
1 / 94

CS7015 (Deep Learning) : Lecture 5
Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD,

Stochastic GD, AdaGrad, RMSProp, Adam

Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

2 / 94

Acknowledgements

For most of the lecture, I have borrowed ideas from the videos by Ryan Harris
on “visualize backpropagation” (available on youtube)

Some content is based on the course CS231na by Andrej Karpathy and others

ahttp://cs231n.stanford.edu/2016/

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

3 / 94

Module 5.1: Learning Parameters : Infeasible (Guess
Work)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

4 / 94

σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

Input for training

{xi, yi}Ni=1 → N pairs of (x, y)

Training objective

Find w and b such that:

minimize
w,b

L (w, b) =

N∑
i=1

(yi − f(xi))
2

What does it mean to train the network?

Suppose we train the network with
(x, y) = (0.5, 0.2) and (2.5, 0.9)

At the end of training we expect to
find w∗, b∗ such that:

f(0.5)→ 0.2 and f(2.5)→ 0.9

In other words...

We hope to find a sigmoid function
such that (0.5, 0.2) and (2.5, 0.9) lie
on this sigmoid

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

5 / 94

σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

In other words...

We hope to find a sigmoid function
such that (0.5, 0.2) and (2.5, 0.9) lie
on this sigmoid

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

6 / 94

Let us see this in more detail....

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

7 / 94

Can we try to find such a w∗, b∗ manually

Let us try a random guess.. (say, w = 0.5, b = 0)

Clearly not good, but how bad is it ?

Let us revisit L (w, b) to see how bad it is ...

L (w, b) =
1

2
∗

N∑
i=1

(yi − f(xi))
2

=
1

2
∗ ((y1 − f(x1))2 + (y2 − f(x2))2)

=
1

2
∗ ((0.9− f(2.5))2 + (0.2− f(0.5))2)

= 0.073

We want L (w, b) to be as close to 0 as possible
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

8 / 94

Let us try some other values of w, b

w b L (w, b)

0.50 0.00 0.0730
-0.10 0.00 0.1481
0.94 -0.94 0.0214
1.42 -1.73 0.0028
1.65 -2.08 0.0003
1.78 -2.27 0.0000

Oops!! this made things even worse...

Perhaps it would help to push w and b in the
other direction...

Let us keep going in this direction, i.e., increase
w and decrease b

With some guess work and intuition we were able
to find the right values for w and b

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

9 / 94

Let us look at something better than our “guess work”
algorithm....

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

10 / 94

Since we have only 2 points and 2
parameters (w, b) we can easily plot
L (w, b) for different values of (w, b)
and pick the one where L (w, b) is
minimum

But of course this becomes intract-
able once you have many more data
points and many more parameters !!

Further, even here we have plotted
the error surface only for a small
range of (w, b) [from (−6, 6) and not
from (− inf, inf)]

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

11 / 94

Let us look at the geometric interpretation of our
“guess work” algorithm in terms of this error surface

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

12 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

13 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

14 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

15 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

16 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

17 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

18 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

19 / 94

Module 5.2: Learning Parameters : Gradient Descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

20 / 94

Now let’s see if there is a more efficient and
principled way of doing this

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

21 / 94

Goal

Find a better way of traversing the error surface so that we can reach the
minimum value quickly without resorting to brute force search!

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

22 / 94

θ = [w, b]

∆θ = [∆w,∆b]

θnew = θ + η ·∆θ

vector of parameters,
say, randomly initial-
ized

change in the
values of w, b

Question:What is the right ∆θ to use?

We moved in the direc-
tion of ∆θ

Let us be a bit conservat-
ive: move only by a small
amount η

The answer comes from Taylor series

θ

∆θ

θnew

η ·∆θ

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

23 / 94

For ease of notation, let ∆θ = u, then from Taylor series, we have,

L (θ + ηu) = L (θ) + η ∗ uT∇L (θ) +
η2

2!
∗ uT∇2L (θ)u+

η3

3!
∗ ...+ η4

4!
∗ ...

= L (θ) + η ∗ uT∇L (θ) [η is typically small, so η2, η3, ...→ 0]

Note that the move (ηu) would be favorable only if,

L (θ + ηu)−L (θ) < 0 [i.e., if the new loss is less than the previous loss]

This implies,

uT∇L (θ) < 0

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

24 / 94

Okay, so we have,

uT∇L (θ) < 0

But, what is the range of uT∇L (θ) ? Let’s see....
Let β be the angle between uT and ∇L (θ), then we know that,

− 1 ≤ cos(β) =
uT∇L (θ)

||u|| ∗ ||∇L (θ)||
≤ 1

Multiply throughout by k = ||u|| ∗ ||∇L (θ)||

− k ≤ k ∗ cos(β) = uT∇L (θ) ≤ k

Thus, L (θ + ηu)−L (θ) = uT∇L (θ) = k ∗ cos(β) will be most negative when
cos(β) = −1 i.e., when β is 180◦

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

25 / 94

Gradient Descent Rule

The direction u that we intend to move in should be at 180◦ w.r.t. the gradient

In other words, move in a direction opposite to the gradient

Parameter Update Equations

wt+1 = wt − η∇wt
bt+1 = bt − η∇bt

where,∇wt =
∂L (w, b)

∂w at w = wt, b = bt
,∇bt =

∂L (w, b)

∂b at w = wt, b = bt

So we now have a more principled way of moving in the w-b plane than our “guess
work” algorithm

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

26 / 94

Let’s create an algorithm from this rule ...

Algorithm 1: gradient descent()

t← 0;
max iterations← 1000;
while t < max iterations do

wt+1 ← wt − η∇wt;
bt+1 ← bt − η∇bt;

end

To see this algorithm in practice let us first derive ∇w and ∇b for our toy neural
network

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

27 / 94

σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

Let’s assume there is only 1 point to fit
(x, y)

L (w, b) =
1

2
∗ (f(x)− y)2

∇w =
∂L (w, b)

∂w
=

∂

∂w
[
1

2
∗ (f(x)− y)2]

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

28 / 94

∇w =
∂

∂w
[
1

2
∗ (f(x)− y)2]

=
1

2
∗ [2 ∗ (f(x)− y) ∗ ∂

∂w
(f(x)− y)]

= (f(x)− y) ∗ ∂

∂w
(f(x))

= (f(x)− y) ∗ ∂

∂w

(1

1 + e−(wx+b)

)
= (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x

∂

∂w

(1

1 + e−(wx+b)

)
=

−1

(1 + e−(wx+b))2

∂

∂w
(e−(wx+b)))

=
−1

(1 + e−(wx+b))2
∗ (e−(wx+b))

∂

∂w
(−(wx+ b)))

=
−1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (−x)

=
1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (x)

= f(x) ∗ (1− f(x)) ∗ x

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

29 / 94

σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

So if there is only 1 point (x, y), we have,

∇w = (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x

For two points,

∇w =

2∑
i=1

(f(xi)− yi) ∗ f(xi) ∗ (1− f(xi)) ∗ xi

∇b =

2∑
i=1

(f(xi)− yi) ∗ f(xi) ∗ (1− f(xi))

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

30 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

31 / 94

x

y

−1 0 1 2 3 4
0

1

2

3

4

5

6 f(x) = x2 + 1

∆x1

∆y1

∆x2

∆y2

When the curve is steep the gradient
(∆y1

∆x1
) is large

When the curve is gentle the gradient
(∆y2

∆x2
) is small

Recall that our weight updates are
proportional to the gradient w = w−
η∇w
Hence in the areas where the curve is
gentle the updates are small whereas
in the areas where the curve is steep
the updates are large

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

32 / 94

Let’s see what happens when we start from a differ-
ent point

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

33 / 94

Irrespective of where we start from
once we hit a surface which has a
gentle slope, the progress slows down

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

34 / 94

Module 5.3 : Contours

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

35 / 94

Visualizing things in 3d can sometimes become a bit
cumbersome
Can we do a 2d visualization of this traversal along
the error surface
Yes, let’s take a look at something known as con-
tours

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

36 / 94

θ

er
ro

r

Figure: Front view of a 3d error surface

Suppose I take horizontal slices of
this error surface at regular intervals
along the vertical axis

How would this look from the top-
view ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

37 / 94

A small distance between the con-
tours indicates a steep slope along
that direction

A large distance between the contours
indicates a gentle slope along that dir-
ection

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

38 / 94

Just to ensure that we understand this properly let
us do a few exercises ...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

39 / 94

Guess the 3d surface

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

40 / 94

Guess the 3d surface

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

41 / 94

Guess the 3d surface

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

42 / 94

Module 5.4 : Momentum based Gradient Descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

43 / 94

Some observations about gradient descent

It takes a lot of time to navigate regions having a gentle slope

This is because the gradient in these regions is very small

Can we do something better ?

Yes, let’s take a look at ‘Momentum based gradient descent’

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

44 / 94

Intuition

If I am repeatedly being asked to move in the same direction then I should
probably gain some confidence and start taking bigger steps in that direction

Just as a ball gains momentum while rolling down a slope

Update rule for momentum based gradient descent

updatet = γ · updatet−1 + η∇wt
wt+1 = wt − updatet

In addition to the current update, also look at the history of updates.

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

45 / 94

updatet = γ · updatet−1 + η∇wt
wt+1 = wt − updatet

update0 = 0

update1 = γ · update0 + η∇w1 = η∇w1

update2 = γ · update1 + η∇w2 = γ · η∇w1 + η∇w2

update3 = γ · update2 + η∇w3 = γ(γ · η∇w1 + η∇w2) + η∇w3

= γ · update2 + η∇w3 = γ2 · η∇w1 + γ · η∇w2 + η∇w3

update4 = γ · update3 + η∇w4 = γ3 · η∇w1 + γ2 · η∇w2 + γ · η∇w3 + η∇w4

...

updatet = γ · updatet−1 + η∇wt = γt−1 · η∇w1 + γt−2 · η∇w1 + ...+ η∇wt
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

46 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

47 / 94

Some observations and questions

Even in the regions having gentle slopes, momentum based gradient descent is
able to take large steps because the momentum carries it along

Is moving fast always good? Would there be a situation where momentum
would cause us to run pass our goal?

Let us change our input data so that we end up with a different error surface
and then see what happens ...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

48 / 94

In this case, the error is high on either
side of the minima valley

Could momentum be detrimental in
such cases... let’s see....

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

49 / 94

Momentum based gradient descent
oscillates in and out of the minima
valley as the momentum carries it out
of the valley

Takes a lot of u-turns before finally
converging

Despite these u-turns it still con-
verges faster than vanilla gradient
descent

After 100 iterations momentum based
method has reached an error of
0.00001 whereas vanilla gradient des-
cent is still stuck at an error of 0.36

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

50 / 94

Let’s look at a 3d visualization and a different
geometric perspective of the same thing...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

51 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

52 / 94

Module 5.5 : Nesterov Accelerated Gradient Descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

53 / 94

Question

Can we do something to reduce these oscillations ?

Yes, let’s look at Nesterov accelerated gradient

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

54 / 94

Intuition

Look before you leap

Recall that updatet = γ · updatet−1 + η∇wt
So we know that we are going to move by at least by γ · updatet−1 and then a
bit more by η∇wt
Why not calculate the gradient (∇wlook ahead) at this partially updated value
of w (wlook ahead = wt−γ ·updatet−1) instead of calculating it using the current
value wt

Update rule for NAG

w
look ahead

= wt − γ · updatet−1

updatet = γ · updatet−1 + η∇w
look ahead

wt+1 = wt − updatet

We will have similar update rule for bt

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

55 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

56 / 94

Observations about NAG

Looking ahead helps NAG in correcting its course quicker than momentum
based gradient descent

Hence the oscillations are smaller and the chances of escaping the minima valley
also smaller

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

57 / 94

Module 5.6 : Stochastic And Mini-Batch Gradient
Descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

58 / 94

Let’s digress a bit and talk about the stochastic
version of these algorithms...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

59 / 94

Notice that the algorithm goes over the entire
data once before updating the parameters

Why? Because this is the true gradient of the
loss as derived earlier (sum of the gradients of
the losses corresponding to each data point)

No approximation. Hence, theoretical guaran-
tees hold (in other words each step guarantees
that the loss will decrease)

What’s the flipside? Imagine we have a mil-
lion points in the training data. To make 1
update to w, b the algorithm makes a million
calculations. Obviously very slow!!

Can we do something better ? Yes, let’s look
at stochastic gradient descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

60 / 94

Stochastic because we are
estimating the total gradi-
ent based on a single data
point. Almost like tossing a
coin only once and estimat-
ing P(heads).

Notice that the algorithm updates the para-
meters for every single data point

Now if we have a million data points we will
make a million updates in each epoch (1 epoch
= 1 pass over the data; 1 step = 1 update)

What is the flipside ? It is an approximate
(rather stochastic) gradient

No guarantee that each step will decrease the
loss

Let’s see this algorithm in action when we
have a few data points

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

61 / 94

We see many oscillations. Why ? Be-
cause we are making greedy decisions.

Each point is trying to push the para-
meters in a direction most favorable to
it (without being aware of how this af-
fects other points)

A parameter update which is locally fa-
vorable to one point may harm other
points (its almost as if the data points
are competing with each other)

Indeed we see that there is no guarantee
that each local greedy move reduces the
global error

Can we reduce the oscillations by im-
proving our stochastic estimates of the
gradient (currently estimated from just
1 data point at a time)

Yes, let’s look at mini-batch gradient
descent

Yes, let’s look at mini-batch gradi-
ent descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

62 / 94

Notice that the algorithm up-
dates the parameters after it sees
mini batch size number of data
points

The stochastic estimates are now
slightly better

Let’s see this algorithm in action
when we have k = 2

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

63 / 94

Even with a batch size of k=2 the oscilla-
tions have reduced slightly. Why ?

Because we now have slightly better es-
timates of the gradient [analogy: we are
now tossing the coin k=2 times to estim-
ate P(heads)]

The higher the value of k the more accurate
are the estimates

In practice, typical values of k are 16, 32,
64

Of course, there are still oscillations and
they will always be there as long as we are
using an approximate gradient as opposed
to the true gradient

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

64 / 94

Some things to remember

1 epoch = one pass over the entire data

1 step = one update of the parameters

N = number of data points

B = Mini batch size

Algorithm # of steps in 1 epoch

Vanilla (Batch) Gradient Descent 1
Stochastic Gradient Descent N

Mini-Batch Gradient Descent N
B

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

65 / 94

Similarly, we can have stochastic versions of
Momentum based gradient descent and Nesterov
accelerated based gradient descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

66 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

67 / 94

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

68 / 94

While the stochastic versions of both Mo-
mentum [red] and NAG [blue] exhibit oscilla-
tions the relative advantage of NAG over Mo-
mentum still holds (i.e., NAG takes relatively
shorter u-turns)

Further both of them are faster than
stochastic gradient descent (after 60 steps,
stochastic gradient descent [black - top figure]
still exhibits a very high error whereas NAG
and Momentum are close to convergence)

w

b

w

b

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

69 / 94

And, of course, you can also have the mini batch
version of Momentum and NAG...I leave that as an
exercise :-)

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

70 / 94

Module 5.7 : Tips for Adjusting learning Rate and
Momentum

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

71 / 94

Before moving on to advanced optimization
algorithms let us revisit the problem of learning rate
in gradient descent

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

72 / 94

One could argue that we could have solved
the problem of navigating gentle slopes by
setting the learning rate high (i.e., blow up
the small gradient by multiplying it with a
large η)

Let us see what happens if we set the learn-
ing rate to 10

On the regions which have a steep slope,
the already large gradient blows up further

It would be good to have a learning rate
which could adjust to the gradient ... we
will see a few such algorithms soon

includegraphics[scale=0.38]images/module7/ss7.png

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

73 / 94

Tips for initial learning rate ?

Tune learning rate [Try different values on a log scale: 0.0001, 0.001, 0.01, 0.1.
1.0]

Run a few epochs with each of these and figure out a learning rate which works
best

Now do a finer search around this value [for example, if the best learning rate
was 0.1 then now try some values around it: 0.05, 0.2, 0.3]

Disclaimer: these are just heuristics ... no clear winner strategy

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

74 / 94

Tips for annealing learning rate

Step Decay:

Halve the learning rate after every 5 epochs or
Halve the learning rate after an epoch if the validation error is more than what it
was at the end of the previous epoch

Exponential Decay: η = η−kt0 where η0 and k are hyperparameters and t is
the step number

1/t Decay: η = η0
1+kt where η0 and k are hyperparameters and t is the step

number

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

75 / 94

Tips for momentum

The following schedule was suggested by Sutskever et. al., 2013

γt = min(1− 2−1−log2(bt/250c+1), γmax)

where, γmax was chosen from {0.999, 0.995, 0.99, 0.9, 0}

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

76 / 94

Module 5.8 : Line Search

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

77 / 94

Just one last thing before we move on to some other
algorithms ...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

78 / 94

In practice, often a line search is done
to find a relatively better value of η

Update w using different values of η

Now retain that updated value of w
which gives the lowest loss

Esentially at each step we are trying
to use the best η value from the avail-
able choices

What’s the flipside? We are doing
many more computations in each step

We will come back to this when we
talk about second order optimization
methods

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

79 / 94

Let us see line search in action

Convergence is faster than vanilla gradient
descent

We see some oscillations, but note that
these oscillations are different from what we
see in momentum and NAG

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

80 / 94

Module 5.9 : Gradient Descent with Adaptive Learning
Rate

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

81 / 94

σ

x1

x2

x3

x4

1

y

y = f(x) = 1
1+e−(w·x+b)

x = {x1, x2, x3, x4}

w = {w1, w2, w3, w4}

Given this network, it should be easy to see that given a
single point (x, y)...

∇w1 = (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x1

∇w2 = (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x2 ... so on

If there are n points, we can just sum the gradients over
all the n points to get the total gradient

What happens if the feature x2 is very sparse? (i.e., if its
value is 0 for most inputs)

∇w2 will be 0 for most inputs (see formula) and hence w2

will not get enough updates

If x2 happens to be sparse as well as important we would
want to take the updates to w2 more seriously

Can we have a different learning rate for each parameter
which takes care of the frequency of features ?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

82 / 94

Intuition

Decay the learning rate for parameters in proportion to their update history
(more updates means more decay)

Update rule for Adagrad

vt = vt−1 + (∇wt)2

wt+1 = wt −
η√
vt + ε

∗ ∇wt

... and a similar set of equations for bt

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

83 / 94

To see this in action we need to first create
some data where one of the features is sparse

How would we do this in our toy network ?
Take some time to think about it

Well, our network has just two parameters (w
and b). Of these, the input/feature corres-
ponding to b is always on (so can’t really make
it sparse)

The only option is to make x sparse

Solution: We created 100 random (x, y) pairs
and then for roughly 80% of these pairs we set
x to 0 thereby, making the feature for w sparse

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

84 / 94

GD (black), momentum (red) and NAG (blue)

There is something interesting that these 3 al-
gorithms are doing for this dataset. Can you spot
it?

Initially, all three algorithms are moving mainly
along the vertical (b) axis and there is very little
movement along the horizontal (w) axis

Why? Because in our data, the feature corres-
ponding to w is sparse and hence w undergoes
very few updates ...on the other hand b is very
dense and undergoes many updates

Such sparsity is very common in large neural
networks containing 1000s of input features and
hence we need to address it

Let’s see what Adagrad
does....

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

85 / 94

By using a parameter specific learning rate it
ensures that despite sparsity w gets a higher
learning rate and hence larger updates

Further, it also ensures that if b undergoes a
lot of updates its effective learning rate de-
creases because of the growing denominator

In practice, this does not work so well if we
remove the square root from the denominator
(something to ponder about)

What’s the flipside? over time the effective
learning rate for b will decay to an extent that
there will be no further updates to b

Can we avoid this?

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

86 / 94

Intuition

Adagrad decays the learning rate very aggressively (as the denominator grows)

As a result after a while the frequent parameters will start receiving very small
updates because of the decayed learning rate

To avoid this why not decay the denominator and prevent its rapid growth

Update rule for RMSProp

vt = β ∗ vt−1 + (1− β)(∇wt)2

wt+1 = wt −
η√
vt + ε

∗ ∇wt

... and a similar set of equations for bt

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

87 / 94

Adagrad got stuck when it was close
to convergence (it was no longer able
to move in the vertical (b) direction
because of the decayed learning rate)

RMSProp overcomes this problem by
being less aggressive on the decay

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

88 / 94

Intuition

Do everything that RMSProp does to solve the decay problem of Adagrad

Plus use a cumulative history of the gradients

In practice, β1 = 0.9 and β2 = 0.999

Update rule for Adam

mt = β1 ∗mt−1 + (1− β1) ∗ ∇wt
vt = β2 ∗ vt−1 + (1− β2) ∗ (∇wt)2

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

wt+1 = wt −
η√
v̂t + ε

∗ m̂t

... and a similar set of equations for bt

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

89 / 94

As expected, taking a cumulative his-
tory gives a speed up ...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

90 / 94

Million dollar question: Which algorithm to use in practice

Adam seems to be more or less the default choice now (β1 = 0.9, β2 = 0.999
and ε = 1e− 8)

Although it is supposed to be robust to initial learning rates, we have observed
that for sequence generation problems η = 0.001, 0.0001 works best

Having said that, many papers report that SGD with momentum (Nesterov
or classical) with a simple annealing learning rate schedule also works well
in practice (typically, starting with η = 0.001, 0.0001 for sequence generation
problems)

Adam might just be the best choice overall!!

Some recent work suggest that there is a problem with Adam and it will not
converge in some cases

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

91 / 94

Explanation for why we need bias correction in Adam

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

92 / 94

Update rule for Adam

mt = β1 ∗mt−1 + (1− β1) ∗ ∇wt
vt = β2 ∗ vt−1 + (1− β2) ∗ (∇wt)2

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

wt+1 = wt −
η√
v̂t + ε

∗ m̂t

Note that we are taking a running average
of the gradients as mt

The reason we are doing this is that we
don’t want to rely too much on the cur-
rent gradient and instead rely on the over-
all behaviour of the gradients over many
timesteps
One way of looking at this is that we
are interested in the expected value of the
gradients and not on a single point estim-
ate computed at time t
However, instead of computing E[∇wt] we
are computing mt as the exponentially
moving average
Ideally we would want E[mt] to be equal
to E[∇wt]
Let us see if that is the case

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

93 / 94

For convenience we will denote ∇wt as gt and β1 as β

mt = β ∗mt−1 + (1− β) ∗ gt
m0 = 0

m1 = βm0 + (1− β)g1

= (1− β)g1

m2 = βm1 + (1− β)g2

= β(1− β)g1 + (1− β)g2

m3 = βm2 + (1− β)g3

= β(β(1− β)g1 + (1− β)g2) + (1− β)g3

= β2(1− β)g1 + β(1− β)g2 + (1− β)g3

= (1− β)

3∑
i=1

β3−igi

In general,

mt = (1− β)

t∑
i=1

βt−igi

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

94 / 94

So we have, mt = (1− β)
∑t

i=1 β
t−igi

Taking Expectation on both sides

E[mt] = E[(1− β)
t∑
i=1

βt−igi]

E[mt] = (1− β)E[

t∑
i=1

βt−igi]

E[mt] = (1− β)

t∑
i=1

E[βt−igi]

= (1− β)
t∑
i=1

βt−iE[gi]

Assumption: All gi’s come from the same
distribution i.e. E[gi] = E[g] ∀i

E[mt] = (1− β)

t∑
i=1

(β)t−iE[gi]

= E[g](1− β)
t∑
i=1

(β)t−i

= E[g](1− β)(βt−1 + βt−2 + · · ·+ β0)

= E[g](1− β)
1− βt

1− β

the last fraction is the sum of a GP with common
ratio = β

E[mt] = E[g](1− βt)

E[
mt

1− βt
] = E[g]

E[m̂t] = E[g](∵
mt

1− βt
= m̂t)

Hence we apply the bias correction because then
the expected value of m̂t is the same as the
expected value of gt

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 5

