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Module 3.1: Sigmoid Neuron
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The story ahead ...

Enough about boolean functions!

What about arbitrary functions of the form y = f(x) where x ∈ Rn (instead of
{0, 1}n) and y ∈ R (instead of {0, 1}) ?

Can we have a network which can (approximately) represent such functions ?

Before answering the above question we will have to first graduate from per-
ceptrons to sigmoidal neurons ...

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 3



5/70

Recall

A perceptron will fire if the weighted sum of its inputs is greater than the
threshold (-w0)
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x1

y

bias = w0 = −0.5

w1 = 1

criticsRating

The thresholding logic used by a perceptron
is very harsh !

For example, let us return to our problem of
deciding whether we will like or dislike a movie

Consider that we base our decision only on one
input (x1 = criticsRating which lies between
0 and 1)

If the threshold is 0.5 (w0 = −0.5) and w1 = 1
then what would be the decision for a movie
with criticsRating = 0.51 ? (like)

What about a movie with criticsRating =
0.49 ? (dislike)

It seems harsh that we would like a movie with
rating 0.51 but not one with a rating of 0.49
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1

z=
∑n

i=1wixi

y

-w0

This behavior is not a characteristic of the
specific problem we chose or the specific
weight and threshold that we chose

It is a characteristic of the perceptron function
itself which behaves like a step function

There will always be this sudden change in the
decision (from 0 to 1) when

∑n
i=1wixi crosses

the threshold (-w0)

For most real world applications we would
expect a smoother decision function which
gradually changes from 0 to 1
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1

z=
∑n

i=1wixi

y

-w0

Introducing sigmoid neurons where the out-
put function is much smoother than the step
function

Here is one form of the sigmoid function called
the logistic function

y =
1

1 + e−(w0+
∑n

i=1 wixi)

We no longer see a sharp transition around
the threshold -w0

Also the output y is no longer binary but a
real value between 0 and 1 which can be in-
terpreted as a probability

Instead of a like/dislike decision we get the
probability of liking the movie
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Perceptron

x1 x2 .. .. xnx0 = 1

y

w1 w2 .. .. wnw0 = −θ

y = 1 if

n∑
i=0

wi ∗ xi ≥ 0

= 0 if

n∑
i=0

wi ∗ xi < 0

Sigmoid (logistic) Neuron

x1 x2 .. .. xnx0 = 1

σ

y

w1 w2 .. .. wnw0 = −θ

y =
1

1 + e−(
∑n

i=0 wixi)
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Perceptron

1

z=
∑n

i=1wixi

y

-w0

Not smooth, not continuous (at w0), not

differentiable

Sigmoid Neuron

1

z=
∑n

i=1wixi

y

-w0

Smooth, continuous, differentiable
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Module 3.2: A typical Supervised Machine Learning
Setup
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Sigmoid (logistic) Neuron

x1 x2 .. .. xnx0 = 1

y

w1 w2 .. .. wnw0 = −θ

What next ?

Well, just as we had an algorithm for learn-
ing the weights of a perceptron, we also need
a way of learning the weights of a sigmoid
neuron

Before we see such an algorithm we will revisit
the concept of error
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Earlier we mentioned that a single perceptron cannot
deal with this data because it is not linearly separable

What does “cannot deal with” mean?

What would happen if we use a perceptron model to
classify this data ?

We would probably end up with a line like this ...

This line doesn’t seem to be too bad

Sure, it misclassifies 3 blue points and 3 red points
but we could live with this error in most real world
applications

From now on, we will accept that it is hard to drive
the error to 0 in most cases and will instead aim to
reach the minimum possible error
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This brings us to a typical machine learning setup which has the following
components...

Data: {xi, yi}ni=1

Model: Our approximation of the relation between x and y. For example,

ŷ =
1

1 + e−(wTx)

or ŷ = wTx

or ŷ = xTWx

or just about any function

Parameters: In all the above cases, w is a parameter which needs to be learned
from the data

Learning algorithm: An algorithm for learning the parameters (w) of the
model (for example, perceptron learning algorithm, gradient descent, etc.)

Objective/Loss/Error function: To guide the learning algorithm - the learn-
ing algorithm should aim to minimize the loss function
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As an illustration, consider our movie example

Data: {xi = movie, yi = like/dislike}ni=1

Model: Our approximation of the relation between x and y (the probability
of liking a movie).

ŷ =
1

1 + e−(wTx)

Parameter: w

Learning algorithm: Gradient Descent [we will see soon]

Objective/Loss/Error function: One possibility is

L (w) =

n∑
i=1

(ŷi − yi)2

The learning algorithm should aim to find a w which minimizes the above
function (squared error between y and ŷ)
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Module 3.3: Learning Parameters: (Infeasible) guess
work
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x1 x2 .. .. xnx0 = 1

σ

y

w1 w2 .. .. wnw0 = −θ

f(x) = 1
1+e−(w·x+b)

σx

1

w

b

ŷ = f(x)

f(x) = 1
1+e−(w·x+b)

Keeping this supervised ML setup in mind,
we will now focus on this model and discuss
an algorithm for learning the parameters
of this model from some given data using an
appropriate objective function

σ stands for the sigmoid function (logistic
function in this case)

For ease of explanation, we will consider a
very simplified version of the model having
just 1 input

Further to be consistent with the literature,
from now on, we will refer to w0 as b (bias)

Lastly, instead of considering the problem of
predicting like/dislike, we will assume that
we want to predict criticsRating(y) given
imdbRating(x) (for no particular reason)
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σx

1

w

b

ŷ = f(x)

f(x) = 1
1+e−(w·x+b)

Input for training

{xi, yi}Ni=1 → N pairs of (x, y)

Training objective

Find w and b such that:

minimize
w,b

L (w, b) =

N∑
i=1

(yi − f(xi))
2

What does it mean to train the network?

Suppose we train the network with
(x, y) = (0.5, 0.2) and (2.5, 0.9)

At the end of training we expect to
find w*, b* such that:

f(0.5)→ 0.2 and f(2.5)→ 0.9

In other words...

We hope to find a sigmoid function
such that (0.5, 0.2) and (2.5, 0.9) lie
on this sigmoid

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 3



19/70

Let us see this in more detail....
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σ(x) =
1

1 + e−(wx+b)

Can we try to find such a w∗, b∗ manually

Let us try a random guess.. (say, w = 0.5, b = 0)

Clearly not good, but how bad is it ?

Let us revisit L (w, b) to see how bad it is ...

L (w, b) =
1

2
∗

N∑
i=1

(yi − f(xi))
2

=
1

2
∗ (y1 − f(x1))

2 + (y2 − f(x2))
2

=
1

2
∗ (0.9− f(2.5))2 + (0.2− f(0.5))2

= 0.073

We want L (w, b) to be as close to 0 as possible
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σ(x) =
1

1 + e−(wx+b)

Let us try some other values of w, b

w b L (w, b)

0.50 0.00 0.0730
-0.10 0.00 0.1481
0.94 -0.94 0.0214
1.42 -1.73 0.0028
1.65 -2.08 0.0003
1.78 -2.27 0.0000

Oops!! this made things even worse...

Perhaps it would help to push w and b in the
other direction...

Let us keep going in this direction, i.e., increase
w and decrease b

With some guess work and intuition we were able
to find the right values for w and b
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Let us look at something better than our “guess work”
algorithm....
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Since we have only 2 points and 2
parameters (w, b) we can easily plot
L (w, b) for different values of (w, b)
and pick the one where L (w, b) is
minimum

But of course this becomes intract-
able once you have many more data
points and many more parameters !!

Further, even here we have plotted
the error surface only for a small
range of (w, b) [from (−6, 6) and not
from (− inf, inf)]
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Let us look at the geometric interpretation of our
“guess work” algorithm in terms of this error surface
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Module 3.4: Learning Parameters : Gradient Descent
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Now let us see if there is a more efficient and
principled way of doing this
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Goal

Find a better way of traversing the error surface so that we can reach the
minimum value quickly without resorting to brute force search!
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θ = [w, b]

∆θ = [∆w,∆b]

θnew = θ + η ·∆θ

vector of parameters,
say, randomly initial-
ized

change in the
values of w, b

Question: What is the right ∆θ to use
?

We moved in the direc-
tion of ∆θ

Let us be a bit conservat-
ive: move only by a small
amount η

The answer comes from Taylor series

θ

∆θ

θnew

η ·∆θ
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For ease of notation, let ∆θ = u, then from Taylor series, we have,

L (θ + ηu) = L (θ) + η ∗ uT∇θL (θ) +
η2

2!
∗ uT∇2L (θ)u+

η3

3!
∗ ...+ η4

4!
∗ ...

= L (θ) + η ∗ uT∇θL (θ) [η is typically small, so η2, η3, ..→ 0]

Note that the move (ηu) would be favorable only if,

L (θ + ηu)−L (θ) < 0 [i.e., if the new loss is less than the previous loss]

This implies,

uT∇θL (θ) < 0
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Okay, so we have,

uT∇θL (θ) < 0

But, what is the range of uT∇θL (θ) ? Let us see....
Let β be the angle between u and ∇θL (θ), then we know that,

−1 ≤ cos(β) =
uT∇θL (θ)

||u|| ∗ ||∇θL (θ)||
≤ 1

multiply throughout by k = ||u|| ∗ ||∇θL (θ)||

−k ≤ k ∗ cos(β) = uT∇θL (θ) ≤ k

Thus, L (θ + ηu)−L (θ) = uT∇θL (θ) = k ∗ cos(β) will be most negative when
cos(β) = −1 i.e., when β is 180°
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Gradient Descent Rule

The direction u that we intend to move in should be at 180° w.r.t. the gradient

In other words, move in a direction opposite to the gradient

Parameter Update Equations

wt+1 = wt − η∇wt
bt+1 = bt − η∇bt

where,∇wt =
∂L (w, b)

∂w at w = wt, b = bt
,∇b =

∂L (w, b)

∂b at w = wt, b = bt

So we now have a more principled way of moving in the w-b plane than our “guess
work” algorithm
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Let us create an algorithm from this rule ...

Algorithm: gradient descent()

t← 0;
max iterations← 1000;
while t < max iterations do

wt+1 ← wt − η∇wt;
bt+1 ← bt − η∇bt;
t← t+ 1;

end

To see this algorithm in practice let us first derive ∇w and ∇b for our toy neural
network
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σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

Let’s assume there is only 1 point to fit
(x, y)

L (w, b) =
1

2
∗ (f(x)− y)2

∇w =
∂L (w, b)

∂w
=

∂

∂w
[
1

2
∗ (f(x)− y)2]
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∇w =
∂

∂w
[
1

2
∗ (f(x)− y)2]

=
1

2
∗ [2 ∗ (f(x)− y) ∗ ∂

∂w
(f(x)− y)]

= (f(x)− y) ∗ ∂

∂w
(f(x))

= (f(x)− y) ∗ ∂

∂w

( 1

1 + e−(wx+b)

)
= (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x

∂

∂w

( 1

1 + e−(wx+b)

)
=

−1

(1 + e−(wx+b))2
∂

∂w
(e−(wx+b)))

=
−1

(1 + e−(wx+b))2
∗ (e−(wx+b))

∂

∂w
(−(wx+ b)))

=
−1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (−x)

=
1

(1 + e−(wx+b))
∗ e−(wx+b)

(1 + e−(wx+b))
∗ (x)

= f(x) ∗ (1− f(x)) ∗ x
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σx

1

y = f(x)

f(x) = 1
1+e−(w·x+b)

So if there is only 1 point (x, y), we have,

∇w = (f(x)− y) ∗ f(x) ∗ (1− f(x)) ∗ x

For two points,

∇w =

2∑
i=1

(f(xi)− yi) ∗ f(xi) ∗ (1− f(xi)) ∗ xi

∇b =

2∑
i=1

(f(xi)− yi) ∗ f(xi) ∗ (1− f(xi))
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Later on in the course we will look at gradient descent in much more detail and
discuss its variants

For the time being it suffices to know that we have an algorithm for learning
the parameters of a sigmoid neuron

So where do we head from here ?
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Module 3.5: Representation Power of a Multilayer
Network of Sigmoid Neurons
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Representation power of a mul-
tilayer network of perceptrons

A multilayer network of perceptrons with
a single hidden layer can be used to rep-
resent any boolean function precisely (no
errors)

Representation power of a mul-
tilayer network of sigmoid neurons

A multilayer network of neurons with a
single hidden layer can be used to approx-
imate any continuous function to any
desired precision

In other words, there is a guarantee that
for any function f(x) : Rn → Rm, we
can always find a neural network (with 1
hidden layer containing enough neurons)
whose output g(x) satisfies |g(x)−f(x)| <
ε !!

Proof: We will see an illustrative proof of
this... [Cybenko, 1989], [Hornik, 1991]
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See this link? for an excellent illustration of this proof

The discussion in the next few slides is based on the ideas presented at the
above link

?http://neuralnetworksanddeeplearning.com/chap4.html
Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 3
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We are interested in knowing whether
a network of neurons can be used to
represent an arbitrary function (like
the one shown in the figure)

We observe that such an arbitrary
function can be approximated by sev-
eral “tower” functions

More the number of such “tower”
functions, better the approximation

To be more precise, we can approxim-
ate any arbitrary function by a sum
of such “tower” functions
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x

. . .

Tower
maker

Tower
maker

. . . Tower
maker
Tower
maker
Tower
maker

Tower
maker

. . .

+

. . .

We make a few observations

All these “tower” functions are sim-
ilar and only differ in their heights
and positions on the x-axis

Suppose there is a black box which
takes the original input (x) and con-
structs these tower functions

We can then have a simple network
which can just add them up to ap-
proximate the function

Our job now is to figure out what is
inside this blackbox
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We will figure this out over the next few slides ...
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σ(x) = 1
1+e−(wx+b) w = 0, b = 0

σ(x) = 1
1+e−(wx+b) w = 1, b = 0

σ(x) = 1
1+e−(wx+b) w = 2, b = 0

σ(x) = 1
1+e−(wx+b) w = 3, b = 0

σ(x) = 1
1+e−(wx+b) w = 4, b = 0

σ(x) = 1
1+e−(wx+b) w = 5, b = 0

σ(x) = 1
1+e−(wx+b) w = 6, b = 0

σ(x) = 1
1+e−(wx+b) w = 7, b = 0

σ(x) = 1
1+e−(wx+b) w = 8, b = 0

σ(x) = 1
1+e−(wx+b) w = 9, b = 0

σ(x) = 1
1+e−(wx+b) w = 10, b = 0

σ(x) = 1
1+e−(wx+b) w = 11, b = 0

σ(x) = 1
1+e−(wx+b) w = 12, b = 0

σ(x) = 1
1+e−(wx+b) w = 13, b = 0

σ(x) = 1
1+e−(wx+b) w = 14, b = 0

σ(x) = 1
1+e−(wx+b) w = 15, b = 0

σ(x) = 1
1+e−(wx+b) w = 16, b = 0

σ(x) = 1
1+e−(wx+b) w = 17, b = 0

σ(x) = 1
1+e−(wx+b) w = 18, b = 0

σ(x) = 1
1+e−(wx+b) w = 19, b = 0

σ(x) = 1
1+e−(wx+b) w = 20, b = 0

σ(x) = 1
1+e−(wx+b) w = 21, b = 0

σ(x) = 1
1+e−(wx+b) w = 22, b = 0

σ(x) = 1
1+e−(wx+b) w = 23, b = 0

σ(x) = 1
1+e−(wx+b) w = 24, b = 0

σ(x) = 1
1+e−(wx+b) w = 25, b = 0

σ(x) = 1
1+e−(wx+b) w = 26, b = 0

σ(x) = 1
1+e−(wx+b) w = 27, b = 0

σ(x) = 1
1+e−(wx+b) w = 28, b = 0

σ(x) = 1
1+e−(wx+b) w = 29, b = 0

σ(x) = 1
1+e−(wx+b) w = 30, b = 0

σ(x) = 1
1+e−(wx+b) w = 31, b = 0

σ(x) = 1
1+e−(wx+b) w = 32, b = 0

σ(x) = 1
1+e−(wx+b) w = 33, b = 0

σ(x) = 1
1+e−(wx+b) w = 34, b = 0

σ(x) = 1
1+e−(wx+b) w = 35, b = 0

σ(x) = 1
1+e−(wx+b) w = 36, b = 0

σ(x) = 1
1+e−(wx+b) w = 37, b = 0

σ(x) = 1
1+e−(wx+b) w = 38, b = 0

σ(x) = 1
1+e−(wx+b) w = 39, b = 0

σ(x) = 1
1+e−(wx+b) w = 40, b = 0

σ(x) = 1
1+e−(wx+b) w = 41, b = 0

σ(x) = 1
1+e−(wx+b) w = 42, b = 0

σ(x) = 1
1+e−(wx+b) w = 43, b = 0

σ(x) = 1
1+e−(wx+b) w = 44, b = 0

σ(x) = 1
1+e−(wx+b) w = 50, b = 1

σ(x) = 1
1+e−(wx+b) w = 50, b = 2

σ(x) = 1
1+e−(wx+b) w = 50, b = 3

σ(x) = 1
1+e−(wx+b) w = 50, b = 4

σ(x) = 1
1+e−(wx+b) w = 50, b = 5

σ(x) = 1
1+e−(wx+b) w = 50, b = 6

σ(x) = 1
1+e−(wx+b) w = 50, b = 7

σ(x) = 1
1+e−(wx+b) w = 50, b = 8

σ(x) = 1
1+e−(wx+b) w = 50, b = 9

σ(x) = 1
1+e−(wx+b) w = 50, b = 10

σ(x) = 1
1+e−(wx+b) w = 50, b = 11

σ(x) = 1
1+e−(wx+b) w = 50, b = 12

σ(x) = 1
1+e−(wx+b) w = 50, b = 13

σ(x) = 1
1+e−(wx+b) w = 50, b = 14

σ(x) = 1
1+e−(wx+b) w = 50, b = 15

σ(x) = 1
1+e−(wx+b) w = 50, b = 16

σ(x) = 1
1+e−(wx+b) w = 50, b = 17

σ(x) = 1
1+e−(wx+b) w = 50, b = 18

σ(x) = 1
1+e−(wx+b) w = 50, b = 19

σ(x) = 1
1+e−(wx+b) w = 50, b = 20

σ(x) = 1
1+e−(wx+b) w = 50, b = 21

σ(x) = 1
1+e−(wx+b) w = 50, b = 22

σ(x) = 1
1+e−(wx+b) w = 50, b = 23

σ(x) = 1
1+e−(wx+b) w = 50, b = 24

σ(x) = 1
1+e−(wx+b) w = 50, b = 25

σ(x) = 1
1+e−(wx+b) w = 50, b = 26

σ(x) = 1
1+e−(wx+b) w = 50, b = 27

σ(x) = 1
1+e−(wx+b) w = 50, b = 28

σ(x) = 1
1+e−(wx+b) w = 50, b = 29

σ(x) = 1
1+e−(wx+b) w = 50, b = 30

σ(x) = 1
1+e−(wx+b) w = 50, b = 31

σ(x) = 1
1+e−(wx+b) w = 50, b = 32

σ(x) = 1
1+e−(wx+b) w = 50, b = 33

σ(x) = 1
1+e−(wx+b) w = 50, b = 34

σ(x) = 1
1+e−(wx+b) w = 50, b = 35

If we take the logistic function and set
w to a very high value we will recover
the step function

Let us see what happens as we change
the value of w

Further we can adjust the value of b
to control the position on the x-axis
at which the function transitions from
0 to 1
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Now let us see what we get by taking
two such sigmoid functions (with dif-
ferent b′s) and subtracting one from
the other

Voila! We have our tower function !!
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Can we come up with a neural network to represent this operation of subtracting
one sigmoid function from another ?
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What if we have more than one input?

Suppose we are trying to take a decision
about whether we will find oil at a particular
location on the ocean bed(Yes/No)

Further, suppose we base our decision on two
factors: Salinity (x1) and Pressure (x2)

We are given some data and it seems that
y(oil|no-oil) is a complex function of x1 and
x2

We want a neural network to approximate
this function
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y =
1

1 + e−(w1x1+w2x2+b)

w1 = 2, w2 = 0, b = 0
w1 = 3, w2 = 0, b = 0
w1 = 4, w2 = 0, b = 0
w1 = 5, w2 = 0, b = 0
w1 = 6, w2 = 0, b = 0
w1 = 7, w2 = 0, b = 0
w1 = 8, w2 = 0, b = 0
w1 = 9, w2 = 0, b = 0
w1 = 10, w2 = 0, b = 0
w1 = 11, w2 = 0, b = 0
w1 = 12, w2 = 0, b = 0
w1 = 13, w2 = 0, b = 0
w1 = 14, w2 = 0, b = 0
w1 = 15, w2 = 0, b = 0
w1 = 16, w2 = 0, b = 0
w1 = 17, w2 = 0, b = 0
w1 = 18, w2 = 0, b = 0
w1 = 19, w2 = 0, b = 0
w1 = 20, w2 = 0, b = 0
w1 = 21, w2 = 0, b = 0
w1 = 22, w2 = 0, b = 0
w1 = 23, w2 = 0, b = 0
w1 = 24, w2 = 0, b = 0

This is what a 2-dimensional sigmoid
looks like

We need to figure out how to get a
tower in this case

First, let us set w2 to 0 and see if we
can get a two dimensional step func-
tion

What would happen if we change b ?
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y =
1

1 + e−(w1x1+w2x2+b)

w1 = 25, w2 = 0, b = 0
w1 = 25, w2 = 0, b = 5
w1 = 25, w2 = 0, b = 10
w1 = 25, w2 = 0, b = 15
w1 = 25, w2 = 0, b = 20
w1 = 25, w2 = 0, b = 25
w1 = 25, w2 = 0, b = 30
w1 = 25, w2 = 0, b = 35
w1 = 25, w2 = 0, b = 40
w1 = 25, w2 = 0, b = 45

This is what a 2-dimensional sigmoid
looks like

We need to figure out how to get a
tower in this case

First, let us set w2 to 0 and see if we
can get a two dimensional step func-
tion

What would happen if we change b ?
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What if we take two such step func-
tions (with different b values) and
subtract one from the other

We still don’t get a tower (or we get
a tower which is open from two sides)
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y =
1

1 + e−(w1x1+w2x2+b)

w1 = 0, w2 = 2, b = 0
w1 = 0, w2 = 3, b = 0
w1 = 0, w2 = 4, b = 0
w1 = 0, w2 = 5, b = 0
w1 = 0, w2 = 6, b = 0
w1 = 0, w2 = 7, b = 0
w1 = 0, w2 = 8, b = 0
w1 = 0, w2 = 9, b = 0
w1 = 0, w2 = 10, b = 0
w1 = 0, w2 = 11, b = 0
w1 = 0, w2 = 12, b = 0
w1 = 0, w2 = 13, b = 0
w1 = 0, w2 = 14, b = 0
w1 = 0, w2 = 15, b = 0
w1 = 0, w2 = 16, b = 0
w1 = 0, w2 = 17, b = 0
w1 = 0, w2 = 18, b = 0
w1 = 0, w2 = 19, b = 0
w1 = 0, w2 = 20, b = 0
w1 = 0, w2 = 21, b = 0
w1 = 0, w2 = 22, b = 0
w1 = 0, w2 = 23, b = 0
w1 = 0, w2 = 24, b = 0

Now let us set w1 to 0 and adjust w2

to get a 2-dimensional step function
with a different orientation

And now we change b
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y =
1

1 + e−(w1x1+w2x2+b)

w1 = 0, w2 = 25, b = 0
w1 = 0, w2 = 25, b = 5
w1 = 0, w2 = 25, b = 10
w1 = 0, w2 = 25, b = 15
w1 = 0, w2 = 25, b = 20
w1 = 0, w2 = 25, b = 25
w1 = 0, w2 = 25, b = 30
w1 = 0, w2 = 25, b = 35
w1 = 0, w2 = 25, b = 40
w1 = 0, w2 = 25, b = 45

Now let us set w1 to 0 and adjust w2

to get a 2-dimensional step function
with a different orientation

And now we change b
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Again, what if we take two such step
functions (with different b values) and
subtract one from the other

We still don’t get a tower (or we get
a tower which is open from two sides)

Notice that this open tower has a dif-
ferent orientation from the previous
one
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Now what will we get by adding two
such open towers ?

We get a tower standing on an elev-
ated base

We can now pass this output through
another sigmoid neuron to get the de-
sired tower !

We can now approximate any func-
tion by summing up many such
towers
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For example, we could approximate
the following function using a sum of
several towers
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Can we come up with a neural network to represent this entire procedure of
constructing a 3 dimensional tower ?
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Think

For 1 dimensional input we needed 2 neurons to construct a tower

For 2 dimensional input we needed 4 neurons to construct a tower

How many neurons will you need to construct a tower in n dimensions ?
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Time to retrospect

Why do we care about approximating any arbitrary function ?

Can we tie all this back to the classification problem that we have been dealing
with ?
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We are interested in separating the blue
points from the red points

Suppose we use a single sigmoidal neuron
to approximate the relation between x =
[x1, x2] and y

Obviously, there will be errors (some blue
points get classified as 1 and some red points
get classified as 0)

This is what we actually want

The illustrative proof that we just saw tells
us that we can have a neural network with
two hidden layers which can approximate
the above function by a sum of towers

Which means we can have a neural network
which can exactly separate the blue points
from the red points !!
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