CS7015 (Deep Learning) : Lecture 18 Markov Networks

Mitesh M. Khapra

Department of Computer Science and Engineering Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Acknowledgments

• Probabilistic Graphical models: Principles and Techniques, Daphne Koller and Nir Friedman

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Module 18.1: Markov Networks: Motivation

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 18

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

4/29

イロト (得) (日) (日) 日) つくで

4/29

• A, B, C, D are four students

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

4/29

- A, B, C, D are four students
- A and B study together sometimes

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

4/29

- A, B, C, D are four students
- A and B study together sometimes
- $\bullet~B$ and C study together sometimes

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A, B, C, D are four students
- A and B study together sometimes
- $\bullet~B$ and C study together sometimes
- C and D study together sometimes

・ロッ ・雪 ・ ・ ヨ ・ ・ ・ ・

- A, B, C, D are four students
- A and B study together sometimes
- $\bullet~B$ and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together

(四) (日) (日) (日)

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

(四) (日) (日) (日)

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- To motivate undirected graphical models let us consider a new example
- Now suppose there was some misconception in the lecture due to some error made by the teacher

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- To motivate undirected graphical models let us consider a new example
- Now suppose there was some misconception in the lecture due to some error made by the teacher
- Each one of A, B, C, D could have independently cleared this misconception by thinking about it after the lecture

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

- A, B, C, D are four students
- A and B study together sometimes
- $\bullet~B$ and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- To motivate undirected graphical models let us consider a new example
- Now suppose there was some misconception in the lecture due to some error made by the teacher
- Each one of A, B, C, D could have independently cleared this misconception by thinking about it after the lecture
- In subsequent study pairs, each student could then pass on this information to their partner

• We are now interested in knowing whether a student still has the misconception or not

イロト (四) (日) (日) (日) (日) (日)

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- We are now interested in knowing whether a student still has the misconception or not
- Or we are interested in P(A, B, C, D)

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- We are now interested in knowing whether a student still has the misconception or not
- Or we are interested in P(A, B, C, D)
- where A, B, C, D can take values 0 (no misconception) or 1 (misconception)

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- B and D never study together

- We are now interested in knowing whether a student still has the misconception or not
- Or we are interested in P(A, B, C, D)
- where A, B, C, D can take values 0 (no misconception) or 1 (misconception)
- How do we model this using a Bayesian Network ?

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

• First let us examine the conditional independencies in this problem

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- First let us examine the conditional independencies in this problem
- $A \perp C | \{B, D\}$ (because A & C never interact)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- First let us examine the conditional independencies in this problem
- $A \perp C | \{B, D\}$ (because A & C never interact)
- $B \perp D | \{A, C\}$ (because B & D never interact)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- $\bullet~B$ and D never study together

- First let us examine the conditional independencies in this problem
- $A \perp C | \{B, D\}$ (because A & C never interact)
- $B \perp D | \{A, C\}$ (because B & D never interact)
- There are no other conditional independencies in the problem

- A, B, C, D are four students
- A and B study together sometimes
- B and C study together sometimes
- $\bullet~C$ and D study together sometimes
- A and D study together sometimes
- A and C never study together
- B and D never study together

- First let us examine the conditional independencies in this problem
- $A \perp C | \{B, D\}$ (because A & C never interact)
- $B \perp D | \{A, C\}$ (because B & D never interact)
- There are no other conditional independencies in the problem
- Now let us try to represent this using a Bayesian Network

• How about this one?

8/29

- How about this one?
- Indeed, it captures the following independencies relation

 $A\perp C|\{B,D\}$

イロト (得) (日) (日) 日) つくで

8/29

- How about this one?
- Indeed, it captures the following independencies relation

 $A \perp C | \{B, D\}$

• But, it also implies that

 $B \not\perp D | \{A, C\}$

イロト (得) (日) (日) 日) つくで

8/29

• Again

 $A\perp C|\{B,D\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Again

$$A \perp C | \{B, D\}$$

• But

 $B \perp D(\text{unconditional})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Again

$$A \perp C | \{B, D\}$$

• But

 $B \perp D(\text{unconditional})$

• You can try other networks

• Again

$$A \perp C | \{B, D\}$$

• But

 $B \perp D(\text{unconditional})$

- You can try other networks
- Turns out there is no Bayesian Network which can exactly capture independence relations that we are interested in

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

• **Perfect Map**: A graph *G* is a Perfect Map for a distribution *P* if the independance relations implied by the graph are exactly the same as those implied by the distribution

• Let us try a different network

• Again

$$A \perp C | \{B, D\}$$

• But

 $B \perp D(\text{unconditional})$

- You can try other networks
- Turns out there is no Bayesian Network which can exactly capture independence relations that we are interested in

• **Perfect Map**: A graph *G* is a Perfect Map for a distribution *P* if the independance relations implied by the graph are exactly the same as those implied by the distribution

• Let us try a different network

• Again

$$A \perp C | \{B, D\}$$

• But

 $B \perp D(\text{unconditional})$

- You can try other networks
- Turns out there is no Bayesian Network which can exactly capture independence relations that we are interested in
- There is no Perfect Map for the distribution

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ りへで

• The problem is that a directed graphical model is not suitable for this example

《曰》 《曰》 《曰》 《曰》

- The problem is that a directed graphical model is not suitable for this example
- A directed edge between two nodes implies some kind of direction in the interaction

イロト 不得 トイヨト イヨト

- The problem is that a directed graphical model is not suitable for this example
- A directed edge between two nodes implies some kind of direction in the interaction
- For example A → B could indicate that A influences B but not the other way round

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

- The problem is that a directed graphical model is not suitable for this example
- A directed edge between two nodes implies some kind of direction in the interaction
- For example A → B could indicate that A influences B but not the other way round
- But in our example A&B are equal partners (they both contribute to the study discussion)

化白豆 化塑料 化医医子医医子 医白

- The problem is that a directed graphical model is not suitable for this example
- A directed edge between two nodes implies some kind of direction in the interaction
- For example A → B could indicate that A influences B but not the other way round
- But in our example A&B are equal partners (they both contribute to the study discussion)
- We want to capture the strength of this interaction (and there is no direction here)

• We move on from Directed Graphical Models to Undirected Graphical Models

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 …のへで

- We move on from Directed Graphical Models to Undirected Graphical Models
- Also known as **Markov Network**

- We move on from Directed Graphical Models to Undirected Graphical Models
- Also known as **Markov Network**
- The Markov Network on the left exactly captures the interactions inherent in the problem

- We move on from Directed Graphical Models to Undirected Graphical Models
- Also known as Markov Network
- The Markov Network on the left exactly captures the interactions inherent in the problem
- But how do we parameterize this graph?

Module 18.2: Factors in Markov Network

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 18

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

$$\begin{split} P(G,S,I,L,D) = \\ P(I)P(D)P(G|I,D)P(S|I)P(L|G) \end{split}$$

• Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)

- Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)
- Each such factor captured interaction (dependence) between the connected nodes

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

$$\begin{split} P(G,S,I,L,D) = \\ P(I)P(D)P(G|I,D)P(S|I)P(L|G) \end{split}$$

- Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)
- Each such factor captured interaction (dependence) between the connected nodes
- Can we use CPDs in the undirected case also ?

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

$$\begin{split} P(G,S,I,L,D) = \\ P(I)P(D)P(G|I,D)P(S|I)P(L|G) \end{split}$$

$$\begin{split} P(G,S,I,L,D) = \\ P(I)P(D)P(G|I,D)P(S|I)P(L|G) \end{split}$$

- Recall that in the directed case the factors were Conditional Probability Distributions (CPDs)
- Each such factor captured interaction (dependence) between the connected nodes
- Can we use CPDs in the undirected case also ?
- CPDs don't make sense in the undirected case because there is no direction and hence no natural conditioning (Is A|B or B|A?)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• So what should be the factors or parameters in this case

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

- So what should be the factors or parameters in this case
- **Question:** What do we want these factors to capture ?

- So what should be the factors or parameters in this case
- **Question:** What do we want these factors to capture ?
- **Answer:** The affinity between connected random variables

- So what should be the factors or parameters in this case
- **Question:** What do we want these factors to capture ?
- **Answer:** The affinity between connected random variables
- Just as in the directed case the factors captured the conditional dependence between a set of random variables, here we want them to capture the affinity between them

• However we can borrow the intuition from the directed case.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

- However we can borrow the intuition from the directed case.
- Even in the undirected case, we want each such factor to capture interactions (affinity) between connected nodes

- However we can borrow the intuition from the directed case.
- Even in the undirected case, we want each such factor to capture interactions (affinity) between connected nodes
- We could have factors $\phi_1(A, B)$, $\phi_2(B, C)$, $\phi_3(C, D)$, $\phi_4(D, A)$ which capture the affinity between the corresponding nodes.

• Intuitively, it makes sense to have these factors associated with each pair of connected random variables.

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$
$a^0 b^0$	$a^0 b^0$	$a^0 b^0$	$a^0 b^0$
$a^0 \ b^1$	$a^0 b^1$	$a^0 \ b^1$	$a^0 \ b^1$
$a^1 \ b^0$	$a^1 b^0$	$a^1 \ b^0$	$a^1 \ b^0$
a^1 b^1	a^1 b^1	a^1 b^1	a^1 b^1

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors

$\phi_1(A,B) \qquad \phi_2(B,C)$		$\phi_3(C,D)$				$\phi_4(D,A)$					
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	b^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors

$\phi_1(A,B) \qquad \phi_2(B,$		(C)		$\phi_3(C$	C, D)		$\phi_4(L$	(A)			
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	b^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

• But who will give us these values ?

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors

$\phi_1(A,B) \qquad \phi_2(B,C)$		$\phi_3(C,D)$	$\phi_4(D,A)$		
$a^0 b^0 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$		
$a^0 b^1 5$	a^0 b^1 1	a^0 b^0 100	a^0 b^1 1		
$a^1 b^0 1$	$a^1 b^0 1$	a^1 b^1 100	$a^1 \ b^0 \ 1$		
$a^1 \ b^1 \ 10$	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$		

- But who will give us these values ?
- Well now you need to learn them from data (same as in the directed case)

٩	Intuit	ively,	it	makes	sens	se to	have
	these	facto	\mathbf{rs}	associa	ted	with	each
	pair o	f conr	nec	ted rand	lom	varial	oles.

• We could now assign some values of these factors

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$		
$a^0 b^0 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$		
$a^0 b^1 5$	a^0 b^1 1	$a^0 b^0 100$	a^0 b^1 1		
$a^1 b^0 1$	$a^1 b^0 1$	a^1 b^1 100	$a^1 b^0 1$		
$a^1 \ b^1 \ 10$	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$		

- But who will give us these values ?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values(more on this later)

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D, A)$		
$a^0 \ b^0 \ 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$		
$a^0 \ b^1 \ 5$	$a^0 b^1 1$	$a^0 b^0 100$	a^0 b^1 1		
$a^1 b^0 1$	$a^1 b^0 1$	a^1 b^1 100	$a^1 \ b^0 \ 1$		
$a^1 \ b^1 \ 10$	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$		
			-		

- But who will give us these values ?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values(more on this later)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors
- Roughly speaking $\phi_1(A, B)$ asserts that it is more likely for A and Bto agree [:: weights for $a^0b^0, a^1b^1 > a^0b^1, a^1b^0$]

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D, A)$
$a^0 \ b^0 \ 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$
$a^0 \ b^1 \ 5$	a^0 b^1 1	$a^0 b^0 100$	$a^0 \ b^1 \ 1$
$a^1 \ b^0 \ 1$	$a^1 b^0 1$	a^1 b^1 100	$a^1 \ b^0 \ 1$
$a^1 \ b^1 \ 10$	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$
			-

- But who will give us these values ?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values(more on this later)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors
- Roughly speaking $\phi_1(A, B)$ asserts that it is more likely for A and Bto agree [:: weights for $a^0b^0, a^1b^1 > a^0b^1, a^1b^0$]
- φ₁(A, B) also assigns more weight to the case when both do not have a misconception as compared to the case when both have the misconception a⁰b⁰ > a¹b¹

イロト イロト イヨト イヨト ヨー りへで

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D, A)$		
$a^0 \ b^0 \ 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 \ b^0 \ 100$		
$a^0 \ b^1 \ 5$	$a^0 b^1 1$	$a^0 b^0 100$	$a^0 \ b^1 \ 1$		
$a^1 b^0 1$	$a^1 b^0 1$	a^1 b^1 100	$a^1 \ b^0 \ 1$		
$a^1 \ b^1 \ 10$	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$		
			-		

- But who will give us these values ?
- Well now you need to learn them from data (same as in the directed case)
- If you have access to a lot of past interactions between A&B then you could learn these values(more on this later)

- Intuitively, it makes sense to have these factors associated with each pair of connected random variables.
- We could now assign some values of these factors
- Roughly speaking $\phi_1(A, B)$ asserts that it is more likely for A and Bto agree [:: weights for $a^0b^0, a^1b^1 > a^0b^1, a^1b^0$]
- φ₁(A, B) also assigns more weight to the case when both do not have a misconception as compared to the case when both have the misconception a⁰b⁰ > a¹b¹
- We could have similar assignments for the other factors

$\phi_1(A,B) \qquad \phi_2(B,C)$		$\phi_3(C,D)$			$\phi_4(D,A)$						
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	a^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

• Notice a few things

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

۰	Notice	\mathbf{a}	few	things
---	--------	--------------	-----	--------

• These tables do not represent probability distributions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

9	$\phi_1(A$	(,B)	$\phi_2(B,C)$		$\phi_3(C,D)$			$\phi_4(D,A)$			
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	a^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

ϕ_1	(A, B)		$\phi_2(E$	B, C)		$\phi_3(C$	C, D)		$\phi_4(L$	(O, A)
$a^0 = l$	$5^0 - 30$	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
$a^0 = l$	5^{1} 5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
$a^1 = l$	5^{0} 1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1 a^1	$a^1 = 10$	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

- Notice a few things
- These tables do not represent probability distributions
- They are just weights which can be interpreted as the relative likelihood of an event

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$		
$a^0 b^0 30$	$a^0 b^0 100$	$a^0 b^0 1$	$a^0 b^0 100$		
$a^0 b^1 5$	$a^0 b^1 1$	$a^0 b^0 100$	a^0 b^1 1		
$a^1 \ b^0 \ 1$	$a^1 b^0 1$	a^1 b^1 100	$a^1 b^0 1$		
$a^1 \ a^1 \ 10$	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$		

- Notice a few things
- These tables do not represent probability distributions
- They are just weights which can be interpreted as the relative likelihood of an event
- For example, a = 0, b = 0 is more likely than a = 1, b = 1

۹	But	eventu	ally	we	are	interested	ir
	prob	ability	dist	ribu	tion	S	

◆□ → ◆母 → ◆ = → ◆ = → ○ へ ○ 18/29

$\phi_1(A,B)$			$\phi_2(B,C)$			$\phi_3(C,D)$			$\phi_4(D,A)$		
a^0	b^0	30	a^0	b^0	100	a^0	b^0	1	a^0	b^0	100
a^0	b^1	5	a^0	b^1	1	a^0	b^0	100	a^0	b^1	1
a^1	b^0	1	a^1	b^0	1	a^1	b^1	100	a^1	b^0	1
a^1	a^1	10	a^1	b^1	100	a^1	b^1	1	a^1	b^1	100

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$		
$a^0 b^0 30$	$a^0 \ b^0 \ 100$	$a^0 b^0 1$	$a^0 b^0 100$		
a^0 b^1 5	a^0 b^1 1	$a^0 b^0 100$	a^0 b^1 1		
$a^1 \ b^0 \ 1$	$a^1 \ b^0 \ 1$	a^1 b^1 100	$a^1 b^0 1$		
a^1 a^1 10	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$		

- But eventually we are interested in probability distributions
- In the directed case going from factors to a joint probability distribution was easy as the factors were themselves conditional probability distributions

イロト (雪) (日) (日) (日) (日)

$\phi_1(A,B)$	$\phi_2(B,C)$	$\phi_3(C,D)$	$\phi_4(D,A)$		
$a^0 b^0 30$	$a^0 \ b^0 \ 100$	$a^0 b^0 1$	$a^0 b^0 100$		
a^0 b^1 5	a^0 b^1 1	$a^0 b^0 100$	a^0 b^1 1		
$a^1 \ b^0 \ 1$	$a^1 \ b^0 \ 1$	a^1 b^1 100	$a^1 b^0 1$		
a^1 a^1 10	$a^1 \ b^1 \ 100$	$a^1 \ b^1 \ 1$	$a^1 \ b^1 \ 100$		

- But eventually we are interested in probability distributions
- In the directed case going from factors to a joint probability distribution was easy as the factors were themselves conditional probability distributions
- We could just write the joint probability distribution as the product of the factors (without violating the axioms of probability)

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

$\phi_1(A, E$	3)	$\phi_2(B,C)$		$\phi_3(C$,D)		$\phi_4(D$,A)
$a^0 \ b^0 \ 3$	$0 a^0$	$b^0 = 100$	a^0	b^0	1	a^0	b^0	100
$a^0 \ b^1 \ 5$	a^0	b^{1} 1	a^0	b^0	100	a^0	b^1	1
$a^1 \ b^0 \ 1$	a^1	$b^0 = 1$	a^1	b^1	100	a^1	b^0	1
a^1 a^1 1	$0 a^1$	$b^1 = 100$	a^1	b^1	1	a^1	b^1	100

- But eventually we are interested in probability distributions
- In the directed case going from factors to a joint probability distribution was easy as the factors were themselves conditional probability distributions
- We could just write the joint probability distribution as the product of the factors (without violating the axioms of probability)
- What do we do in this case when the factors are not probability distributions

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

A	Assignment			Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Assignment			nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A	Assignment			Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	$6.94 \text{E}{-}05$
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Assignment			nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

• Based on the values that we had assigned to the factors we can now compute the full joint probability distribution

Assignment			nt	Unnormalized	Normalized
a^0	b^0	c^0	d^0	300,000	4.17E-02
a^0	b^0	c^0	d^1	300,000	4.17E-02
a^0	b^0	c^1	d^0	300,000	4.17E-02
a^0	b^0	c^1	d^1	30	4.17E-06
a^0	b^1	c^0	d^0	500	6.94E-05
a^0	b^1	c^0	d^1	500	6.94E-05
a^0	b^1	c^1	d^0	5,000,000	6.94E-01
a^0	b^1	c^1	d^1	500	6.94E-05
a^1	b^0	c^0	d^0	100	1.39E-05
a^1	b^0	c^0	d^1	1,000,000	1.39E-01
a^1	b^0	c^1	d^0	100	1.39E-05
a^1	b^0	c^1	d^1	100	1.39E-05
a^1	b^1	c^0	d^0	10	1.39E-06
a^1	b^1	c^0	d^1	100,000	1.39E-02
a^1	b^1	c^1	d^0	100,000	1.39E-02
a^1	b^1	c^1	d^1	100,000	1.39E-02

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a)$$

- Based on the values that we had assigned to the factors we can now compute the full joint probability distribution
- Z is called the partition function.

• Let us build on the original example by adding some more students

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• Let us build on the original example by adding some more students

- Let us build on the original example by adding some more students
- Once again there is an edge between two students if they study together

< ロ > (何 > (三 > (三 >)))

= 900

- Let us build on the original example by adding some more students
- Once again there is an edge between two students if they study together
- One way of interpreting these new connections is that $\{A, D, E\}$ from a study group or a clique

- Let us build on the original example by adding some more students
- Once again there is an edge between two students if they study together
- One way of interpreting these new connections is that $\{A, D, E\}$ from a study group or a clique
- Similarly $\{A, F, B\}$ form a study group and $\{C, D\}$ form a study group and $\{B, C\}$ form a study group

イロト (四) (日) (日) (日) (日)

• Now, what should the factors be?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions

$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B)$ $\phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B)$ $\phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions
- But could we do something smarter (and more efficient)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B) \\ \phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions
- But could we do something smarter (and more efficient)
- Instead of having a factor for each pair of nodes why not have it for each maximal clique?

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$\phi_1(A, E)\phi_2(A, F)\phi_3(B, F)\phi_4(A, B) \\ \phi_5(A, D)\phi_6(D, E)\phi_7(B, C)\phi_8(C, D)$

 $\phi_1(A, E, D)\phi_2(A, F, B)\phi_3(B, C)\phi_4(C, D)$

- Now, what should the factors be?
- We could still have factors which capture pairwise interactions
- But could we do something smarter (and more efficient)
- Instead of having a factor for each pair of nodes why not have it for each maximal clique?

→□ → ↓ = → ↓ = → ♪ ↓ □ → ♪

• What if we add one more student?

▲□ → < □ → < Ξ → < Ξ → Ξ のへで 22/29</p>

• What if we add one more student?

<□ → < □ → < Ξ → < Ξ → Ξ のへで 22/29</p>

- What if we add one more student?
- What will be the factors in this case?

イロト (日本) (日本) (日本) 日 の()

- What if we add one more student?
- What will be the factors in this case?
- Remember, we are interested in maximal cliques

- What if we add one more student?
- What will be the factors in this case?
- Remember, we are interested in maximal cliques
- So instead of having factors $\phi(EAG)$ $\phi(GAD) \ \phi(EGD)$ we will have a single factor $\phi(AEGD)$ corresponding to the maximal clique

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 18

◆□ → ◆□ → < Ξ → < Ξ → Ξ の Q ○ 23/29</p>

• A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i|P_{a_{X_i}})$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i|P_{a_{X_i}})$$

• A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i|P_{a_{X_i}})$$

• A distribution factorizes over a Markov Network *H* if P can be expressed as

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi(D_i)$$

where each D_i is a complete sub-graph (maximal clique) in H

• A distribution P factorizes over a Bayesian Network G if P can be expressed as

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i|P_{a_{X_i}})$$

• A distribution factorizes over a Markov Network *H* if P can be expressed as

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi(D_i)$$

where each D_i is a complete sub-graph (maximal clique) in H

A distribution is a Gibbs distribution parametrized by a set of factors $\Phi = \{\phi_1(D_1), \dots, \phi_m(D_m)\}$ if it is defined as

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{i=1}^m \phi_i(D_i)$$

Module 18.3: Local Independencies in a Markov Network

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 18

• Let U be the set of all random variables in our joint distribution

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

- Let U be the set of all random variables in our joint distribution
- Let X, Y, Z be some distinct subsets of U

イロト (日本) (日本) (日本) 日 の()

- Let U be the set of all random variables in our joint distribution
- Let X, Y, Z be some distinct subsets of U
- A distribution P over these RVs would imply $X \perp Y | Z$ if and only if we can write

$$P(X) = \phi_1(X, Z)\phi_2(Y, Z)$$

イロト イロト イヨト イヨト ヨー りへで

- Let U be the set of all random variables in our joint distribution
- Let X, Y, Z be some distinct subsets of U
- A distribution P over these RVs would imply $X \perp Y | Z$ if and only if we can write

$$P(X) = \phi_1(X, Z)\phi_2(Y, Z)$$

• Let us see this in the context of our original example

- In this example
 - $P(A, B, C, D) = \frac{1}{Z} [\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)]$

- $\bullet\,$ In this example
 - $P(A, B, C, D) = \frac{1}{Z} [\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)]$
- We can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{[\phi_1(A, B)\phi_2(B, C)]}_{\phi_5(B, \{A, C\})} \underbrace{[\phi_3(C, D)\phi_4(D, A)]}_{\phi_6(D, \{A, C\})}$$

- In this example
 - $P(A, B, C, D) = \frac{1}{Z} [\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)]$
- We can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{[\phi_1(A, B)\phi_2(B, C)]}_{\phi_5(B, \{A, C\})} \underbrace{[\phi_3(C, D)\phi_4(D, A)]}_{\phi_6(D, \{A, C\})}$$

• We can say that $B \perp D | \{A, C\}$ which is indeed true

- In this example
 - $P(A, B, C, D) = \frac{1}{Z} [\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A)]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

• In this example

$$\begin{split} P(A, B, C, D) &= \\ \frac{1}{Z} [\phi_1(A, B) \phi_2(B, C) \phi_3(C, D) \phi_4(D, A)] \end{split}$$

• Alternatively we can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{[\phi_1(A, B)\phi_2(D, A)]}_{\phi_5(A, \{B, D\})} \underbrace{[\phi_3(C, D)\phi_4(B, C)]}_{\phi_6(C, \{B, D\})}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• In this example

$$\begin{split} P(A, B, C, D) &= \\ \frac{1}{Z} [\phi_1(A, B) \phi_2(B, C) \phi_3(C, D) \phi_4(D, A)] \end{split}$$

• Alternatively we can rewrite this as

$$P(A, B, C, D) = \frac{1}{Z} \underbrace{[\phi_1(A, B)\phi_2(D, A)]}_{\phi_5(A, \{B, D\})} \underbrace{[\phi_3(C, D)\phi_4(B, C)]}_{\phi_6(C, \{B, D\})}$$

イロト (日本) (日本) (日本) 日 の()

• We can say that $A \perp C | \{B, D\}$ which is indeed true

• For a given Markov network *H* we define Markov Blanket of a RV *X* to be the neighbors of *X* in *H*

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 18

- For a given Markov network *H* we define Markov Blanket of a RV *X* to be the neighbors of *X* in *H*
- Analogous to the case of Bayesian Networks we can define the local independences associated with H to be

 $X \perp (U - \{X\} - MB_H) | MB_H(X)$

Bayesian network

Markov network

Local Independencies

 $X_i \perp NonDescendents_{X_i} | Parent_{X_i}^G$

Markov network

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ つ ・

Local Independencies

 $X_i \perp NonDescendents_{X_i} | Parent_{X_i}^G$

Markov network

Local Independencies

 $X_i \perp NonDescendents_{X_i} | Parent_{X_i}^G$

Local Independencies

 $X_i \perp NonNeighbors_{X_i} | Neighbors_{X_i}^G$

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ つ ・