Novel Architectures for Unsupervised Information Bottleneck Based Speaker Diarization of Meetings

Presenter: [†]Nauman Dawalatabad

Co-authors: [‡]Srikanth Madikeri, [†]C. Chandra Sekhar and [†]Hema A. Murthy

[†]IIT Madras, India [‡]Idiap Research Institute, Switzerland

IEEE/ACM Transactions on Audio, Speech and Language Processing, v(29), 2021

Outline

- Diarization and its Applications
- Information Bottleneck (IB) based system
- Varying length segment initialization for IB based system (VarIB)
- Two-pass IB (TPIB) based system and VarTPIB system
- Results
- Conclusion

< 回 > < 三 > < 三 >

Diarization and Application

Speaker Diarization

Given a conversation audio, a speaker diarization system answers the question of "Who Spoke When?"

Diarization and Application

Speaker Diarization

Given a conversation audio, a speaker diarization system answers the question of "Who Spoke When?"

Applications in Conversational AI

Conversational AI

Nauman Dawalatabad

Diarization and Application

Speaker Diarization

Given a conversation audio, a speaker diarization system answers the question of "Who Spoke When?"

Applications in Conversational AI

- Keyword spotting
- Source separation
- Peer-led team learning
- Professor life analysis
- Health care
- Marmoset vocalization

Challenges and Major Contributions

Major Challenges in Speaker Diarization

- Initialization of segments for clustering for bottom-up clustering.
- Obtaining speaker discriminative features.
- Deciding on the number of speakers.
- Detecting the overlapped speaker segments.

4 6 1 1 4

Challenges and Major Contributions

Major Challenges in Speaker Diarization

- Initialization of segments for clustering for bottom-up clustering.
- Obtaining speaker discriminative features.
- Deciding on the number of speakers.
- Detecting the overlapped speaker segments.

Major Contributions

- Improve segment initialization of IB based approach.
- Obtain a meeting specific speaker discriminative features using two-pass approach.

• • • • • • • • • • • • •

Information Bottleneck (IB) based speaker diarization

Unsupervised IB

Random variables *X*, *Y*, and *C* for Speech

- *X* represents segments in an audio $\{x_1, x_2, \ldots, x_N\}$
- *Y* represents the Gaussian components $\{y_1, y_2, \dots, y_N\}$
- *C* represents the clusters made from $X \{c_1, c_2, \ldots, c_m\}, m \leq N$

Maximize
$$\mathcal{F}$$

 $\mathcal{F} = I(Y; C) - \frac{1}{\beta}I(C; X)$

Nauman Dawalatabad

Key points

- Cluster segment posteriors P(Y|X).
- Stopping NMI = $\frac{I(Y;C)}{I(X;Y)}$.

Speaker Diarization

VarIB Approach

Motivation behind the proposed approach

- Current IB based system make use of uniform segmentation.
- Uniform segmentation may not be the best solution.
- Hence, proper segment initialization is needed.

A b

VarIB Approach

Motivation behind the proposed approach

- Current IB based system make use of uniform segmentation.
- Uniform segmentation may not be the best solution.
- Hence, proper segment initialization is needed.
- The speaking rate can vary significantly across different speakers.
- Speaker information can be distributed uniformly across the segments.

A I > A = A A

VarIB Approach

Motivation behind the proposed approach

- Current IB based system make use of uniform segmentation.
- Uniform segmentation may not be the best solution.
- Hence, proper segment initialization is needed.
- The speaking rate can vary significantly across different speakers.
- Speaker information can be distributed uniformly across the segments.

Objective

To distribute number of phonemes equally across the segments.

< ロ > < 同 > < 回 > < 回 >

Different Speaking Rate

Varying Speaking Rate

- Varies across speakers.
- It can also varying within a speaker depending on his/her mood or current situation.

(日)

VarIB System

Э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

VarIB System

Optimization:

$$\mathcal{F}_v = I(Y;C) - \frac{1}{\beta}I(C;X_v)$$

Posterior Estimation:

$$P(y_i|f_k) = \frac{a_i \mathcal{N}(f_k, \mu_i, \Sigma_i)}{\sum_{j=1}^N a_j \mathcal{N}(f_k, \mu_j, \Sigma_j)}$$

э

Distribution of Phonemes in VarIB Initialization

(a) No. of phonemes in fixed length segments

(C) No. of phonemes in varying length segments

5 0.3 5 0.2 5 0.1 0 4 8 12 16 20 24 28 32 36 40 No of boomens

(b) Distribution for fixed length segments in IB

(d) Distribution for varying length segments in VarIB

Nauman Dawalatabad

э

Motivation behind the proposed system

 Current unsupervised systems do not make use of any discriminative feature information.

A b

Motivation behind the proposed system

- Current unsupervised systems do not make use of any discriminative feature information.
- One can make use of the discriminative information present in the output of the diarization system.

A .

Motivation behind the proposed system

- Current unsupervised systems do not make use of any discriminative feature information.
- One can make use of the discriminative information present in the output of the diarization system.

Objective

Introduce speaker discrimination model and keep the overall system unsupervised.

< 同 > < 回 > .

Two-pass IB (TPIB/VarTPIB) based Speaker Diarization System.

Two-pass IB (TPIB/VarTPIB) based Speaker Diarization System.

Key point

Discriminative features extracted based on current recording.

Nauman Dawalatabad

Results on all Datasets

System	Segment Initialization	Discriminative Model(s)	Features	Dev	Test Set			
				RT-04Dev	RT-04Eval	RT-05Eval	AMI-1	AMI-2
IB	Fixed	-	MFCC	15.1	13.5	16.4	17.9	23.5
Xvector+AHC+VB (Supervised, 5000 hours)	-		xvectors	10.4	10.9	10.4	9.7	10.5
		Proposed Syster	ns					
VarIB	Varying		MFCC	12.3	12	15.3	17.8	22.6
TPIB	Fixed	MLFFNN	LF_{NN}	14.2	12.6	14.2	16.1	23.6
		LDA	LF_{LDA}	14.7	11.6	13.2	15.7	24.5
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (0.2,0.8)	13.1	12.6	12.6	15.4	21.9
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (Avg.)	14.2	12.4	14.5	16.3	22.2
VarTPIB	Varying	MLFFNN	LF_{NN}	12	9.9	14.2	17.5	20.9
		LDA	LF_{LDA}	13.8	12.8	12.5	14.8	21.3
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (0.6,0.4)	11.6	11.7	15.1	13.2	21.1
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (Avg.)	12.6	11.9	13.9	15.1	21.1

Diarization error rates for different systems.

æ

<ロト < 回 > < 回 > < 回 > .

Results on all Datasets

System	Segment Initialization	Discriminative Model(s)) Features	Dev	Test Set			
				RT-04Dev	RT-04Eval	RT-05Eval	AMI-1	AMI-2
IB	Fixed		MFCC	15.1	13.5	16.4	17.9	23.5
Xvector+AHC+VB (Supervised, 5000 hours)	-		xvectors	10.4	10.9	10.4	9.7	10.5
		Proposed Syster	ns					
VarIB	Varying		MFCC	12.3	12	15.3	17.8	22.6
TPIB	Fixed	MLFFNN	LF_{NN}	14.2	12.6	14.2	16.1	23.6
		LDA	LF_{LDA}	14.7	11.6	13.2	15.7	24.5
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (0.2,0.8)	13.1	12.6	12.6	15.4	21.9
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (Avg.)	14.2	12.4	14.5	16.3	22.2
VarTPIB	Varying	MLFFNN	LF_{NN}	12	9.9	14.2	17.5	20.9
		LDA	LF_{LDA}	13.8	12.8	12.5	14.8	21.3
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (0.6,0.4)	11.6	11.7	15.1	13.2	21.1
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (Avg.)	12.6	11.9	13.9	15.1	21.1

Diarization error rates for different systems.

Runtimes in RTF.

System	RTF (x10)
IB	0.74
Xvector	2.13
VarIB	0.82
TPIB-NN	2.44
TPIB-LDA	1.42
VarTPIB-NN	2.58
VarTPIB-LDA	1.61

æ

<ロト < 回 > < 回 > < 回 > .

Results on all Datasets

System	Segment Initialization	Discriminative Model(s)	Features	Dev	Test Set			
				RT-04Dev	RT-04Eval	RT-05Eval	AMI-1	AMI-2
IB	Fixed	-	MFCC	15.1	13.5	16.4	17.9	23.5
Xvector+AHC+VB (Supervised, 5000 hours)	-	-	xvectors	10.4	10.9	10.4	9.7	10.5
		Proposed Syster	ns					
VarIB	Varying	-	MFCC	12.3	12	15.3	17.8	22.6
TPIB	Fixed	MLFFNN	LF_{NN}	14.2	12.6	14.2	16.1	23.6
		LDA	LF_{LDA}	14.7	11.6	13.2	15.7	24.5
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (0.2,0.8)	13.1	12.6	12.6	15.4	21.9
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (Avg.)	14.2	12.4	14.5	16.3	22.2
VarTPIB	Varying	MLFFNN	LF_{NN}	12	9.9	14.2	17.5	20.9
		LDA	LF_{LDA}	13.8	12.8	12.5	14.8	21.3
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (0.6,0.4)	11.6	11.7	15.1	13.2	21.1
		MLFFNN+LDA	$LF_{NN} + LF_{LDA}$ (Avg.)	12.6	11.9	13.9	15.1	21.1

Diarization error rates for different systems.

D		-	
Duntimoc	in	01	_
nununes		n i	н.

System	RTF (x10)
IB	0.74
Xvector	2.13
VarIB	0.82
TPIB-NN	2.44
TPIB-LDA	1.42
VarTPIB-NN	2.58
VarTPIB-LDA	1.61

Nauman Dawalatabad

Speaker Diarization

Summary

Conclusions

- Better segment initialization results in better diarization output.
- Recording-specific discriminative features are incorporated.
- VarIB in tandem with TPIB further improves the performance.

Summary

Conclusions

- Better segment initialization results in better diarization output.
- Recording-specific discriminative features are incorporated.
- VarIB in tandem with TPIB further improves the performance.

Possible Extensions

- Other sound units like syllables or even word level segments.
- Other discriminative models in TPIB.

Summary

Conclusions

- Better segment initialization results in better diarization output.
- Recording-specific discriminative features are incorporated.
- VarIB in tandem with TPIB further improves the performance.

Possible Extensions

- Other sound units like syllables or even word level segments.
- Other discriminative models in TPIB.

More Information

N. Dawalatabad, S. Madikeri, C. C. Sekhar, H. A. Murthy, "Novel Architectures for Unsupervised Information Bottleneck based Speaker Diarization of Meetings", IEEE/ACM Transactions of Audio, Speech and Language Processing, vol. 29, pp. 14–29, 2021.

Thank You!

Question(s), Comment(s) and/or Suggestion(s)?

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・