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Module 4.1: Feedforward Neural Networks (a.k.a.
multilayered network of neurons)

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



4/9

x1 x2 xn

a1

a2

a3

h1

h2
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The input to the network is an n-dimensional
vector

The network contains L− 1 hidden layers (2, in
this case) having n neurons each

Finally, there is one output layer containing k
neurons (say, corresponding to k classes)

Each neuron in the hidden layer and output layer
can be split into two parts : pre-activation and
activation (ai and hi are vectors)

The input layer can be called the 0-th layer and
the output layer can be called the (L)-th layer

Wi ∈ Rn×n and bi ∈ Rn are the weight and bias
between layers i− 1 and i (0 < i < L)

WL ∈ Rn×k and bL ∈ Rk are the weight and bias
between the last hidden layer and the output layer
(L = 3 in this case)
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hL = ŷ = f(x) The pre-activation at layer i is given by

ai(x) = bi +Wihi−1(x)

The activation at layer i is given by

hi(x) = g(ai(x))

where g is called the activation function (for
example, logistic, tanh, linear, etc.)

The activation at the output layer is given by

f(x) = hL(x) = O(aL(x))

where O is the output activation function (for
example, softmax, linear, etc.)

To simplify notation we will refer to ai(x) as ai
and hi(x) as hi
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hL = ŷ = f(x) The pre-activation at layer i is given by

ai = bi +Wihi−1

The activation at layer i is given by

hi = g(ai)

where g is called the activation function (for
example, logistic, tanh, linear, etc.)

The activation at the output layer is given by

f(x) = hL = O(aL)

where O is the output activation function (for
example, softmax, linear, etc.)
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hL = ŷ = f(x)
Data: {xi, yi}Ni=1

Model:

ŷi = f(xi) = O(W3g(W2g(W1x+ b1) + b2) + b3)

Parameters:
θ = W1, ..,WL, b1, b2, ..., bL(L = 3)

Algorithm: Gradient Descent with Back-
propagation (we will see soon)

Objective/Loss/Error function: Say,

min
1

N

N∑
i=1

k∑
j=1

(ŷij − yij)2

In general, min L (θ)

where L (θ) is some function of the parameters
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Module 4.2: Learning Parameters of Feedforward
Neural Networks (Intuition)
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The story so far...

We have introduced feedforward neural networks

We are now interested in finding an algorithm for learning the parameters of
this model
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hL = ŷ = f(x) Recall our gradient descent algorithm

Algorithm: gradient descent()

t← 0;
max iterations← 1000;
Initialize w0, b0;
while t++ < max iterations do

wt+1 ← wt − η∇wt;
bt+1 ← bt − η∇bt;

end
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hL = ŷ = f(x) Recall our gradient descent algorithm

We can write it more concisely as

Algorithm: gradient descent()

t← 0;
max iterations← 1000;
Initialize θ0 = [w0, b0];
while t++ < max iterations do

θt+1 ← θt − η∇θt;
end

where ∇θt =
[∂L (θ)
∂wt

, ∂L (θ)
∂bt

]T
Now, in this feedforward neural network,
instead of θ = [w, b] we have θ =
[W1,W2, ..,WL, b1, b2, .., bL]

We can still use the same algorithm for
learning the parameters of our model
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hL = ŷ = f(x) Recall our gradient descent algorithm

We can write it more concisely as

Algorithm: gradient descent()

t← 0;
max iterations← 1000;
Initialize θ0 = [W 0

1 , ...,W
0
L, b

0
1, ..., b

0
L];

while t++ < max iterations do
θt+1 ← θt − η∇θt;

end

where ∇θt =
[∂L (θ)
∂W1,t

, ., ∂L (θ)
∂WL,t

, ∂L (θ)
∂b1,t

, ., ∂L (θ)
∂bL,t

]T
Now, in this feedforward neural network,
instead of θ = [w, b] we have θ =
[W1,W2, ..,WL, b1, b2, .., bL]

We can still use the same algorithm for
learning the parameters of our model
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Except that now our ∇θ looks much more nasty



∂L (θ)
∂W111

. . . ∂L (θ)
∂W11n

∂L (θ)
∂W211

. . . ∂L (θ)
∂W21n

. . . ∂L (θ)
∂WL,11

. . . ∂L (θ)
∂WL,1k

∂L (θ)
∂WL,1k

∂L (θ)
∂b11

. . . ∂L (θ)
∂bL1

∂L (θ)
∂W121

. . . ∂L (θ)
∂W12n

∂L (θ)
∂W221

. . . ∂L (θ)
∂W22n

. . . ∂L (θ)
∂WL,21

. . . ∂L (θ)
∂WL,2k

∂L (θ)
∂WL,2k

∂L (θ)
∂b12

. . . ∂L (θ)
∂bL2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

∂L (θ)
∂W1n1

. . . ∂L (θ)
∂W1nn

∂L (θ)
∂W2n1

. . . ∂L (θ)
∂W2nn

. . . ∂L (θ)
∂WL,n1

. . . ∂L (θ)
∂WL,nk

∂L (θ)
∂WL,nk

∂L (θ)
∂b1n

. . . ∂L (θ)
∂bLk



∇θ is thus composed of
∇W1,∇W2, ...∇WL−1 ∈ Rn×n,∇WL ∈ Rn×k,
∇b1,∇b2, ...,∇bL−1 ∈ Rn and ∇bL ∈ Rk
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We need to answer two questions

How to choose the loss function L (θ)?

How to compute ∇θ which is composed of
∇W1,∇W2, ...,∇WL−1 ∈ Rn×n,∇WL ∈ Rn×k
∇b1,∇b2, ...,∇bL−1 ∈ Rn and ∇bL ∈ Rk ?

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



15/9

Module 4.3: Output Functions and Loss Functions
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We need to answer two questions

How to choose the loss function L (θ) ?

How to compute ∇θ which is composed of:
∇W1,∇W2, ...,∇WL−1 ∈ Rn×n,∇WL ∈ Rn×k
∇b1,∇b2, ...,∇bL−1 ∈ Rn and ∇bL ∈ Rk ?
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Neural network with
L− 1 hidden layers

isActor

Damon
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. . . . . . . . . .

xi

yi = {7.5 8.2 7.7}
The choice of loss function depends
on the problem at hand

We will illustrate this with the help
of two examples

Consider our movie example again
but this time we are interested in
predicting ratings

Here yi ∈ R3

The loss function should capture how
much ŷi deviates from yi

If yi ∈ Rn then the squared error loss
can capture this deviation

L (θ) =
1

N

N∑
i=1

3∑
j=1

(ŷij − yij)2
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hL = ŷ = f(x) A related question: What should the
output function ‘O’ be if yi ∈ R?

More specifically, can it be the logistic
function?

No, because it restricts ŷi to a value
between 0 & 1 but we want ŷi ∈ R
So, in such cases it makes sense to
have ‘O’ as linear function

f(x) = hL = O(aL)

= WOaL + bO

ŷi = f(xi) is no longer bounded
between 0 and 1
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Neural network with
L− 1 hidden layers

Apple Mango Orange Banana

y = [1 0 0 0]
Now let us consider another problem
for which a different loss function
would be appropriate

Suppose we want to classify an image
into 1 of k classes

Here again we could use the squared
error loss to capture the deviation

But can you think of a better
function?
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Neural network with
L− 1 hidden layers

Apple Mango Orange Banana

y = [1 0 0 0]
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hL = ŷ = f(x)

Notice that y is a probability
distribution

Therefore we should also ensure that
ŷ is a probability distribution

What choice of the output activation
‘O’ will ensure this ?

aL = WLhL−1 + bL

ŷj = O(aL)j =
eaL,j∑k
i=1 e

aL,i

O(aL)j is the jth element of ŷ and aL,j
is the jth element of the vector aL.

This function is called the softmax
function
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Neural network with
L− 1 hidden layers

Apple Mango Orange Banana

y = [1 0 0 0]
Now that we have ensured that both
y & ŷ are probability distributions
can you think of a function which
captures the difference between
them?

Cross-entropy

L (θ) = −
k∑
c=1

yc log ŷc

Notice that

yc = 1 if c = ` (the true class label)

= 0 otherwise

∴ L (θ) = − log ŷ`
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hL = ŷ = f(x)
So, for classification problem (where you have
to choose 1 of K classes), we use the following
objective function

minimize
θ

L (θ) = − log ŷ`

or maximize
θ

−L (θ) = log ŷ`

But wait!
Is ŷ` a function of θ = [W1,W2, .,WL, b1, b2, ., bL]?

Yes, it is indeed a function of θ

ŷ` = [O(W3g(W2g(W1x+ b1) + b2) + b3)]`

What does ŷ` encode?

It is the probability that x belongs to the `th class
(bring it as close to 1).

log ŷ` is called the log-likelihood of the data.
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Outputs

Real Values Probabilities

Output Activation Linear Softmax

Loss Function Squared Error Cross Entropy

Of course, there could be other loss functions depending on the problem at hand
but the two loss functions that we just saw are encountered very often

For the rest of this lecture we will focus on the case where the output activation
is a softmax function and the loss function is cross entropy
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Module 4.4: Backpropagation (Intuition)
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We need to answer two questions

How to choose the loss function L (θ) ?

How to compute ∇θ which is composed of:
∇W1,∇W2, ...,∇WL−1 ∈ Rn×n,∇WL ∈ Rn×k
∇b1,∇b2, ...,∇bL−1 ∈ Rn and ∇bL ∈ Rk ?
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Let us focus on this one
weight (W112).

To learn this weight
using SGD we need a
formula for ∂L (θ)

∂W112
.

We will see how to
calculate this.

x1 x2 xd

W111

a11

W211

a21

h11

W311

a31

h21

b1

b2

b3

ŷ = f(x)

W112

Algorithm: gradient
descent()

t← 0;
max iterations← 1000;
Initialize θ0;
while
t++ < max iterations do
θt+1 ← θt − η∇θt;

end

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



28/9

First let us take the simple case when
we have a deep but thin network.

In this case it is easy to find the
derivative by chain rule.

∂L (θ)

∂W111
=
∂L (θ)

∂ŷ

∂ŷ

∂aL11

∂aL11
∂h21

∂h21
∂a21

∂a21
∂h11

∂h11
∂a11

∂a11
∂W111

∂L (θ)

∂W111
=
∂L (θ)

∂h11

∂h11
∂W111

(just compressing the chain rule)

∂L (θ)

∂W211
=
∂L (θ)

∂h21

∂h21
∂W211

∂L (θ)

∂WL11
=
∂L (θ)

∂aL1

∂aL1
∂WL11 x1

W111

a11

W211

a21

h11

WL11

aL1

h21

ŷ = f(x)
L (θ)
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Let us see an intuitive explanation of backpropagation before we get into the
mathematical details
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We get a certain loss at the output and we try to
figure out who is responsible for this loss

So, we talk to the output layer and say “Hey! You
are not producing the desired output, better take
responsibility”.

The output layer says “Well, I take responsibility
for my part but please understand that I am only
as the good as the hidden layer and weights below
me”. After all . . .

f(x) = ŷ = O(WLhL−1 + bL)

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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So, we talk to WL, bL and hL and ask them “What is
wrong with you?”

WL and bL take full responsibility but hL says “Well,
please understand that I am only as good as the pre-
activation layer”

The pre-activation layer in turn says that I am only as
good as the hidden layer and weights below me.

We continue in this manner and realize that the
responsibility lies with all the weights and biases (i.e.
all the parameters of the model)

But instead of talking to them directly, it is easier to
talk to them through the hidden layers and output
layers (and this is exactly what the chain rule allows
us to do)

∂L (θ)

∂W111︸ ︷︷ ︸
Talk to the

weight directly

=
∂L (θ)

∂ŷ

∂ŷ

∂a3︸ ︷︷ ︸
Talk to the
output layer

∂a3
∂h2

∂h2

∂a2︸ ︷︷ ︸
Talk to the

previous hidden
layer

∂a2
∂h1

∂h1

∂a1︸ ︷︷ ︸
Talk to the
previous

hidden layer

∂a1
∂W111︸ ︷︷ ︸
and now
talk to
the

weights

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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Quantities of interest (roadmap for the remaining part):

Gradient w.r.t. output units

Gradient w.r.t. hidden units

Gradient w.r.t. weights and biases

∂L (θ)

∂W111︸ ︷︷ ︸
Talk to the

weight directly

=
∂L (θ)

∂ŷ

∂ŷ

∂a3︸ ︷︷ ︸
Talk to the
output layer

∂a3
∂h2

∂h2
∂a2︸ ︷︷ ︸

Talk to the
previous hidden

layer

∂a2
∂h1

∂h1
∂a1︸ ︷︷ ︸

Talk to the
previous

hidden layer

∂a1
∂W111︸ ︷︷ ︸
and now
talk to
the

weights

Our focus is on Cross entropy loss and Softmax output.
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Module 4.5: Backpropagation: Computing Gradients
w.r.t. the Output Units
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Quantities of interest (roadmap for the remaining part):

Gradient w.r.t. output units

Gradient w.r.t. hidden units

Gradient w.r.t. weights

∂L (θ)

∂W111︸ ︷︷ ︸
Talk to the

weight directly

=
∂L (θ)

∂ŷ

∂ŷ

∂a3︸ ︷︷ ︸
Talk to the
output layer

∂a3
∂h2

∂h2
∂a2︸ ︷︷ ︸

Talk to the
previous hidden

layer

∂a2
∂h1

∂h1
∂a1︸ ︷︷ ︸

Talk to the
previous

hidden layer

∂a1
∂W111︸ ︷︷ ︸
and now
talk to
the

weights

Our focus is on Cross entropy loss and Softmax output.
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Let us first consider the partial derivative
w.r.t. i-th output

L (θ) = − log ŷ` (` = true class label)

∂

∂ŷi
(L (θ)) =

∂

∂ŷi
(− log ŷ`)

= − 1

ŷ`
if i = `

= 0 otherwise

More compactly,

∂

∂ŷi
(L (θ)) = −

1(i=`)

ŷ`

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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∂

∂ŷi
(L (θ)) = −

1(`=i)

ŷ`

We can now talk about the gradient
w.r.t. the vector ŷ

∇ŷL (θ) =


∂L (θ)
∂ŷ1
...

∂L (θ)
∂ŷk

 = − 1

ŷ`


1`=1

1`=2
...

1`=k


= − 1

ŷ`
e`

where e(`) is a k-dimensional vector
whose `-th element is 1 and all other
elements are 0.

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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What we are actually interested in is

∂L (θ)

∂aLi
=
∂(− log ŷ`)

∂aLi

=
∂(− log ŷ`)

∂ŷ`

∂ŷ`
∂aLi

Does ŷ` depend on aLi ? Indeed, it does.

ŷ` =
exp(aL`)∑
i exp(aLi)

Having established this, we will now
derive the full expression on the next
slide

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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∂

∂aLi
− log ŷ` =

−1

ŷ`

∂

∂aLi
ŷ`

=
−1

ŷ`

∂

∂aLi
softmax(aL)`

=
−1

ŷ`

∂

∂aLi

exp(aL)`∑
i′ exp(aL)`

=
−1

ŷ`

(
∂

∂aLi
exp(aL)`∑

i′ exp(aL)i′
−

exp(aL)`

(
∂

∂aLi

∑
i′ exp(aL)i′

)
(
∑
i′(exp(aL)i′)2

)

=
−1

ŷ`

(
1(`=i) exp(aL)`∑

i′ exp(aL)i′
− exp(aL)`∑

i′ exp(aL)i′

exp(aL)i∑
i′ exp(aL)i′

)

=
−1

ŷ`

(
1(`=i)softmax(aL)` − softmax(aL)`softmax(aL)i

)
=
−1

ŷ`

(
1(`=i)ŷ` − ŷ`ŷi

)
= −

(
1(`=i) − ŷi

)

∂ g(x)h(x)

∂x
=
∂g(x)

∂x

1

h(x)
− g(x)

h(x)2
∂h(x)

∂x
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So far we have derived the partial derivative w.r.t.
the i-th element of aL

∂L (θ)

∂aL,i
= −(1`=i − ŷi)

We can now write the gradient w.r.t. the vector aL

∇aLL (θ) =


∂L (θ)
∂aL1

...
∂L (θ)
∂aLk

 =


− (1`=1 − ŷ1)
− (1`=2 − ŷ2)

...
− (1`=k − ŷk)


= −(e(`)− ŷ)

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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Module 4.6: Backpropagation: Computing Gradients
w.r.t. Hidden Units
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Quantities of interest (roadmap for the remaining part):

Gradient w.r.t. output units

Gradient w.r.t. hidden units

Gradient w.r.t. weights and biases

∂L (θ)

∂W111︸ ︷︷ ︸
Talk to the

weight directly

=
∂L (θ)

∂ŷ

∂ŷ

∂a3︸ ︷︷ ︸
Talk to the
output layer

∂a3
∂h2

∂h2
∂a2︸ ︷︷ ︸

Talk to the
previous hidden

layer

∂a2
∂h1

∂h1
∂a1︸ ︷︷ ︸

Talk to the
previous

hidden layer

∂a1
∂W111︸ ︷︷ ︸
and now
talk to
the

weights

Our focus is on Cross entropy loss and Softmax output.
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Chain rule along multiple paths: If a
function p(z) can be written as a function of
intermediate results qi(z) then we have :

∂p(z)

∂z
=
∑
m

∂p(z)

∂qm(z)

∂qm(z)

∂z

In our case:

p(z) is the loss function L (θ)

z = hij

qm(z) = aLm

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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∂L (θ)
∂hij

=

k∑
m=1

∂L (θ)
∂ai+1,m

∂ai+1,m

∂hij

=

k∑
m=1

∂L (θ)
∂ai+1,m

Wi+1,m,j

Now consider these two vectors,

∇ai+1L (θ) =


∂L (θ)
∂ai+1,1

...
∂L (θ)
∂ai+1,k

 ;Wi+1, · ,j =

Wi+1,1,j
...

Wi+1,k,j


Wi+1, · ,j is the j-th column of Wi+1; see that,

(Wi+1, · ,j)
T∇ai+1L (θ) =

k∑
m=1

∂L (θ)

∂ai+1,m
Wi+1,m,j

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3

ai+1 = Wi+1hij + bi+1
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We have,
∂L (θ)

∂hij
= (Wi+1,.,j)

T∇ai+1L (θ)

We can now write the gradient w.r.t. hi

∇hi
L (θ) =


∂L (θ)
∂hi1
∂L (θ)
∂hi2

...
∂L (θ)
∂hin

 =


(Wi+1, · ,1)

T∇ai+1L (θ)
(Wi+1, · ,2)

T∇ai+1L (θ)
...

(Wi+1, · ,n)T∇ai+1L (θ)


= (Wi+1)

T (∇ai+1L (θ))

We are almost done except that we do not
know how to calculate ∇ai+1L (θ) for i < L−1

We will see how to compute that

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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∇ai
L (θ) =


∂L (θ)
∂ai1

...
∂L (θ)
∂ain


∂L (θ)

∂aij
=
∂L (θ)

∂hij

∂hij
∂aij

=
∂L (θ)

∂hij
g
′
(aij) [∵ hij = g(aij)]

∇ai
L (θ) =


∂L (θ)
∂hi1

g
′
(ai1)

...
∂L (θ)
∂hin

g
′
(ain)


= ∇hiL (θ)� [. . . , g

′
(aik), . . . ]

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3

Mitesh M. Khapra CS7015 (Deep Learning): Lecture 4



47/9

Module 4.7: Backpropagation: Computing Gradients
w.r.t. Parameters
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Quantities of interest (roadmap for the remaining part):

Gradient w.r.t. output units

Gradient w.r.t. hidden units

Gradient w.r.t. weights and biases

∂L (θ)

∂W111︸ ︷︷ ︸
Talk to the

weight directly

=
∂L (θ)

∂ŷ

∂ŷ

∂a3︸ ︷︷ ︸
Talk to the
output layer

∂a3
∂h2

∂h2
∂a2︸ ︷︷ ︸

Talk to the
previous hidden

layer

∂a2
∂h1

∂h1
∂a1︸ ︷︷ ︸

Talk to the
previous

hidden layer

∂a1
∂W111︸ ︷︷ ︸
and now
talk to
the

weights

Our focus is on Cross entropy loss and Softmax output.
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Recall that,

ak = bk +Wkhk−1

∂aki
∂Wkij

= hk−1,j

∂L (θ)

∂Wkij
=
∂L (θ)

∂aki

∂aki
∂Wkij

=
∂L (θ)

∂aki
hk−1,j

∇Wk
L (θ) =


∂L (θ)
∂Wk11

∂L (θ)
∂Wk12

. . . . . . ∂L (θ)
∂Wk1n

. . . . . . . . . . . . . . .
...

...
...

...
...

. . . . . . . . . . . . ∂L (θ)
∂Wknn


x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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Lets take a simple example of a Wk ∈ R3×3 and see what each entry looks like

∇Wk
L (θ) =


∂L (θ)
∂Wk11

∂L (θ)
∂Wk12

∂L (θ)
∂Wk13

∂L (θ)
∂Wk21

∂L (θ)
∂Wk22

∂L (θ)
∂Wk23

∂L (θ)
∂Wk31

∂L (θ)
∂Wk32

∂L (θ)
∂Wk33

 ∂L (θ)
∂Wkij

= ∂L (θ)
∂aki

∂aki
∂Wkij

∇Wk
L (θ) =


∂L (θ)
∂ak1

hk−1,1
∂L (θ)
∂ak1

hk−1,2
∂L (θ)
∂ak1

hk−1,3

∂L (θ)
∂ak2

hk−1,1
∂L (θ)
∂ak2

hk−1,2
∂L (θ)
∂ak2

hk−1,3

∂L (θ)
∂ak3

hk−1,1
∂L (θ)
∂ak3

hk−1,2
∂L (θ)
∂ak3

hk−1,3

 = ∇akL (θ) · hk−1
T
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Finally, coming to the biases

aki = bki +
∑
j

Wkijhk−1,j

∂L (θ)

∂bki
=
∂L (θ)

∂aki

∂aki
∂bki

=
∂L (θ)

∂aki

We can now write the gradient w.r.t. the vector
bk

∇bk
L (θ) =


∂L (θ)
ak1

∂L (θ)
ak2
...

∂L (θ)
akn

 = ∇ak
L (θ)

x1 x2 xn

− log ŷ`

W1

a1

W2

a2

h1

W3

a3

h2

b1

b2

b3
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Module 4.8: Backpropagation: Pseudo code
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Finally, we have all the pieces of the puzzle

∇aLL (θ) (gradient w.r.t. output layer)

∇hk
L (θ),∇ak

L (θ) (gradient w.r.t. hidden layers, 1 ≤ k < L)

∇Wk
L (θ),∇bk

L (θ) (gradient w.r.t. weights and biases, 1 ≤ k ≤ L)

We can now write the full learning algorithm
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Algorithm: gradient descent()

t← 0;
max iterations← 1000;
Initialize θ0 = [W 0

1 , ...,W
0
L, b

0
1, ..., b

0
L];

while t++ < max iterations do
h1, h2, ..., hL−1, a1, a2, ..., aL, ŷ = forward propagation(θt);
∇θt = backward propagation(h1, h2, ..., hL−1, a1, a2, ..., aL, y, ŷ);
θt+1 ← θt − η∇θt;

end
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Algorithm: forward propagation(θ)

for k = 1 to L− 1 do
ak = bk +Wkhk−1;
hk = g(ak);

end
aL = bL +WLhL−1;
ŷ = O(aL);
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Just do a forward propagation and compute all hi’s, ai’s, and ŷ

Algorithm: back propagation(h1, h2, ..., hL−1, a1, a2, ..., aL, y, ŷ)

//Compute output gradient ;
∇aLL (θ) = −(e(y)− ŷ) ;
for k = L to 1 do

// Compute gradients w.r.t. parameters ;
∇Wk

L (θ) = ∇akL (θ)hTk−1 ;

∇bkL (θ) = ∇akL (θ) ;
// Compute gradients w.r.t. layer below ;
∇hk−1

L (θ) = W T
k (∇akL (θ)) ;

// Compute gradients w.r.t. layer below (pre-activation);
∇ak−1

L (θ) = ∇hk−1
L (θ)� [. . . , g′(ak−1,j), . . . ] ;

end
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Module 4.9: Derivative of the activation function
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Now, the only thing we need to figure out is how to compute g′

Logistic function

g(z) = σ(z)

=
1

1 + e−z

g′(z) = (−1)
1

(1 + e−z)2
d

dz
(1 + e−z)

= (−1)
1

(1 + e−z)2
(−e−z)

=
1

1 + e−z

(
1 + e−z − 1

1 + e−z

)
= g(z)(1− g(z))

tanh

g(z) = tanh (z)

=
ez − e−z

ez + e−z

g′(z) =

(
(ez + e−z) ddz (ez − e−z)
− (ez − e−z) ddz (ez + e−z)

)
(ez + e−z)2

=
(ez + e−z)2 − (ez − e−z)2

(ez + e−z)2

=1− (ez − e−z)2

(ez + e−z)2

=1− (g(z))2
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