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Diarization and Application

Speaker Diarization

Given a conversation audio, a speaker diarization system answers the
question of “Who Spoke When?”
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Introduction

Diarization and Application
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Given a conversation audio, a speaker diarization system answers the

question of “Who Spoke When?”
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Challenges and Contributions

Challenges and Major Contributions

Major Challenges in Speaker Diarization
@ Initialization of segments for clustering for bottom-up clustering.
@ Obtaining speaker discriminative features.
@ Deciding on the number of speakers.
@ Detecting the overlapped speaker segments.
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Challenges and Contributions

Challenges and Major Contributions

Major Challenges in Speaker Diarization
@ Initialization of segments for clustering for bottom-up clustering.
@ Obtaining speaker discriminative features.
@ Deciding on the number of speakers.
@ Detecting the overlapped speaker segments.

Major Contributions

@ Improve segment initialization of 1B based approach.

@ Obtain a meeting specific speaker discriminative features using
two-pass approach.
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IB system

Information Bottleneck (IB) based speaker diarization

Unsupervised IB
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Random variables X, Y, and C for Speech
@ X represents segments in an audio — {x1, x2, .

an}
@ Y represents the Gaussian components — {y1, y2, .
@ (' represents the clusters made from X — {cy, ca, .
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F = 1(YsC) = S1(C: X)
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Key points

@ Cluster segment posteriors P(Y|X).

@ Stopping NMI =

Speaker Diarization

I(Y;C)

I(XY)"
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Var|B Approach

Motivation behind the proposed approach
@ Current IB based system make use of uniform segmentation.
@ Uniform segmentation may not be the best solution.
@ Hence, proper segment initialization is needed.
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VarlB Approach

Motivation behind the proposed approach
@ Current IB based system make use of uniform segmentation.
@ Uniform segmentation may not be the best solution.
@ Hence, proper segment initialization is needed.
@ The speaking rate can vary significantly across different speakers.

@ Speaker information can be distributed uniformly across the
segments.

Objective
To distribute number of phonemes equally across the segments.
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Different Speaking Rate
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To store aa a hierarchichal information Ya because thought so when have to display
densities as well like an information we will display the whole series then if we
density score for each meeting and each have for that individual topic segments
topic segment to voice we will recalculate within the meetings we have already
the same thing over and over and over again calculated just the measure that we don't

to sort of distract that data from the
educational conferences. Ya that is whole
strategies to store the long segments

Varying Speaking Rate
@ Varies across speakers.

@ It can also varying within a speaker depending on his/her mood or
current situation.

Nauman Dawalatabad Speaker Diarization 7/14




VarlB System

Input Audio
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VarlB System

Input Audio

Phoneme
Boundaries

Spectral Feature Speech/Non-Speech Varying Length
Extraction (S) Detection Segmentation
Diarized Output

KL-HMM VarlB Posterior
Realignment Clustering Estimation (PS)
A B C BA

Optimization: Posterior Estimation:
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Distribution of Phonemes in VarlB Initialization
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Two-pass IB (TPIB) based approach

Motivation behind the proposed system

@ Current unsupervised systems do not make use of any
discriminative feature information.
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Two-pass IB (TPIB) based approach

Motivation behind the proposed system

@ Current unsupervised systems do not make use of any
discriminative feature information.

@ One can make use of the discriminative information present in the
output of the diarization system.

Objective

Introduce speaker discrimination model and keep the overall system
unsupervised.
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Two-pass IB (TPIB) based approach
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Two-pass IB (TPIB/VarTPIB) based Speaker Diarization System.
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Speaker Discrimination

Two-pass IB (TPIB) based approach
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Two-pass IB (TPIB/VarTPIB) based Speaker Diarization System.

Key point

@ Discriminative features extracted based on current recording.
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Speaker Discriminatiol

Results on all Datasets

Diarization error rates for different systems.

System Segment Initialization Discriminative Model(s) Fealures Dev Test Set
RT-04Dev_ RT-04Eval RT-05Eval AMI1 AMI2
B Fixed - MFCC 15.1 135 164 179 235
Xvector+AHC+VB (Supervised, 5000 hours) - xvectors 104 109 104 97 105

Proposed Systems

Varlg Varying - MFCC 123 12 153 178 226
MLFFNN LFyn 14.2 126 14.2 16.1 236
LDA LFL 147 16 182 157 245
TPIB Fixed MLFFNN+LDA  LFyx +LFips (020.8)  13.1 126 126 154 219
MLFFNN+LDA LFyy + LFLpa (Avg.) 14.2 124 145 163 222
MLFFNN LFxx 12 29 142 175 209
LDA LFipa 138 128 125 148 213
VarTPIB Varying MLFFNN+LDA LEyy +LFLpa (0604) 1.6 17 15.1 132 211
MLFFNN+LDA LFyy+ LEps (Avg) 1256 1.9 189 151 211
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MLFFNN+LDA LFyy+ LEps (Avg) 1256 1.9 189 151 211

Runtimes in RTF.

System RTF (x10)

1B 0.74
Xvector 213
VarlB 0.82
TPIB-NN 2.44
TPIB-LDA 1.42

VarTPIB-NN 2.58
VarTPIB-LDA 1.61
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Results on all Datasets

Diarization error rates for different systems.

System Segment Initialization Discriminative Model(s) Fealures Dev Test Set

RT-04Dev RT-04Eval RT05Eval AMI-1 AMI2

B Fixed - MFCC 15.1 135 164 179 235

Xvector+AHC+VB (Supervised, 5000 hours) - xvectors 104 109 104 97 105

Proposed Systems

VarlB Varying - MFCC 123 12 153 178 226

MLFFNN LFxx 142 126 142 161 236

LA LFL 147 16 182 157 245

TPIB Fixed MLFFNN+LDA  LFyy +LFyps (0208) 131 126 126 154 219

MLFFNN+LDA Ly + LFipa (Avg) 142 124 145 163 222

MLFFNN LFyx 12 99 142 175 208

LA LFLpa 188 128 125 148 213

VarTPIB Varying MLFFNN+LDA LEyy + LFips (0604) 1.6 17 15.1 132 211

MLFFNN+LDA Ly + LEips (Avg) 128 1.9 189 151 214
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Summary

Conclusions
@ Better segment initialization results in better diarization output.
@ Recording-specific discriminative features are incorporated.
@ VarlIB in tandem with TPIB further improves the performance.
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More Information
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Unsupervised Information Bottleneck based Speaker Diarization of Meetings”,
IEEE/ACM Transactions of Audio, Speech and Language Processing, vol. 29, pp.
14-29, 2021.
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Thank You!

Question(s), Comment(s) and/or Suggestion(s)?
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