‖2),

for some constant L̂ > 0.
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Proof. Note that

‖Mn+1 ‖2=
d∑
i=1

(M i
n+1)2

= (Gn+ −Gn)2

δ2 + 1
δ2

(
E

[
Gn+ −Gn

∆i(n) | Fn

])2

−2G
n+ −Gn

δ∆i(n) E

[
Gn+ −Gn

δ∆i(n) | Fn

]
.

Thus,

E[‖Mn+1 ‖2| Fn] = E

[
(Gn+ −Gn)2

δ2 | Fn

]
−
(
E

[
Gn+ −Gn

δ∆i(n) | Fn

])2

.

It now follows from Assumption A8.1 and the fact that all single-stage
costs are bounded, that E[‖ Mn+1 ‖2| Fn] ≤ Ǩ almost surely. In fact
from Proposition 8.1 and Lemma 8.2, it follows that(

E

[
Gn+ −Gn

δ∆i(n) | Fn

])2

=
(∑
s∈S

ν(s)∇iVθ(n)(s)
)2

+ o(δ) ≤ Kδ,

for some Kδ <∞. It will thus follow that

E[‖Mn+1 ‖2| Fn] ≤ Ǩ(1+ ‖ θ(n) ‖2 .

Define now a sequence Zn, n ≥ 0 according to

Zn =
n−1∑
m=0

a(m)Mm+1,

n ≥ 1 with Z0 = 0.

Lemma 8.4. (Zn,Fn), n ≥ 0 is an almost surely convergent martingale
sequence.

Proof. It is easy to see that Zn is Fn-measurable ∀n. Further, it is inte-
grable for each n and moreover E[Zn+1 | Fn] = Zn almost surely since
(Mn+1,Fn), n ≥ 0 is a martingale difference sequence by Lemma 8.1.
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It is also square integrable from Lemma 8.3. The quadratic variation
process of this martingale will be convergent almost surely if

∞∑
n=0

E[‖ Zn+1 − Zn ‖2| Fn] <∞ a.s.

Note that

E[‖ Zn+1 − Zn ‖2| Fn] = a(n)2E[‖Mn+1 ‖2| Fn].

Thus,
∞∑
n=0

E[‖ Zn+1 − Zn ‖2| Fn] =
∞∑
n=0

a(n)2E[‖Mn+1 ‖2| Fn]

≤ Ǩ
∞∑
n=0

a(n)2(1+ ‖ θ(n) ‖2),

by Lemma 8.3. The claim now follows from Assumption A8.2 and the
fact that θ(n) ∈ C,∀n, a compact set. Now (ZnFn), n ≥ 0 can be seen
to be convergent from the martingale convergence theorem for square
integrable martingales.

Consider now the following ODE:

θ̇(t) = Γ̄(−
∑
s

ν(s)∇Vθ(s)). (8.8)

where Γ̄ : C(C)→ C(Rd) is as defined in (2.22).
Let H 4= {θ|Γ̄(−

∑
s

ν(s)∇Vθ(s))} denote the set of asymptotically

stable attractors of (8.8). Let Hε 4= N ε(H) ∩ C where N ε(H) = {θ |
‖ θ − θ0 ‖< ε, θ0 ∈ H}.

We now have the following result:

Theorem 8.5. Given ε > 0, ∃δ0 > 0 such that ∀δ ∈ [0, δ0), the stochastic
iterates θ(n) governed by (8.3) converges with probability one to Hε.

Proof. We shall proceed by verifying Assumptions A2.9-A2.12. Note that
Assumption A2.9 has been shown in Lemma 8.2. Assumption A2.10 is an
assumption on the step-size sequence {a(n)} that has also been made for
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the iterates (8.3). Now from Lemma 8.2, it follows that
∑
s

ν(s)∇vθ(s)

is uniformly bounded since θ ∈ C, a compact set. Assumption A2.11
is now verified from Proposition 8.1. Assumption A2.12 is now easy to
see as a consequence of Lemma 8.4. Now note that for the ODE (8.8),
F (θ) =

∑
s

ν(s)Vθ(s) serves as an associated Lyapunov function and in

fact

∇F (θ)T Γ̄(−
∑
s

ν(s)∇Vθ(s)) = (
∑
s

ν(s)∇θVθ(s))T Γ̄(−
∑
s

ν(s)∇Vθ(s))

≤ 0.

For θ ∈ Co (the interior of C), it is easy to see that Γ̄(
∑
s

ν(s)∇Vθ(s))

=
∑
s

ν(s)∇Vθ(s), and

∇F (θ)T Γ̄(−
∑
s

ν(s)∇Vθ(s)) < 0 if θ ∈ Hc ∩ C

= 0 o.w.

For θ ∈ δC (the boundary of C), there can be spurious attractors on
the boundary of C, see Kushner and Yin, 2003, that are also contained
in H. The claim now follows from Theorem ??.

8.2 Cubic-regularized policy Newton algorithm

To be done.

8.3 SPSA for risk-constrained MDPs
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A
ODEs and differential inclusions

A.1 Ordinary differential equations

In the following, we first discuss various forms of limit sets of ODEs
before describing results on convergence of the stochastic approximation
recursion (2.1) using the ODE (2.2).

A.1.1 Limit sets

We present here first some basic definitions on the limit sets of ODEs.
We shall then present a couple of results, in particular, Theorem 2.3
on the convergence of an underlying stochastic approximation scheme.
This result from Benaïm, 1996 is a generalization of the Kushner and
Clark lemma (cf. Kushner and Clark, 1978).

We recall first the Gronwall inequality, see Lemma B.1 of Borkar,
2022, for a proof.

Lemma A.1 (Gronwall Inequality). Suppose that for continuous

159
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u, v : [0, T ]→ [0,∞), for T>0 and scalars C,K, T ≥ 0:

u(t) ≤ C +K

∫ t

0
u(s)v(s)ds, ∀t ∈ [0, T ].

Then it follows that for all t ∈ [0, T ],

u(t) ≤ C exp
(
K

∫ T

0
v(s)ds

)
.

Consider now the ODE (2.2) with the function h : Rd → Rd being
Lipschitz continuous. In other words, ∃L > 0 (a constant) such that

‖h(η)− h(β)‖ ≤ L‖η − β‖, ∀η, β ∈ Rd.

Definition A.1. We say that the ODE (2.2) is well-posed if for any
initial condition θ0 ∈ Rd, there is a unique solution θ(·) ∈ C([0,∞);Rd)
that is also continuous as a function of θ0.

The integral solution to the ODE (2.2) is obtained as

θ(t) = θ0 +
∫ t

0
h(θ(s))ds, t ≥ 0.

If an ODE is well-posed, it has unique integral curves. The following
theorem says that a sufficient condition for well-posedness of (2.2) is
that the function h be Lipschitz continuous (see Theorem B.1 of Borkar,
2022 for a proof).

Theorem A.2. Suppose the function h : Rd → Rd is Lipschitz continu-
ous. Then the ODE (2.2) is well-posed.

For the ODE (2.2), let Φ : R × Rd → Rd be defined as the map
Φ(t, x) 4= Φt(x) that takes θ(0) to θ(t) via the ODE (2.2). Thus,

θ(t) = Φt(θ(0)) = θ(0) +
∫ t

τ=0
h(Φτ (θ(0)))dτ.

Assuming h is Lipschitz continuous, it follows from Theorem A.2 that
the map Φ is continuous. It is easy to verify that {Φt, t ∈ R} forms a
group since Φt ◦ Φs = Φt+s, ∀t, s ∈ R and Φ0 = I (the identity map).
Thus, {Φt, t ∈ R} is a flow of h, see Benaïm, 1996, for a more general
discussion.
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Definition A.2 (Invariant sets and Periodic Points). 1. We say that
A ⊂ Rd is invariant for the ODE (2.2) if Φt(A) ⊂ A for all
t ∈ R.

2. We say that A ⊂ Rd is positively (resp. negatively) invariant for
the ODE (2.2) if Φt(A) ⊂ A for all t ≥ 0 (resp. t ≤ 0).

3. A point θ is a periodic point for the ODE (2.2) if ∃T > 0 such
that ΦT (θ) = θ.

Note that since the flow Φ is induced by the vector field h, equilibria
of (2.2) coincide with the zeros of the function h(·). Further, both
periodic points and equilibria can be viewed as recurrent points.

Definition A.3 (Limit Sets of an ODE). 1. Given a trajectory θ(·) of
(2.2), the set L 4= ∩t≥0θ([t,∞)) that comprises of the set of limit
points of (2.2) is called the ω-limit set of (2.2).

2. Given δ, T > 0, a (δ, T )-pseudo-orbit from λ ∈ Rd to η ∈ Rd is
defined as a set of k trajectories of (2.2) (for some k <∞): {Φt(ηi) :
t ∈ [0, ti], ti ≥ T}, i = 0, 1, . . . , k − 1, where η0, η1, . . . , ηk ∈ Rd

and such that (i) ‖η0 − λ‖ < δ, (ii) ‖Φtj (ηj) − ηj+1‖ < δ, ∀j =
0, 1, . . . , k − 1, and (iii) ηk = η.

3. If a (δ, T )-pseudo-orbit exists between any λ, η ∈ Rd, for every
δ, T > 0, we say that the flow Φ of (2.2) is chain transitive.

4. The flow Φ as above restricted to η = λ, for all λ ∈ Rd is called
chain recurrent.

5. A compact invariant set A ⊂ Rd on which the flow Φ of the
ODE (2.2) is chain recurrent (resp. chain transitive) is called an
internally chain recurrent (resp. internally chain transitive) set
for (2.2).

We now recall the following result from Benaïm, 1999 (cf. Proposition
5.3):

Lemma A.3. Let A ⊂ Rd be a compact invariant set for the ODE (2.2).
The following are equivalent:
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1. A is internally chain transitive.

2. A is connected and internally chain recurrent.

Definition A.4 (Equilibria and Attractors of an ODE). 1. A point θ ∈
Rd is an equilibrium of the ODE (2.2) if Φt(θ) = θ, ∀t.

2. A compact invariant set A ⊂ Rd is said to be Lyapunov stable for
the ODE (2.2) if given any ε > 0, ∃δ > 0 such that d(θ0, A) < δ

implies that d(Φt(θ(0)), A) < ε for all t > 0. Here for any given
x ∈ Rd, d(x,A) = min

η∈A
‖x− η‖.

3. A set A ⊂ Rd is an attractor for (2.2) if A is nonempty, compact
and invariant. Further, A has a positively invariant open neigh-
borhood M ⊂ Rd such that d(Φt(θ), A)→ 0 as t→∞ uniformly
in θ ∈M .

4. The largest open neighborhood M for an attractor A above is
called the domain of attraction of A.

5. A compact invariant A ⊂ Rd is asymptotically stable for the ODE
(2.2) if it is both Lyapunov stable and an attractor.

Sufficient Condition for Asymptotic Stability

Before proceeding further, we give a sufficient condition for verifying
asymptotic stability of an attractor A ⊂ Rd of the ODE (2.2). Let
V : M ⊂ Rd → R be a non-negative, continuously differentiable function.
Suppose it satisfies the following conditions:

(i) V (θ)→∞ as ‖θ‖ → ∂M (the boundary of M).

(ii) Further,

〈∇V (θ), h(θ)〉
{

< 0 if θ ∈M ∩Ac
= 0 if θ ∈ A.

The function h(·) above is the driving vector field of the ODE (2.2).
The asymptotic stability of A follows since d

dt
V (θ(t) ≤ 0 with equality

only for θ(t) ∈ A.
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We now recall the Lasalle Invariance Principle, see Theorem 2 of
La Salle, 1966.

Theorem A.4 (Lasalle Invariance Principle). Let V (·) as above be
a Lyapunov function for the ODE (2.2). Then any trajectory θ(·)
of (2.2) must converge to the largest invariant set contained in
{θ | 〈∇V (θ), h(θ)〉 = 0}.

Gradient Systems

Suppose the underlying system is a gradient scheme withe corresponding
ODE is

θ̇(t) = −∇f(θ(t)), θ(0) = θ0. (A.1)
Thus, here h(θ) = −∇f(θ). Note that

df(θ(t))
dt

= −‖∇f(θ(t))‖2

< 0 if ∇f(θ) 6= 0
= 0 otherwise.

If lim
‖θ‖→∞

f(θ) =∞, the function f itself serves as a Lyapunov function

with the set H = {θ|∇f(θ) = 0} as the set of equilibrium points of
(A.1). We recall now Lemma 11.1 of Borkar, 2022.

Lemma A.5. The only invariant sets that can occur as w-limit sets for
the ODE (A.1) are the subsets of H 4= {θ ∈ Rd|∇f(θ) = 0}.

Lasalle Invariance Principle, see Theorem A.4, in the case of gradient
systems would say something similar as below.

Lemma A.6. Any trajectory θ(·) of the ODE (A.1) with f as above must
converge to the largest invariant set contained in H 4= {θ | ∇f(θ) = 0}.

A.2 Set-valued maps and differential inclusions

In many real life situations, one often encounters problems that are ill-
posed, the solution is not unique, or there are uncertainties and imprecise
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modeling errors. Such problems arise often in stochastic control and
optimization, reinforcement learning, viability theory and stochastic
games. In such scenarios, one may not encounter single-valued maps at
all and more general analytical techniques are needed. In this section, we
present a brief background on set-valued maps and differential inclusions
for which we refer primarily to the books by Aubin and Frankowska,
1990 and Aubin and Cellina, 1984.

A.2.1 Set-valued maps

A set-valued map x 7→ J(x) is one where for any x ∈ Rd, J : Rd →
{subsets of Rd} and is specified via it’s graph, i.e., Graph(J) = {(x, y) |
y ∈ J(x)}. The domain (Dom(J)) and image (Im(J)) are respectively
given by Dom(J) = {x ∈ Rd | J(x) 6= φ} and Im(J) = ∪x∈RdJ(x), re-
spectively. The inverse J−1 of the set-valued map J (above) is also
a set-valued map such that x ∈ J−1(y) if and only if y ∈ J(x), viz.,
(x, y) ∈ Graph(J).

The open ball of radius ε around the origin is denoted Bε(0), while
the closed ball is denoted Bε(0). Thus, Bε(0) = {x ∈ Rd | ‖x‖ < ε} and
Bε(0) = {x ∈ Rd | ‖x‖ ≤ ε}. For any set A ⊂ Rd, for any δ > 0, we
call Nδ(A) = {x ∈ Rd | ‖x − y‖ < δ, y ∈ A} the δ-open neighborhood
or simply the neighborhood of the set A. The δ-closed neighborhood of
A is likewise the set N δ(A) = {x | ‖x− y‖ ≤ δ, y ∈ A}.

We now have the following definitions pertaining to set-valued maps.
Let J : Rd → {subsets of Rd} be a set-valued map.

Definition A.5 (Continuity of Set-Valued Maps). (i) J is said to be
upper semi-continuous at a point x ∈ Dom(J) if given sequences
{xn}n≥1 (in Rd) and {yn}n≥1 (in Rd) with xn → x, yn → y

and yn ∈ J(xn), ∀n ≥ 1, we have y ∈ J(x). We say that J is
upper semi-continuous if it is upper semi-continuous at every
x ∈ Dom(J). In other words, Graph(J) is closed.

(ii) J is said to be lower semi-continuous at a point x ∈ Dom(J)
if for any y ∈ J(x), and any sequence of points xn ∈ Dom(J)
converging to x, there exists a sequence of elements yn ∈ J(xn)→
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y ∈ J(x). We say that J is lower semi-continuous if it is lower
semi-continuous at every x ∈ Dom(J).

(iii) J is continuous at x ∈ Dom(J) if it is both upper semi-continuous
and lower semi-continuous at x. It is said to be continuous if and
only if it is continuous at every x ∈ Dom(J).

(iv) J is Lipschitz at z ∈ Rd if there exists L > 0 and ε > 0 such that
for all x, y ∈ Nε({z}), we have that J(x) ⊂ J(y) +L‖x− y‖B1(0)
where U = {w ∈ Rd | ‖w‖ < 1} is a unit ball around the origin in
Rd or more compactly J(x) ⊂ NL‖x−y‖(y).

It is important to note here that there exist set-valued maps that are
upper semi-continuous but not lower semi-continuous and vice versa.

Definition A.6 (Peano Map). A set-valued map J : Rd → {subsets of
Rd} is called a Peano map if it satisfies the following properties:

(i) For every x ∈ Rd, J(x) is convex and compact.

(ii) J is pointwise bounded for every x ∈ Rd, i.e., for some K > 0 we
have, sup

w∈J(x)
‖w‖ ≤ K(1 + ‖x‖).

(iii) J is upper semi-continuous.

The distance of a point x ∈ Rd to a set A ⊂ Rd is defined as
d(x,A) = inf{‖x − y‖ | y ∈ A}. Notice that a point x0 ∈ Rd is a
boundary point of A if and only if d(x,A) = d(x,Ac) = 0.

Definition A.7 (Limsup and Liminf of Set-Valued Maps). Given a set-
valued map J : Rd → {subsets of Rd}, we define the upper limit (Lim-
sup) and lower limit (Liminf) of the sequence of sets J(xn) as follows:

(i) Limsupxn→xJ(xn) = {y ∈ Rd | lim inf
xn→x

d(y, J(xn)) = 0}.

(ii) Liminfxn→xJ(xn) = {y ∈ Rd | lim
xn→x

d(y, J(xn)) = 0}.

Note that both Liminf and Limsup are closed sets. Liminf collects the
limit points of {J(xn)} while Limsup collects it’s accumulation points.
Further, Liminfxn→xJ(xn) ⊂ J(x) ⊂ Limsupxn→xJ(xn).
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A.2.2 Differential inclusions

A differential inclusion (DI) can be viewed as a generalization of an
ODE in the sense that it involves set-valued maps as opposed to the
usual point-to-point maps and in general has the form

ẋ(t) ∈ J(t, x(t)), (A.2)

where J : R×Rd → {subsets of Rd}. We shall mainly be interested with
the case where J(t, x) 4= J(x), i.e., there is no explicit time dependence
of the set-valued map J . Thus, the DI in this case takes the form

ẋ(t) ∈ J(x(t)), (A.3)

with J : Rd → {subsets of Rd}. Any solution to (A.3) is viewed in the
Caratheodory sense, i.e., as an absolutely continuous function satisfying
(A.3) almost everywhere.

Definition A.8. (i) Let K ⊂ Dom(J). A function x : [0, T ] → Rd is
said to be viable in K if x(t) ∈ K, ∀t ∈ [0, T ].

(ii) A solution x(·) to (A.3) is said to be viable if for some closed
subset K of Dom(J), we have that x(t) ∈ K, ∀t.

(iii) For K ⊂ Rd, given x ∈ K̄ (the closure of K), the contingent cone
is defined by

C(x,K) 4= {y ∈ Rd | lim inf
k→0+

d(x+ ky,K)
k

= 0}.

(iv) We say that a set K ⊂ Dom(J) is a viability domain of the
set-valued map J if and only if for all x ∈ K, J(x)∩C(x,K) 6= φ.

Consider the case where K = {x}. Then the contingent cone to
{x} is given by C(x, {x}) = {y | lim inf

k→0+

d(x+ ky, {x})
k

= 0} = {0}.
Then, from Definition A.8(iv), it follows that K = {x} is a viability
domain of J if and only if J(x) ∩ {0} 6= φ or x is a stationary solution
to the inclusion 0 ∈ J(x) implying that x is an equilibrium of J . Thus,
the minimal viability domains are equilibria of set-valued maps. We
now recall the following results from Aubin and Frankowska, 1990 (see
Theorems 10.1.12-10.1.13 there).
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Theorem A.7. Consider a Peano map J : Rd → {subsets of Rd}. Then
the limit sets of the solutions to the DI (A.3) are closed viability domains.
Further, the limit of a solution x(t) to the DI (A.3) (if it exists), as
t→∞, is an equilibrium of J .

Theorem A.8. Let J : Rd → {subsets of Rd} be a Peano map. If
K ⊂ Dom(J) is a compact viability domain and if J(K) is convex, then
there exists an equilibrium of J in K.

A.2.3 Limit Sets of Differential Inclusions

Recall that a solution to the DI (A.3) is an absolutely continuous
mapping x : R→ Rd such that x(0) = x and ẋ(t) ∈ J(x(t)) for almost
every t ∈ R. The ω-limit set of a given solution x of the DI (A.3) with
x(0) = x is given by L(x) =

⋂
t≥0

x([t,+∞)).

Consider {Φt}t∈R defined by Φt(x) = {x(t) | x is a solution to
the DI (A.3) with x(0) = x}. Then {Φt} is the set-valued semi-
flow associated with the DI (A.3). For B × M ⊂ R × Rd, we let
ΦB(M) =

⋃
t∈B,x∈M

Φt(x). For M ⊂ Rd, the ω-limit set for the DI
(A.3) is specified by (cf. Benaïm et al., 2005) ωΦ(M) =

⋂
t≥0

Φ[t,+∞)(M).

Definition A.9 (Invariance of Sets). Let M ⊂ Rd. We say that

(i) M is strongly invariant if M = Φt(M) for every t ∈ R.

(ii) M is quasi-invariant if M ⊂ Φt(M), ∀t ∈ R.

(iii) M is semi-invariant if Φt(M) ⊂M , ∀t ∈ R.

(iv) M is strongly positively invariant if Φt(M) ⊂M , ∀t > 0.

(v) M is invariant (for the set-valued map J) if ∀x ∈M , ∃ a solution
x to the DI (A.3) with x(0) = x0 and with x(R) ⊂M .

Definition A.10 ((ε, T )-Chain). Given a set M ⊂ Rd, and x, y ∈M , by
an (ε, T )-chain from x to y, we mean a sequence {x1, . . . ,xn}, for some
integer n ≥ 1, of solutions to the DI (A.3) together with real numbers
t1, . . . , tn > T , such that
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(i) xi(s) ∈M , ∀0 ≤ s ≤ ti and i = 1, . . . , n,

(ii) ‖xi(ti)− xi+1(0)‖ ≤ ε, for all i = 1, . . . , n− 1,

(iii) ‖x1(0)− x‖ ≤ ε and ‖xn(tn)− y‖ ≤ ε.

Definition A.11 (Internally Chain Transitive and Chain Recurrent Sets).
We define these sets as follows:

(i) The set M ⊂ Rd is said to be internally chain transitive for the
DI (A.3) if M is compact and for any x, y ∈ M , there exists an
(ε, T )-chain for any ε, T > 0.

(ii) If the property in part (i) above holds only for all x = y ∈ M ,
then the set M is said to be chain recurrent.

Definition A.12 (Perturbed Solution to a DI). A function z : [0,∞)→ Rd

is said to be a perturbed solution to (A.3) if the following hold:

(i) z is absolutely continuous.

(ii) There exists a locally integrable function U : [0,∞) → Rd such
that

(a) lim
t→∞

sup
0≤v≤T

‖
∫ t+v

t
U(s)ds‖ = 0 for all T > 0.

(b) dy(t)
dt
− U(t) ∈ Jδ(t)(y(t)) for almost every t > 0, for some

δ : [0,∞)→ R such that δ(t)→ 0 as t→∞. Here Jδ(y) =
{x ∈ Rd | ∃z s.t. ‖z − x‖ < δ, d(x, J(z)) < δ}.

We now state a couple of important results (cf. Lemma 3.5 and
Theorem 3.6 of Benaïm et al., 2005).

Lemma A.9. Any internally chain transitive set for the DI (A.3) is
invariant.

Theorem A.10. Let z be a bounded perturbed solution to the DI (A.3)
with z(0) = z. Then the limit set of z given by L(z) =

⋂
t≥0
{z[t,+∞)}

is internally chain transitive for (A.3).
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Definition A.13 (Attracting and Lyapunov Stable Sets for a DI). In
relation to the DI (A.3), we have the following definitions:

(i) M ⊆ Rd is said to be an attracting set if it is compact and there
exists a neighborhood U such that for any ε > 0, ∃ T (ε) ≥ 0
with Φ[T (ε),+∞)(U) ⊂ N ε(M). In other words, any DI trajectory
initiated in U reaches the ε-neighborhood of M , T (ε) instants
later and stays there forever subsequently.

(ii) The set U above is called the fundamental neighborhood of M .

(iii) An attracting set M that is also invariant is called an attractor
set.

(iv) The basin of attraction ofM is the set B(M) = {x ∈ Rd | wΦ(x) ⊂
M}. In other words, this is the largest subset of Rd such that the
DI initiated anywhere within this set has it’s ω-limit set contained
in M .

(v) The set M is said to be Lyapunov stable if for all δ > 0, ∃ ε > 0
such that Φ[0,+∞)(N ε(M)) ⊆ N δ(M).



B
Martingales

B.1 Notions of convergence of random variables

Definition B.1 (Almost sure or with probability 1 convergence). Let {Xm}
be the random variable set then, Xm → X almost surely or Xm → X

with probability 1 as X →∞ if P
[
w| lim

m→∞
Xm(w) = X(w)

]
= 1.

A well-known example of almost sure convergence is the strong law
of large numbers, which states that the sample mean converges almost
surely to the true mean, under a bounded moment assumption.

Definition B.2 (Convergence in probability). Let {Xm} be the random
variable set then, Xm

p−→X if P [w|Xm(w)−X(w)| > ε] = 0 ∀ ε > 0,
where P [w|Xm(w)−X(w)| > ε] is usually written as P [|Xm(w)−X(w)| > ε].

The weak law of large numbers is an example of convergence in
probability for the sample mean of i.i.d. r.v.s.

Definition B.3 (L2 or mean-squared convergence). Xm
L2
−→X if E[|Xm(w)−

X(w)|]2 → 0 asm→∞, where E[|Xm(w)−X(w)|]2 is the mean squared
error.

Definition B.4 (Convergence in distribution). Xm
d−→X if E[f(Xm)]→

E[f(X)] for all bounded continuous f .

170
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The reader is referred to https://math.iisc.ac.in/~manju/PT/PT_
bookform.pdf for equivalent definitions of convergence in distribution.

It can be shown that

1. Almost sure convergence =⇒ convergence in probability =⇒
convergence in distribution.

2. Mean-squared convergence =⇒ convergence in probability =⇒
convergence in distribution.

For counterexamples that show that the converses of the above implica-
tions do not hold, the reader is referred to https://www.ee.iitm.ac.in/
~krishnaj/EE5110_files/notes/lecture28_Convergence.pdf.

In this book, we provide almost sure convergence guarantees for the
well-known gradient-based zeroth-order optimization algorithms.

B.2 Martingales

A martingale is a stochastic process that is defined below.

Definition B.5. A sequence Y = {Yn : n ≥ 0} is a martingale with
respect to the sequence X = {Xn : n ≥ 0} if, for all n ≥ 0,

• E[Yn] <∞,

• E[Yn+1|X0, X1, ..., Xn] = Yn.

Notice that

E[Yn+2|Y1, Y2, ..., Yn] = E[E[Yn+2|Y1, Y2, ..., Yn+1]|Y1, Y2, ..., Yn]
= E[Yn+1|Y1, Y2, ..., Yn] = Yn.

Extending the argument, we have E[Yn+m|Y1, Y2, ..., Yn] = Yn, for any
m > 0.

Example B.1. An i.i.d. sequence, say {Xi}, is not necessarily a mar-
tingale. However, if Xi are zero mean r.v.s, for all i, then {Xi} is a
martingale.

https://math.iisc.ac.in/~manju/PT/PT_bookform.pdf
https://math.iisc.ac.in/~manju/PT/PT_bookform.pdf
https://www.ee.iitm.ac.in/~krishnaj/EE5110_files/notes/lecture28_Convergence.pdf
https://www.ee.iitm.ac.in/~krishnaj/EE5110_files/notes/lecture28_Convergence.pdf
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Definition B.6. Let F be a filtration of the probability space
(Ω,F ,P), and Y be a sequence of random variables which is adapted
to F . We call the pair (Y,F) = {(Yn,Fn : n ≥ 0)} a martingale if,
for all n ≥ 0,

1. E[Yn] <∞,

2. E[Yn+1|Fn] = Yn.

The former definition is retrieved by choosing Fn to be σ(X0, X1, ..., Xn),
which is the smallest σ-field with respect in which X0, X1, ..., Xn are
measurable. If Y is a martingale with respect to F , then it is also a
martingale with respect to G where Gn = σ(Y0, Y1, ..., Yn).

Definition B.7. Let F be a filtration of the probability space
(Ω,F ,P), and let Y be a sequence of random variables which is
adapted to F . We call the pair (Y,F) is a sub-martingale if, for all
n ≥ 0,

1. E(Y +
n ) <∞,

2. E(Yn+1|Fn) ≥ Yn.

or a super-martingale if, for all n ≥ 0,

1. E(Y −n ) <∞,

2. E(Yn+1|Fn) ≤ Yn.

Example B.2. Let {Xi} be i.i.d, then,

1. If E[Xi] ≥ 0, then {Xi} is a sub-martingale.

2. If E[Xi] ≤ 0, then {Xi} is a super-martingale.

LetX+ = max{0, X} andX− = −min{0, X}. Then,X = X+−X−

and |X| = X++X−. Notice that Y is a martingale if and only if it is both
a sub-martingale and a super-martingale. Also, Y is a sub-martingale if
and only if −Y is a super-martingale.
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Example B.3. Let {Zn} be a martingale sequence, and Sn = Zn−Zn−1.
Then,

E[Sn|S1, ..., Sn−1] = E[Zn|S1, ..., Sn−1]− E[Zn−1|S1, ..., Sn−1]
= Zn−1 − Zn−1 = 0.

Further, E[Sn] = E[Zn]− E[Zn−1] <∞. Thus, the sequence {Sn} is a
martingale.

B.2.1 Applications

Mean Estimation

Consider a r.v. Y with mean µ and variance σ2. Suppose we are given
i.i.d samples Y1, Y2 . . . Yn from the distribution of Y . Let xn denote the
sample mean, i.e.,

xn = 1
n

n∑
k=1

Yk.

We have

xn+1 = 1
n+ 1

n+1∑
k=1

Yn+1 = n

n+ 1

(
1
n

n∑
k=1

Yn

)
+ 1
n+ 1Yn+1.

Hence, sample mean can be iteratively computed as follows:

xn+1 = xn + 1
n+ 1(Yn+1 − xn)

Instead of 1
n+ 1, one can employ a more general step-size αn satisfying

standard stochastic approximation conditions, to arrive at the following
update rule:

xn+1 = xn + αn(Yn+1 − xn). (B.1)

Rewriting the equation above, we obtain

xn+1 = xn + αn(Yn+1 − xn) (B.2)
= xn + αn[(µ− xn) + (Yn+1 − µ)] (B.3)
= xn + αn[(µ− xn) + wn+1] (B.4)
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where wn+1 = Yn+1 − µ is the noise factor. Notice that

E[wn+1|x1, . . . xn] = E[wn+1|Y1, . . . Yn]
= E[Yn+1|Y1, . . . Yn]− µ
= E[Yn+1]− µ = 0.

Hence, {wn} is a martingale difference sequence.

Urn model

Suppose we have an empty urn and add red or blue ball randomly in
an iterative fashione. Let us define

Yn+1 =

1, if (n+1)th ball is red
0, else

Sn =
n∑
k=1

Yk denotes the total number of red balls. xn = Sn
n

denotes

the fraction of red balls. Then, we have

xn+1 = 1
n+ 1

n+1∑
i=1

Yk

= (1− 1
n+ 1)xn + 1

n+ 1Yn+1

= xn + αn(Yn+1 − xn),

where αn = 1
n+ 1. Suppose the conditional probability that the next

ball added at (n+ 1), given the past, depends only on xn, i.e.,

P [Yn+1 = 1|x1 . . . xn] = p(xn).

Then,

xn+1 = xn + αn(p(xn)− xn) + wn+1,

where wn+1 = Yn+1 − p(xn). Notice that

E(wn+1|x1, . . . xn) = E(Yn+1 − p(xn)|x1, . . . xn)
= P [Yn+1|x1, . . . xn]− p(xn)
= p(xn)− p(xn) = 0.

Therefore, {wn+1} is a martingale difference sequence.
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SGD: A popular ML algorithm for training

Consider the following problem that is ubiquitous in machine learning
applications involving training over a given dataset:

min
x
f(x) = 1

m

m∑
i=1

fi(x). (B.5)

It is common to assume that fis are smooth and f is convex or strongly
convex.

A batch gradient descent algorithm would solve the problem above
using the following update iteration:

xn+1 = xn − αn

(
1
m

m∑
i=1
∇fi(xn)

)
. (B.6)

The above algorithm is a noise-less algorithm, and for large m, it is
computationally expensive. In ML parlance, m is the number of training
examples.

A computationally efficient alternative is stochastic gradient descent,
popularly known as SGD. This algorithm involves picking a training
sample uniformly at random, i.e., a r.v. in with the following distribution:

in =



1 w.p. 1
m

.

.

m w.p. 1
m
.

SGD would then update the iterate as follows:

xn+1 = xn − αn∇fin(xn) (B.7)

Rewriting the above update rule, we obtain

xn+1 = xn − αn

(
1
m

m∑
i=1
∇fi(xn))− αn(∇fin(xn)− 1

m

m∑
i=1
∇fi(xn)

)

= xn − αn

(
1
m

m∑
i=1
∇fi(xn) + wn+1

)
,



176 Martingales

where {wn+1 = ∇fin(xn) − 1
m

m∑
i=1
∇fi(xn)} is a martingale difference

sequence because E[wn+1|x1, . . . xn] = 0

Remark B.1. Several applications involving learning and optimization
involve martingale difference noise terms, and the convergence of the
stochastic approximation algorithm is tied to whether the effect of
underlying noise (martingale difference) can be ignored in the long
run. In the next section, we state and prove the well-known maximal
inequality for martingales. This inequality will be subsequently used in
the proof of the martingale convergence theorem. The latter claim helps
in establishing asymptotic convergence of stochastic approximation
algorithms with noise factors that are martingale differences.

B.2.2 Maximal inequality

We state and prove Doob-Kolmogorov Inequality below.

Theorem B.1. If {Sn} is a martingale with respect to {Xn} then

P
(

max
1≤i≤n

|Si| ≥ ε
)
≤ 1
ε2
E[S2

n] for any ε > 0.

Proof. Let A0 = Ω, Ak = {|Si| < ε∀i ≤ k}, and let Bk = Ak−1∩{|Sk| ≥
ε} be the event that |Si| ≥ ε for the first time when i = k. Then,

Ak ∪
(

k⋃
i=1

Bi

)
= Ω.

Therefore,

E[S2
n] =

n∑
i=1

E[S2
nIBi ] + E[S2

nIAn ] ≥
n∑
i=1

E[S2
nIBi ].

However,

E[S2
nIBi ] = E[(Sn − Si + Si)2IBi ]

= E[(Sn − Si)2IBi ]︸ ︷︷ ︸
(I)

+ 2E[(Sn − Si)SiIBi ]︸ ︷︷ ︸
(II)

+E[S2
i IBi ]︸ ︷︷ ︸

(III)

.



B.2. Martingales 177

Note that (I) ≥ 0 and (III) ≥ ε2
P (Bi), because |Si| ≥ ε if Bi occurs. To deal with term (II), note that

E[(Sn − Si)SiIBi ] = E [SiIBiE[(Sn − Si)|X1, ..., Xi]]
= 0,

since Bi concernsX1, ..., Xi only, the inequality presented above becomes

E[S2
n] ≥

n∑
i=1

ε2P (Bi) = ε2P ( max
1≤i≤n

|Si| ≥ ε).

B.2.3 Martingale convergence theorem

Theorem B.2. Suppose {Sn} is a martingale sequence satisfying
E[S2

n] < M <∞ for some M and ∀ n. Then, there exists a r.v. S
such that

1. Sn a.s−−→ S as n→∞;

2. Sn L2
−→ S as n→∞ (mean-squared sense).

Proof. We begin with the proof of the first claim, i.e., almost sure
convergence. Notice that Sm and Sm+n − Sm are uncorrelated m,n ≥ 1
since E[Sm(Sm+n − Sm)] = 0. Further,

E[S2
m+n] = E[S2

m] + E[(Sm+n − Sm)2] ≥ E[S2
m].

Thus, {E[S2
n]} is a non-decreasing sequence that is bounded above (by

assumption). Choose M such that E[S2
n] ↑ M as n → ∞. Now, it is

enough to show that {Sn(ω)}n=1 is Cauchy convergent as it would imply
almost sure convergence.
Let C = {ω | Sn(ω) is Cauchy convergent}, i.e.,

C = {ω | ∀ε > 0, ∃m such that |Sm+i(ω)− Sm+j(ω)| < ε ∀ i, j ≥ 1}.

If |Sm+i − Sm| < ε and |Sm+j − Sm| < ε then |Sm+i − Sm+j | < 2ε by
triangle inequality. So,

C = {ω|∀ε > 0,∃ m such that |Sm+i(ω)− Sm(ω)| < ε ∀ i ≥ 1}
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=
⋂
ε>0

⋃
m≥1
{|Sm+i − Sm| < ε,∀i ≥ 1}

Cc =
⋃
ε>0

⋂
m≥1
{|Sm+i − Sm| ≥ ε, for some i ≥ 1}.

LetAm(ε) = {|Sm+i−Sm| ≥ ε for some i ≥ 1} then, Cc =
⋃
ε>0

⋂
m≥1

Am(ε).

If ε ≥ ε′, Am(ε) ⊆ Am(ε′).

We want P(Cc) = 0. Notice that

0 ≤ lim
ε↓0

P

(⋂
m

Am(ε)
)
≤ lim

ε↓0
lim
m→∞

P(Am(ε)).

If lim
m→∞

P(Am(ε)) = 0 for any ε > 0, then P(Cc) = 0.
Let Yn = Sm+n − Sm, for a fixed m. Then, Yn is a martingale since
E[Yn+1|Y1,...,Yn ] = Yn.
Applying the Doob-Kolmogorov inequality for Yi, we obtain

P(|Yi ≥ ε for some 1 ≤ i ≤ n) ≤ 1
ε2
E[Yn]2

P(|Sm+i − Sm| ≥ ε, for some 1 ≤ i ≤ n) ≤ E[Sm+n − Sm]2
ε2

0 ≤ P(Am(ε)) ≤ E(Sm+n − Sm)2

ε2
= E[S2

m+n + E[S2
m − 2E[Sm+nSm]]]
ε2

.

Notice that

E[Sm+nSm] = E[E[Sm+nSm|S1, . . . , Sm]]
= E[SmE[Sm+n|S1, . . . , Sm]] = E[S2

m].

Thus,

0 ≤ P [Am(ε)] ≤ E[S2
m+n]− E[S2

m]
ε2

≤ lim
n→∞

E[S2
m+n]− E[S2

m]
ε2

= M − E[S2
m]

ε2

P(Am(ε) ≤ M − E[S2
m]

ε2
.

As m→∞, E[S2
m] ↑M .

Hence, lim
m→∞

P(Am(ε) = 0, implying
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P(Cc = 0 (or) P(C) = 1, i.e.
The sequence {Sn} is Cauchy convergent ∃ S such that Sn →

a.s
S as

n→∞.

We now turn to proving convergence in mean-squared sense. For
this claim, we need Fatou’s Lemma, which is stated as follows:
If {Xn} such that Xn ≥ 0, ∀n then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn]

Notice that

E[(Sn − S)2] = E[lim inf
m→∞

(Sn − Sm)2] (B.8)

≤ lim inf
m→∞

E[(Sn − Sm)2] (Fatou’s Lemma)

= M − E[S2
n] n→∞−→ 0. (B.9)

=⇒ E[(Sn − S)2] n→∞−→ 0 or Sn L2
→ S

To arrive at the equality in B.8, we used the following fact for a
fixed n:

E
[

lim
m→∞

(S2
n + S2

m − 2SmSn)
]

=E[Sn2 + S2 − 2SnS]

=E[(Sn − S)2].

Further, B.9 is justified as follows:

lim
m→∞

E[(Sn − Sm)2] = lim
m→∞

(E[S2
n] + E[S2

m]− 2E[SnSm])

= lim
m→∞

[E[S2
m]− E[S2

n]]

= M − E[S2
n].

Hence proved.



C
Smoothness and Convexity

In this appendix, we discuss foundation of algorithms for non-linear
smooth optimization problem which include Taylor’s theorem and its
applications, convex sets and convex/strongly-convex functions..

We are interested in finding a θ∗ such that

θ∗ ∈ arg min
x∈D

f(θ). (C.1)

We have following relevant definitions for this minimization problem.

Definition C.1 (local minima). A point θ∗ ∈ D is called local minima of
f if there exists a neighbourhood N (θ∗, ε) of θ∗ such that f(θ) ≥ f(θ∗)
for all x ∈ N (θ∗, ε) ∩ D.

Definition C.2 (global minima). A point θ∗ ∈ D is called global minima
of f if f(θ) ≥ f(θ∗) for all x ∈ D.

Definition C.3 (strict local minima). A point θ∗ ∈ D is called local
minima of f if there exists a neighbourhood N (θ∗, ε) of θ∗ such that
f(θ) > f(θ∗) for all x ∈ N (θ∗, ε) ∩ D with x 6= θ∗.
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C.1 Necessary conditions for local minima

Given a point θ∗ ∈ D, how does one determine whether it is a local
minima or not? The following results, which are standard in optimization
literature, provide an answer to this question.

Theorem C.1 (First and second-order necessary conditions). Let θ∗ be a
local minima of f : D → R and f is continuously differentiable. Then
∇f(θ∗) = 0.
Further if f is twice continuously differentiable, then ∇2f(θ∗) is a
positive semi-definite (p.s.d.) matrix.

Proof. Fix s ∈ RN . Recall that θ∗ is a local minima. Then we have,

sT∇f(θ∗) = lim
δ−>0

f(θ∗ + δs)− f(θ∗)
δ

≥ 0.

Similarly, we have,
−sT∇f(θ∗) ≥ 0.

Combining the two equations above, we have that ∇f(θ∗) = 0.
Further, if f is twice continuously differentiable, then by Taylor

series expansion, we have

f(θ∗ + δs)− f(θ∗) = δsT∇f(θ∗) + δ2

2 s
T∇2f(θ∗)s+ o(δ3).

Since ∇f(θ∗) = 0, we have

0 ≤ f(θ∗ + δs)− f(θ∗)
δ2 = 1

2s
T∇2f(θ∗)s+ o(δ).

Thus, as δ → 0, for all s ∈ RN , we have sT∇2f(θ∗)s ≥ 0, implying
∇2f(θ∗) is p.s.d. Hence proved.

Example C.1. Consider f(θ) = 1
2θ

TAθ − bT θ. From the first-order
necessary condition, we have
∇f(θ∗) = 0 and ∇2f(θ∗) is p.s.d., which is equivalent to Aθ∗ − b = 0
and A is a psd.

We have the following cases:

• If A is not psd, then f has no local minima
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• If A is p.s.d., then f is convex and any θ∗ solving Aθ∗ − b = 0 is
a global minima.

• if A is p.d., then f has a unique global minima given by θ∗ = A−1b.

• What happens in the case where A is psd and singular?

C.2 Taylor’s theorem

Taylor’s theorem shows how a smooth function f can be approximated
locally by polynomials that depend on low-order derivatives of f .

Theorem C.2. Let f : RN → R be a continuously differentiable function.
Given x, p ∈ RN , we have

f(θ + p) = f(θ) +
∫ 1

0
∇f(θ + αp)T pdα, and (C.2)

f(θ + p) = f(θ) +∇f(θ + αp)T p. (C.3)

The expression in (C.2) is the “integral form” and the one in (C.3) is
the “mean-value form” of Taylor’s theorem.
If f is twice continuously differentiable, we have

∇f(θ + p) = ∇f(θ) +
∫ 1

0
∇2f(θ + αp)pdα, and

f(θ + p) = f(θ) +∇f(θ)T p+ 1
2p

T∇2f(θ + αp)p,

for some α ∈ (0, 1).

A consequence of (C.2) is that for a continuously differentiable f at
x, we have

f(θ + p) = f(θ) +∇f(θ)T p+ o(||p||).

Definition C.4 (smooth function). A function f : D(⊂ RN ) → R
is said to be L-smooth if for all x, y ∈ D, the following condition
holds:

||∇f(θ)−∇f(y)|| ≤ L||x− y||. (C.4)
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The three results below provide useful characterizations of L-smooth
functions.

Lemma C.3. Let f : D(⊂ RN )→ R be a L-smooth function. Then for
any x, y ∈ D, we have the following:

f(y) ≤ f(x) +∇f(x)T (y − x) + L

2 ||y − x||
2. (C.5)

Lemma C.4. Suppose f : D(⊂ RN )→ R is twice continuously differen-
tiable function. Then,
(I) f is L-smooth implies ∇2f(θ) � LI
(II) conversely, if −LI � ∇2f(θ) � LI, then f is L-smooth.

Lemma C.5. Suppose f is twice continuously differentiable on RN .
Then if f is L-smooth, we have ∇2f(θ) � LI for all x.
Conversely, if −LI � ∇2f(θ) � LI , then f is L-smooth

C.3 Sufficient conditions for local minima

Theorem C.6 (Sufficient Conditions for Smooth Unconstrained Opti-
mization). Suppose that f is twice continuously differentiable and
that, for some θ∗, we have ∇f(θ∗) = 0, and ∇2f(θ∗) is positive
definite. Then θ∗ is a strict local minimizer of min

θ∈RN
f(θ)

Proof. We use formula (4.6) from Taylor’s theorem. Define a radius ρ
sufficiently small and positive such that the eigenvalues of ∇2f(θ∗+ γp)
are bounded below by some positive number ε, for all p ∈ RN with
‖p‖ < ρ, and all γ ∈ (0, 1). (Because ∇2f is positive definite at θ∗ and
continuous, and because the eigenvalues of a matrix are continuous
functions of the elements of a matrix, it is possible to choose ρ > 0 and
ε > 0 with these properties.) By setting θ = θ∗ in (4.6), we have for
some γ ∈ (0, 1)

f(θ∗ + p) = f(θ∗) +∇f(θ∗)T p+ 1
2p

T∇2f(θ∗ + αp)p

≥ f(θ∗) + ε‖p‖2, for all p with ‖p‖ < ρ.
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Thus, by setting N = θ∗ + p|‖p‖ < ρ, we have found a neighborhood of
θ∗ such that f(θ) > f(θ∗) for all θ ∈ N with θ 6= θ∗, hence satisfying
the conditions for a strict local minimizer.

C.4 Convex Sets and Functions

Definition C.5. A set A ⊂ Rd is a convex set if ∀x, y ∈ A and for
all λ ∈ [0, 1] it satisfies:

λθ + (1− λ)y ∈ A. (C.6)

Example C.2. Hyperplanes: H = {θ | AT θ = b} is a convex set.

Example C.3. Halfspaces: H = {θ | AT θ ≤ b} is a convex set.

Example C.4. Euclidean Balls: B = {θ | ‖x‖n ≤ 1} is a convex set.

Definition C.6. f : Rd → R is a convex function if its domain Ω is
convex and it satisfies the following condition for all x, y ∈ Ω and
λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(θ) + (1− λ)f(y). (C.7)

Note that a function f is concave if −f is convex.

Lemma C.7. Suppose f is convex. Then,

1. Any local minima is a global minima.

2. The set of all global minima is convex.

Theorem C.8 (Necessary condition for optima). Suppose that f is con-
tinuously differentiable and convex. Then if ∇f(θ∗) = 0, then θ∗ is a
global minimizer.

Proof. By applying Taylor’s theorem,

f(x+ α(y − x)) = f(θ) + α∇f(x)T (y − x) + o(α) ≤ (1− α)f(x) + αf(y).
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f(y) ≥ f(x) +∇f(x)T (y − x) + o(1).

when α ↓ 0, o(1) term vanishes, and we obtain

f(y) ≥ f(x) +∇f(x)T (y − x).

Setting x = θ∗ leads to

f(y) ≥ f(θ∗) ∀y.

Hence proved.

We now provide useful characterizations of convex functions through
the result below.

Theorem C.9. Suppose f : RN → R is twice differentiable over
an open domain. Then the following are equivalent f is convex
f(y) ≥ f(θ) +∇f(θ)T (y − x), for all x, y ∈ D

1. f is convex;

2. f(y) ≥ f(θ) +∇f(θ)T (y − x), ∀x, y ∈ D;

3. ∇2f(θ) � 0, for all θ ∈ D.

Proof. We prove (i)⇔ (ii) then (ii)⇔ (iii).
(i)⇒ (ii) If f is convex, by definition

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(θ), ∀λ ∈ [0, 1], x, y ∈ dom(f)

After rewriting, we have

f(θ + λ(y − x)) ≤ f(θ) + λ(f(y)− f(θ))

⇒f(y)− f(θ) ≥ f(θ + λ(y − x))− f(θ)
λ

, ∀λ ∈ (0, 1]

As λ ↓ 0, we get

f(y)− f(θ) ≥ ∇fT (θ)(y − x) (C.8)

(ii)⇒ (i) Suppose (C.8) holds ∀x, y ∈ dom(f). Take any x, y ∈ dom(f)
and let

z = λθ + (1− λ)y
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We have
f(θ) ≥ f(z) +∇fT (z)(x− z) (C.9)
f(y) ≥ f(z) +∇fT (z)(y − z) (C.10)

Multiplying (C.9) by λ, (C.10) by (1− λ) and adding, we get
λf(θ) + (1− λ)f(y) ≥ f(z) +∇fT (z)(λθ + (1− λ)y − z)

= f(z)
= f(λθ + (1− λ)y).

(ii)⇔ (iii) We prove both of these claims first in dimension 1 and
then generalize.

(ii)⇒ (iii)(uni-variate case) Let x, y ∈ dom(f), y > x. We have

f(y) ≥ f(θ) + f ′(θ)(y − x) (C.11)
and f(θ) ≥ f(y) + f ′(y)(x− y) (C.12)

⇒ f ′(θ)(y − x) ≤ f(y)− f(θ) ≤ f ′(y)(y − x)
using (C.11) then (C.12). Dividing LHS and RHS by (y − x)2 gives

f ′(y)− f ′(θ)
y − x

≥ 0, ∀x, y, x 6= y

As we let y → x, we get
f ′′(θ) ≥ 0, ∀x ∈ dom(f)

(iii)⇒ (ii)(uni-variate case) Suppose f ′′(θ) ≥ 0, ∀x ∈ dom(f). By
the mean value version of Taylor’s theorem we have

f(y) = f(θ) + f ′(θ)(y − x) + 1
2f
′′(z)(y − x)2, for some z ∈ [x, y].

⇒ f(y) ≥ f(θ) + f ′(θ)(y − x).
Now to establish (ii) ⇔ (iii) in general dimension, we recall that
convexity is equivalent to convexity along all lines; i.e., f : Rn → R is
convex if g(α) = f (x0 + αv) is convex ∀x0 ∈ dom(f) and ∀v ∈ Rn. We
just proved this happens iff

g′′(α) = vT∇2f (x0 + αv) v ≥ 0
∀x0 ∈ dom(f), ∀v ∈ Rn and ∀α s.t. x0 + αv ∈ dom(f). Hence, f is
convex iff ∇2f(θ) � 0 for all x ∈ dom(f).
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C.5 Strongly Convex Functions

Definition C.7. A function f : RN → R is said to be m-strongly
convex (m > 0) if for all x, y ∈ RN ,them:

f((1−λ)x+λy) ≤ (1−λ)f(θ)+λf(y)+m

2 (1−λ) ‖y − x‖22 (C.13)

Theorem C.10. Suppose f is continuously differentiable and m-
strongly convex, then

f(y) ≥ f(θ) +∇f(θ)T (y − x) + m

2 ‖y − x‖
2
2

Lemma C.11. Suppose that f is twice-continuously differentiable
on RN . Then f has modulus of convexity m if and only if ∇f(θ) �
mI for all x.

Proof. For any x, y ∈ RN and α > 0, we have from Taylor’s theorem
that

f(x+ αu) = f(θ) + α∇f(θ)Tu+ 1
2α

2uT∇2f(θ + γαu)u,

for some γ ∈ (0, 1).
From the strong convexity property, we have

f(x+ αu) ≥ f(θ) + α∇f(θ)Tu+ m

2 α
2 ‖u‖2

By comparing the two equations above, we obtain
uT∇2f(x+ γαu)u ≥ m ‖u‖2

By taking α ↓ 0, we obtain
uT∇2f(θ)u ≥ m ‖u‖2 .

Hence, we have
∇2f(θ) � mI. (C.14)
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